
Philippe Clauss IMPACT 2013 - January 21

Multifor for Multicore
Imèn Fassi a, Philippe Clauss b, Matthieu Kuhn c , Yosr Slama a

a Dpt of Computer Science, Faculty of Sciences, University El Manar, Tunisia
b Team CAMUS, INRIA, University of Strasbourg, France
c Team ICPS, ICube lab., University of Strasbourg, France

Why a Multifor construct?

I Parallelism must naturally take part of the programming
process

I programming languages:

I many new languages are or have been proposed,
many have disappeared or are going to disappear

I current successful languages can be extended

I code optimization and parallelization:

I standard developers have to be raised to
20 years ago experienced programmers

I as they learned the use of functions, recursion, object
programming, ...
they should learn data layout optimization, simple loop
transformations, mapping of iteration/data domains, ...

I but without being forced to
(optional constructs vs specific languages)

I hardware/software support mechanisms for parallel
programming cannot solve all parallel programming issues,
when they do not even add some more problems
(TM, VM, etc.)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 2/29

Why a Multifor construct?
I Parallelism must naturally take part of the programming

process
I programming languages:

I many new languages are or have been proposed,
many have disappeared or are going to disappear

I current successful languages can be extended

I code optimization and parallelization:

I standard developers have to be raised to
20 years ago experienced programmers

I as they learned the use of functions, recursion, object
programming, ...
they should learn data layout optimization, simple loop
transformations, mapping of iteration/data domains, ...

I but without being forced to
(optional constructs vs specific languages)

I hardware/software support mechanisms for parallel
programming cannot solve all parallel programming issues,
when they do not even add some more problems
(TM, VM, etc.)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 2/29

Why a Multifor construct?
I Parallelism must naturally take part of the programming

process
I programming languages:

I many new languages are or have been proposed,
many have disappeared or are going to disappear

I current successful languages can be extended
I code optimization and parallelization:

I standard developers have to be raised to
20 years ago experienced programmers

I as they learned the use of functions, recursion, object
programming, ...
they should learn data layout optimization, simple loop
transformations, mapping of iteration/data domains, ...

I but without being forced to
(optional constructs vs specific languages)

I hardware/software support mechanisms for parallel
programming cannot solve all parallel programming issues,
when they do not even add some more problems
(TM, VM, etc.)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 2/29

Why a Multifor construct?
I Parallelism must naturally take part of the programming

process
I programming languages:

I many new languages are or have been proposed,
many have disappeared or are going to disappear

I current successful languages can be extended
I code optimization and parallelization:

I standard developers have to be raised to
20 years ago experienced programmers

I as they learned the use of functions, recursion, object
programming, ...
they should learn data layout optimization, simple loop
transformations, mapping of iteration/data domains, ...

I but without being forced to
(optional constructs vs specific languages)

I hardware/software support mechanisms for parallel
programming cannot solve all parallel programming issues,
when they do not even add some more problems
(TM, VM, etc.)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 2/29

Why a Multifor construct?

I The Polytope Model
I most of its features are hidden to developers

(automatic parallelization)
I polyhedral transformations result often in (efficient but)

unreadable code
I the model’s scope is not limited to a sequence of loop nests,

and can be applied incrementally
I polyhedral programming can promote the model and improve

its efficiency

I Multifor

I a polyhedral programming control structure, providing a
polyhedral view of the computation

I facilitates the expression of some task parallelism, dataflow
and MapReduce schemes

I allows developers to express some loop fusion, mapping of
domains, data reuse, ...

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 3/29

Why a Multifor construct?

I The Polytope Model
I most of its features are hidden to developers

(automatic parallelization)
I polyhedral transformations result often in (efficient but)

unreadable code
I the model’s scope is not limited to a sequence of loop nests,

and can be applied incrementally
I polyhedral programming can promote the model and improve

its efficiency
I Multifor

I a polyhedral programming control structure, providing a
polyhedral view of the computation

I facilitates the expression of some task parallelism, dataflow
and MapReduce schemes

I allows developers to express some loop fusion, mapping of
domains, data reuse, ...

