On Demand Parametric Array Dataflow Analysis

Sven Verdoolaege Hristo Nikolov Todor Stefanov

Leiden Institute for Advanced Computer Science
École Normale Supérieure and INRIA

January 21, 2013

Outline

(1) Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric
(3) Dynamic Conditions
(4) Parametrization
- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results
(7) Conclusion

Outline

(1) Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric

3 Dynamic Conditions
(4) Parametrization

- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results

Conclusion

Motivation

- Dataflow analysis determines for read access in a statement instance, the statement instance that wrote the value being read
- Many uses in polyhedral analysis/compilation
- array expansion
- scheduling
- equivalence checking
- optimizing computation/communication overlap in MPI programs
- derivation of process networks
- ...
- Standard dataflow analysis (Feautrier) requires static affine input programs
- Extensions are needed for programs with dynamic/non-affine constructs

Motivation

- Dataflow analysis determines for read access in a statement instance, the statement instance that wrote the value being read
- Many uses in polyhedral analysis/compilation
- array expansion
- scheduling
- equivalence checking
- optimizing computation/communication overlap in MPI programs
- derivation of process networks
- ...
- Standard dataflow analysis (Feautrier) requires static affine input programs
- Extensions are needed for programs with dynamic/non-affine constructs

Our Motivation: Derivation of Process Networks

- Main purpose: extract task level parallelism from dataflow graph

statement	\rightarrow process
flow dependence	\rightarrow communication channel

\Rightarrow requires dataflow analysis

- Processes are mapped to parallel hardware (e.g., FPGA)

Our Motivation: Derivation of Process Networks

- Main purpose: extract task level parallelism from dataflow graph

statement	\rightarrow process
flow dependence	\rightarrow communication channel

\Rightarrow requires dataflow analysis

- Processes are mapped to parallel hardware (e.g., FPGA)

Example:

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n}\); ++i) \{
    a = f();
        g(a);
\}
```


Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
    sample = radioFrontend();
    if (state == 0) {
        state = detect(sample);
    } else {
        state = decode(sample, &value0);
        value1 = processSample0(value0);
        processSample1(value1);
    }
}
```


Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
    sample = radioFrontend();
    if (state == 0) {
        state = detect(sample);
    } else {
        state = decode(sample, &value0);
        value1 = processSample0(value0);
        processSample1(value1);
    }
}
```


Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
    sample = radioFrontend();
    if (state == 0) {
        state = detect(sample);
    } else {
        state = decode(sample, &value0);
        value1 = processSample0(value0);
        processSample1(value1);
    }
}
```

- additional control channels
- determine operation of data channels
- dataflow analysis needs to remain exact, but may depend on run-time information

Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric
(3) Dynamic Conditions

Parametrization

- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results

Conclusion

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```

Access relations:

$$
\begin{aligned}
& A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& A 2:=[N]->\{W[i]->a[i]: 0<=i<N\} ;
\end{aligned}
$$

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Access relations:

$$
\begin{aligned}
& A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& A 2:=[N]->\{W[i]->a[i]: 0<=i<N\} ;
\end{aligned}
$$

Map to all writes: R := A2 . (A1^-1);
[N] -> \{ W[i] -> F[i’,i-i’] : 0 <= i,i’<N and i’<= i \}

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference
for (i = 0 ; i (N ; ++i)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
F: $\quad a[i+j]=f(a[i+j])$;
for (i = 0; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:

$$
\begin{aligned}
& A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& A 2:=[N]->\{W[i]->a[i]: 0<=i<N\} ;
\end{aligned}
$$

Map to all writes: R := A2 . (A1^-1);
[N] -> \{ W[i] -> F[i’,i-i’] : 0 <= i,i’<N and i’<= i \}
Last write: lexmax R; \# [N] -> \{ W[i] -> F[i,0] : 0 <= i < N \}

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference
for (i = 0 ; i (N ; ++i)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
F: $\quad a[i+j]=f(a[i+j])$;
for (i = 0; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]:0<=i<N and $0<=j<N-i\} ;$
A2:=[N]->\{W[i] -> a[i] : $0<=\mathrm{i}<\mathrm{N}\}$;
Map to all writes: R := A2 . (A1^-1);
[N] -> \{ W[i] -> F[i',i-i’] : 0 <= i,i’<N and i’<= i \}
Last write: lexmax R; \# [N] -> \{ W[i] -> F[i,0] : 0 <= i < N \}
In general: impose lexicographical order on shared iterators

Standard Array Dataflow Analysis

Multiple Potential Sources

- Dataflow is typically performed per read access ("sink") C
- Corresponding writes ("potential sources") P are considered in turn
- Map to all potential source iterations: $D_{C, P}^{\mathrm{mem}}=\left(A_{P}^{-1} \circ A_{C}\right) \cap B_{C}^{P}$ ("memory based dependences"; B_{C}^{P} : P executed before C)
- Source may already be known for some sink iterations
\Rightarrow compute partial lexicographical maximum

$$
\left(U^{\prime}, D\right)=\underset{U}{\operatorname{lexmax}} M
$$

U: sink iterations for which no source has been found
M : part of memory based dependences for particular potential source
$U^{\prime}=U \backslash \operatorname{dom} M$
$M^{\prime}=\operatorname{lexmax}(M \cap(U \rightarrow \operatorname{ran} M))$