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 3/29

Syntax and semantics
multifor (index1 = expr , [index2 = expr , ...] ;

index1 < expr , [index2 < expr , ...] ;
index1+ = cst, [index2+ = cst, ...] ;
grain1, [grain2, ...] ;
offset1, [offset2, ...]) {
prefix : {statements}

}

where
I expr : affine arithmetic expressions on enclosing loop indices
I cst, grain and offset: integer constants
I grain ≥ 1, offset ≥ 0
I prefix : positive integer associating statements to their

corresponding for-loop

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 4/29

Syntax and semantics

I Each for-loop composing the multifor-loop behaves as a
traditional for-loop

I Every iteration domain is mapped on a same referential
iteration domain, according its grain and offset

I referential domain: union of the for-loop domains, dilated and
shifted following their respective grain and offset

I grain: frequency in which the loop is run, gcd of the grains of
the overlapping for-loops per sub-domain (compression factor)

I offset: gap between the first iteration of the referential domain
and the first iteration of the loop

I On overlapping for-loops iteration domains, respective
iterations are run in any interleaved fashion or in parallel.

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 5/29

Syntax and semantics

I Each for-loop composing the multifor-loop behaves as a
traditional for-loop

I Every iteration domain is mapped on a same referential
iteration domain, according its grain and offset

I referential domain: union of the for-loop domains, dilated and
shifted following their respective grain and offset

I grain: frequency in which the loop is run, gcd of the grains of
the overlapping for-loops per sub-domain (compression factor)

I offset: gap between the first iteration of the referential domain
and the first iteration of the loop

I On overlapping for-loops iteration domains, respective
iterations are run in any interleaved fashion or in parallel.

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 5/29

Syntax and semantics

I Each for-loop composing the multifor-loop behaves as a
traditional for-loop

I Every iteration domain is mapped on a same referential
iteration domain, according its grain and offset

I referential domain: union of the for-loop domains, dilated and
shifted following their respective grain and offset

I grain: frequency in which the loop is run, gcd of the grains of
the overlapping for-loops per sub-domain (compression factor)

I offset: gap between the first iteration of the referential domain
and the first iteration of the loop

I On overlapping for-loops iteration domains, respective
iterations are run in any interleaved fashion or in parallel.

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 5/29

Examples: one multifor-loop
offset

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1 ++, i2 ++; 1, 1; 0, 2)

i1

i2

i

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 6/29

Examples: one multifor-loop
offset

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1 ++, i2 ++; 1, 1; 0, 2)

i1

i2

i

grain + compression

multifor (i1 = 0, i2 = 10; i1 < 10, i2 < 15; i1 ++, i2 ++; 1, 4; 0, 0)

i1

i2

i

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 6/29

Nested multifor-loops

multifor (index1 = expr , index2 = expr ;
index1 < expr , index2 < expr ;
index1+ = cst, index2+ = cst;
grain1, grain2; offset1, offset2) {
prefix : {statements}

multifor (index3 = expr , index4 = expr ;
index3 < expr , index4 < expr ;
index3+ = cst, index4+ = cst;
grain3, grain4; offset3, offset4) {
prefix : {statements}

}
prefix : {statements}

}

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 7/29

I behaves as 2 for-loop
nests (index1, index3) and
(index2, index4)

I the bounds are affine
functions of the enclosing
loop indices of the same
for-loop

Examples: nested multifor-loops
offset

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 5; i1 ++, i2 ++; 1, 1; 0, 2)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 5; j1 ++, j2 ++; 1, 1; 0, 2)

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 8/29

Examples: nested multifor-loops
grain

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 3; i1 ++, i2 ++; 1, 4; 0, 0)
multifor (j1 = 0, j2 = 0; j1 < 10, j2 < 3; j1 ++, j2 ++; 1, 4; 0, 0)