Note: here, dependence relations map sink iterations to source iterations

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)
- Parametric result is exact
- Parameters can be projected out to obtain approximate but static dataflow

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)
- Parametric result is exact
- Parameters can be projected out to obtain approximate but static dataflow

Main problem for deriving process networks:
Introduces too many parameters
\Rightarrow too many control channels

On Demand Parametric Array Dataflow Analysis

Similar to FADA:

- Exact, possibly parametric, dataflow
- Introduces parameters to represent dynamic behavior

But:

+ Parameters have a different meaning
+ Effect analyzed before parameters are introduced
+ All computations are performed directly on affine sets and maps
- Currently only supports dynamic conditions

Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric

(3) Dynamic Conditions

(4) Parametrization

- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results
(7) Conclusion

Representing Generic Dynamic Conditions

```
    while (1) {
    sample = radioFrontend();
    if (t(state)) {
D :
        state = detect(sample);
        } else { /* ... */ }
        }
```


Representing Generic Dynamic Conditions

while (1) \{

```
                        sample = radioFrontend();
```

 if (t (state)) \{
 D: state = detect(sample);
\} else \{ /* ... */ \}
\}
Dynamic condition (t (state)) represented by filter

- Filter access relation(s): access to (virtual) array representing condition

$$
\left\{D(i) \rightarrow\left(S_{0}(i) \rightarrow t_{0}(i)\right)\right\}
$$

- Filter value relation:
values of filter array elements for which statement is executed

$$
\{\mathrm{D}(i) \rightarrow(1) \mid i \geq 0\}
$$

Representing Generic Dynamic Conditions

while (1) \{

```
                        sample = radioFrontend();
```

 if (tstate)) \{ SO: t0 = t(state);
 D: state = detect(sample);
\} else \{ /* ... */ \}
\}
Dynamic condition (t (state)) represented by filter

- Filter access relation(s): access to (virtual) array representing condition

$$
\left\{D(i) \rightarrow\left(S_{0}(i) \rightarrow t_{0}(i)\right)\right\}
$$

- Filter value relation:
values of filter array elements for which statement is executed

$$
\{\mathrm{D}(i) \rightarrow(1) \mid i \geq 0\}
$$

Representing Generic Dynamic Conditions

while (1) \{

```
                        sample = radioFrontend();
```

 if (t state)) \{ SO: t0 = t(state);
 D: state = detect(sample);
\} else \{ /* ... */ \}
\}
Dynamic condition (t (state)) represented by filter

- Filter access relation(s): access to (virtual) array representing condition

$$
\left\{D(i) \rightarrow\left(S_{0}(i) \rightarrow \overline{t_{0}}(i)\right)\right\}
$$

- Filter value relation:
values of filter array elements for which statement is executed

$$
\{\mathrm{D}(i) \rightarrow(1) \mid i \geq 0\}
$$

Representing Generic Dynamic Conditions

while (1) \{

```
                        sample = radioFrontend();
```

 if (tstate)) \{ SO: t0 = t(state);
 D: state = detect(sample);
\} else \{ /* ... */ \}
\}
Dynamic condition (t (state)) represented by filter

- Filter access relation(s): statement writing to filter array access to (virtual) array representing condition

$$
\left.\left\{D(i) \rightarrow \underline{S_{0}(i)} \rightarrow \underline{t}_{0}(i)\right)\right\}
$$

- Filter value relation:
values of filter array elements for which statement is executed

$$
\{\mathrm{D}(i) \rightarrow(1) \mid i \geq 0\}
$$

Representing Generic Dynamic Conditions

while (1) \{

```
                        sample = radioFrontend();
```

 if (tstate)) \{ SO: t0 = t(state);
 D: state = detect(sample);
\} else \{ /* ... */ \}
\}
Dynamic condition (t (state)) represented by filter

- Filter access relation(s): access to (virtual) array representing condition

$$
\left\{D(i) \rightarrow\left(S_{0}(i) \rightarrow t_{0}(i)\right)\right\}
$$

- Filter value relation: statement reading from filter array values of filter array elements for which statement is executed

$$
\{\mathrm{D}(i) \rightarrow(1) \mid i \geq 0\}
$$

Representing Locally Static Affine Conditions

```
N1: n = f();
    for (int k = 0; k < 100; ++k) {
M: m = g();
        for (int i = 0; i < m; ++i)
        for (int j = 0; j < n; ++j)
                                a[j][i] = g();
N2: n = f();
    }
```

Values of m and n not changed inside i and j loops
\Rightarrow locally static affine loop conditions

Representing Locally Static Affine Conditions

```
N1: n = f();
    for (int k = 0; k < 100; ++k) {
M: m = g();
        for (int i = 0; i < m; ++i)
        for (int j = 0; j < n; ++j)
                        a[j][i] = g();
N2: n = f();
    }
```

Values of m and n not changed inside i and j loops
\Rightarrow locally static affine loop conditions