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 9/29

Examples: nested multifor-loops
affine bound + offset

multifor (i1 = 0, i2 = 0; i1 < 6, i2 < 6; i1 ++, i2 ++; 1, 1; 0, 1)
multifor (j1 = 0, j2 = 0; j1 < 6− i1, j2 < 6; j1 ++, j2 ++; 1, 1; 0, 0)

i
j

:itérations (i1,j1)

:itérations (i1,j1) and (i2,j2)

:itérations (i2,j2)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 10/29

Multifor-loop parallelization and transformation

I Parallelization opportunities:
I Running each for-loop as a separated thread
I Parallelizing each for-loop in an OpenMP fashion
I Parallelizing simultaneously in both ways

I Polyhedral transformations:
I Of each for-loop
I With a global view regarding their interactions

(referential domain)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 11/29

Another way of writing loop nests
I Imperfect nests:

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 12/29

for (i = 0; i < 10; i ++)
inst block1
for (j = 0; j < 10; j ++)

inst block2

or

multifor (i1 = 0, i2 = 0; i1 < 10, i2 < 10; i1 ++, i2 ++; 1, 1; 0, 0)
multifor (j1 = 0, j2 = 0; j1 < 1, j2 < 10; j1 ++, j2 ++; 1, 1; 0, 1)

0 : inst block1
1 : inst block2

Another way of writing loop nests
I Re-scheduling some statements, e.g. for data locality:

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 13/29

for (i = 0; i < 100; i ++)
for (j = 0; j < 100; j ++)

b + = a[i][j] + 1;
c + = a[i + 1][j + 1] + 2;

transformed to:

multifor (i1 = 0, i2 = 0; i1 < 100, i2 < 100; i1 ++, i2 ++; 1, 1; 1, 0)
multifor (j1 = 0, j2 = 0; j1 < 100, j2 < 100; j1 ++, j2 ++; 1, 1; 1, 0)

0 : b + = a[i][j] + 1;
1 : c + = a[i + 1][j + 1] + 2;

Another way of writing loop nests
I Tiling:

I Requires some extensions:
I [n] i : n indices i1, i2, ..., ip
I [a, b]: n values a, a + b, a + 2b, a + 3b, ...
I [n] m: m,m,m, ... (n times) ; ∗: every nest executes

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 14/29

for (it = 0; it < N; it+ = tsize1)
for (jt = 0; jt < N; jt+ = tsize2)

for (i = it; i < it + tsize1; i ++)
for (j = jt; j < jt + tsize2; j ++)

inst block
or:

multifor ([N/tsize1] i = [0, tsize1]; i < i + tsize1; i ++;
[N/tsize1] 1; [0, tsize1])

multifor ([N/tsize2] j = [0, tsize2]; j < j + tsize2; j ++;
[N/tsize2] 1; [N/tsize2] 0)

∗ : inst block

Some real examples
I Steganography: decoding phase where a (HWidth × HHeight)

image is hidden in a (EWidth × EHeight) image

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 15/29

multifor (i1 = 0, i2 = 0; i3 = 0, i4 = HWidth; i1 < HWidth,
i2 < HWidth, i3 < HWidth, i4 < EWidth;
i1 ++, i2 ++, i3 ++, i4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

multifor (j1 = 0, j2 = 0, j3 = HHeight, j4 = 0; j1 < HHeight,
j2 < HHeight, j3 < EHeight, j4 < EHeight;
j1 ++, j2 ++, j3 ++, j4 ++; 1, 1, 1, 1; 0, 0, 0, 0)

{
0 : // Retrieve the hidden image
∗ HImage(i1, j1) = decode hidden(i1, j1);

1 : // Retrieve the enclosing image
∗MImage(i2, j2) = decode main(i2, j2);

[2, 3] : // Retrieve the enclosing image
∗MImage([i3, i4], [j3, j4]) = ∗EImage([i3, i4], [j3, j4]);

}

Some real examples
I Steganography: multifor-loop nest scan of the images

i
j

:itérations (i1,j1) and (i2,j2)

:itérations (i3,j3)

:itérations (i4,j4)

HHeight

EHeight

H
W

id
th

E
W

id
th

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 16/29

Some real examples
I Red-Black Gauss-Seidel: traditional code

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 17/29

// Red phase
for (i = 1; i < N − 1; i ++)
for (j = 1; j < N − 1; j ++)
if ((i + j) % 2 == 0)

u[i][j] = f (u[i][j + 1], u[i][j − 1], u[i − 1][j], u[i + 1][j]);

// Black phase
for (i = 1; i < N − 1; i ++)
for (j = 1; j < N − 1; j ++)
if ((i + j) % 2 == 1)

u[i][j] = f (u[i][j + 1], u[i][j − 1], u[i − 1][j], u[i + 1][j]);

Some real examples
I Red-Black Gauss-Seidel: multifor code

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 18/29

multifor (i0 = 1, i1 = 2, i2 = 1, i3 = 2; i0 < N − 1, i1 < N − 1,
i2 < N − 1, i3 < N − 1; i0+ = 2, i1+ = 2, i2+ = 2,
i3+ = 2; 2, 2, 2, 2; 0, 1, 1, 2)

multifor (j0 = 1, j1 = 2, j2 = 2, j3 = 1; j0 < N − 1, j1 < N − 1,
j2 < N − 1, j3 < N − 1; j0+ = 2, j1+ = 2, j2+ = 2,
j3+ = 2; 2, 2, 2, 2; 0, 1, 2, 1) {

0 : u[i0][j0] =
f (u[i0][j0 + 1], u[i0][j0 − 1], u[i0 − 1][j0], u[i0 + 1][j0]);

1 : u[i1][j1] =
f (u[i1][j1 + 1], u[i1][j1 − 1], u[i1 − 1][j1], u[i1 + 1][j1]);

2 : u[i2][j2] =
f (u[i2][j2 + 1], u[i2][j2 − 1], u[i2 − 1][j2], u[i2 + 1][j2]);

3 : u[i3][j3] =
f (u[i3][j3 + 1], u[i3][j3 − 1], u[i3 − 1][j3], u[i3 + 1][j3]);

}

Some real examples
I Red-Black Gauss-Seidel: multifor referential domain

i
j

:itérations (i0,j0) (red phase)

:itérations (i2,j2) (black phase)

:holes

:itérations (i1,j1) (red phase)

:itérations (i3,j3) (black phase)

i
j

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 19/29

Some real examples
I Red-Black Gauss-Seidel: possible generated for-loop code

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 20/29

for (j = 1; j < N − 1; j+ = 2)
u[i][j] = f (u[i][j + 1], u[i][j − 1], u[i − 1][j], u[i + 1][j]);

for (i = 2; i < N − 2; i+ = 2) {
for (j = 2; j < N − 1; j+ = 2) {
u[i][j] = f (u[i][j + 1], u[i][j − 1], u[i − 1][j], u[i + 1][j]);
u[i][j + 1] = f (u[i][j + 2], u[i][j],

u[i − 1][j + 1], u[i + 1][j + 1]); }
for (j = 1; j < N − 1; j+ = 2) {
u[i + 1][j] = f (u[i + 1][j + 1], u[i + 1][j − 1],

u[i][j], u[i + 2][j]);
u[i + 1][j + 1] = f (u[i + 1][j + 2], u[i + 1][j],

u[i][j + 1], u[i + 2][j + 1]); } }
for (j = 2; j < N − 1; j+ = 2) {
u[N − 2][j] = f (u[N − 2][j + 1], u[N − 2][j − 1],

u[N − 3][j], u[N − 1][j]); }

A promising perspective:
non-linear mapping

A promising perspective: non-linear mapping
Example:

I Load unbalance

THREAD 0 THREAD 1 THREAD 2 THREAD 3

I N(N + 1)/2 iterations
I Such a loop nest would be better:

THREAD 0 THREAD 1 THREAD 2 THREAD 3

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 22/29

pragma omp parallel for shared(a,b) private(i,j)
for (i = 0; i < N; i ++)
for (j = 0; j < N − i ; j ++)
a[j][i] = b[j][i] + 12;

pragma omp parallel for shared(a,b) private(i,j,x,y)
for (i = 0; i < N; i ++)
for (j = 0; j < (N + 1)/2; j ++)
x =?; y =?;
a[y][x] = b[y][x] + 12;

A promising perspective: non-linear mapping
Example:

I Ranking polynomial of the first nest:

∀(i , j) ∈ D1,R1(i , j) = Ni− i(i − 1)
2 +j+1 =

{
1, 2, ..., N(N + 1)

2

}
I Ranking polynomial of the second nest:

∀(i , j) ∈ D2,R2(i , j) = (N + 1)
2 i+j+1 =

{
1, 2, ..., N(N + 1)

2

}
I Equation to be solved:

∀(i , j) ∈ D2,∃(x , y) ∈ D1 s.t. R1(x , y) = K = R2(i , j)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 23/29

A promising perspective: non-linear mapping
Example:

I Solving R1(x , 0)− K = Ni − i(i−1)
2 + 1− K = 0

I Two roots:

r1 =
2N + 1−

√
(2N + 1)2 + 8(1− K)

2

r2 =
2N + 1 +

√
(2N + 1)2 + 8(1− K)

2
I br1c is the solution x of R1(x , y) = K
I =⇒ y = K − R1(br1c, 0) = K − Nbr1c+ br1c(br1c−1)

2 − 1

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 24/29

A promising perspective: non-linear mapping
Example:

I Second loop nest:

I sqrt is very time consuming: important slow-down

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 25/29

pragma omp parallel for shared(a,b) private(i,j,x,y,K)
for (i = 0; i < N; i ++)
for (j = 0; j < (N + 1)/2; j ++)
K = (N + 1) ∗ i/2 + j + 1;
x = ((2 ∗ N + 1)− sqrt((2 ∗ N + 1) ∗ (2 ∗ N + 1) + 8 ∗ (1− K)))/2;
y = K − (N ∗ x − x ∗ (x − 1)/2 + 1); ;
a[y][x] = b[y][x] + 12;

A promising perspective: non-linear mapping
Example:

I New version: pre-computing a sufficient range of square roots

I 1.3 speed-up with 12 threads with the second nest vs the first
(N = 4000, AMD Opteron 6172, 12 cores, 2.1 Ghz)

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 26/29

pragma omp parallel for shared(a,b) private(i,j,x,y,K)
for (i = 0; i < N; i ++)
for (j = 0; j < (N + 1)/2; j ++)
K = (N + 1) ∗ i/2 + j + 1;
x = ((2 ∗ N + 1)− tab[(2 ∗ N + 1) ∗ (2 ∗ N + 1) + 8 ∗ (1− K)])/2;
y = K − (N ∗ x − x ∗ (x − 1)/2 + 1); ;
a[y][x] = b[y][x] + 12;

Perspectives & conclusion

Perspectives & conclusion

Multifor
I Many possible extensions

I loop indices used in other loops
I variable grain and offset
I parallelism in several dimensions (loops, grains, offsets)
I non-linear control

I multiwhile?
I Inter-nests code analysis and transformations
I Implementation in CLANG-LLVM

Non-linear mapping
I Other application opportunities

I data locality, scheduling, ...
I Non-linear analysis

Ph. Clauss - Multifor for Multicore - IMPACT 2013 January 21 - 28/29

THANK YOU

University of Strasbourg
INRIA Nancy Grand-Est

http://team.inria.fr/camus

	Perspectives