- Filter access relations:

$$
\begin{aligned}
& \{\mathrm{A}(k, i, j) \rightarrow(\mathrm{M}(k) \rightarrow \mathrm{m}())\} \\
& \{\mathrm{A}(0, i, j) \rightarrow(\mathrm{N} 1() \rightarrow \mathrm{n}())\} \cup\{\mathrm{A}(k, i, j) \rightarrow(\mathrm{N} 2(k-1) \rightarrow \mathrm{n}()) \mid k \geq 1\}
\end{aligned}
$$

- Filter value relation:

$$
\{\mathrm{A}(k, i, j) \rightarrow(m, n) \mid 0 \leq k \leq 99 \wedge 0 \leq i<m \wedge 0 \leq j<n\}
$$

Note: filter access relations exploit (static) dataflow analysis on mandn

Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric
(3) Dynamic Conditions
(4) Parametrization
- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results

Conclusion

Overview

- Dataflow analysis performed for each read access (sink) separately
- Potential sources considered from closest to furthest
- number of shared loop iterators ℓ
- textual order
- For each lexmax operation
- is it possible for potential source not to execute when sink is executed? (based on filters)
- if so, parametrize lexmax problem

Parametrization

```
    state = 0;
while (1) {
    sample = radioFrontend();
    if (t(state)) {
        state = detect(sample);
        } else {
            decode(sample, &state, &value0);
        value1 = processSample@(valueQ);
        processSample1(value1);
    }
}
```


Parametrization

```
    state = 0;
while (1) {
                sink C
            sample = radioFrontend();
    if (t(state)) {
D :
    state)= detect(sample);
    } else { potential source P
    decode(sample, &state, &value0);
    value1 = processSample0(valueQ);
    processSample1(value1);
    }
}
```


Parametrization

```
    state = 0;
    while (1) {
                sink C
            sample = radiofrontend();
    if (t(state)) {
                        state = detect(sample);
                            } else { potential source P
                        decode(sample, &state, &value0);
                        value1 = processSample0(value0);
                        processSample1(value1);
}
}
```

Memory based dependences: $D_{C, P}^{\text {mem }}=\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}\left(i^{\prime}\right) \mid 0 \leq i^{\prime}<i\right\}$
At $\ell=1: M=D_{C, P}^{\mathrm{mem}} \cap\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}(i)\right\}=\emptyset$
At $\ell=0: M=\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}\left(i^{\prime}\right) \mid 0 \leq i^{\prime}<i\right\}$
Potential source $D\left(i^{\prime}\right)$ may not have executed even if sink $S_{0}(i)$ is executed \Rightarrow parametrization required

Parameter Representation

Original:

$$
M=\left\{S_{0}(i) \rightarrow D\left(i^{\prime}\right) \mid 0 \leq i^{\prime}<i\right\}
$$

After parameter introduction:

$$
M^{\prime}=\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}\left(\lambda_{C}^{P}(i)\right) \mid 0 \leq \lambda_{C}^{P}(i)<i \wedge \beta_{C}^{P}(i)=1\right\}
$$

$\Rightarrow \operatorname{lexmax} M^{\prime}=M^{\prime}$

Parameter Representation

Original:

$$
M=\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}\left(i^{\prime}\right) \mid 0 \leq i^{\prime}<i\right\}
$$

After parameter introduction:

$$
M^{\prime}=\left\{\mathrm{S}_{0}(i) \rightarrow \mathrm{D}\left(\lambda_{C}^{P}(i)\right) \mid 0 \leq \lambda_{C}^{P}(i)<i \wedge \beta_{C}^{P}(i)=1\right\}
$$

$\Rightarrow \operatorname{lexmax} M^{\prime}=M^{\prime}$
Meaning of the parameters:

- $\lambda_{C}^{P}(\mathbf{k})$: last executed iteration of $D_{C, P}^{\text {mem }}(\mathbf{k})$
- $\beta_{C}^{P}(\mathbf{k})$: any iteration of $D_{C, P}^{\text {mem }}(\mathbf{k})$ is executed

Note: FADA introduces separate set of parameters for each lexmax Note: $\lambda_{C}^{P}(\mathbf{k})$ and $\beta_{C}^{P}(\mathbf{k})$ depend on \mathbf{k}, but dependence can be kept implicit $\Rightarrow \lambda_{C}^{P}$ and β_{C}^{P}

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine

$$
\begin{aligned}
& \text { for }(i=0 ; i<100 ;++i) \\
& \quad \text { if (t) }) \\
& \text { for }(j=0 ; j<100 ;++j) \\
& \text { A: } \quad a=t() ; \\
& \text { B: } b=a ;
\end{aligned}
$$

$$
M=\{B() \rightarrow A(i, j) \mid 0 \leq i, j<100\}
$$

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine

$$
\begin{aligned}
& \text { for (i = 0; } \mathrm{i}<100 \text {; ++i) } \\
& \text { if (t)) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j} \text { < 100; ++j) } \\
& \mathrm{a}=\mathrm{t}() \text {; } \\
& \text { B: b = a; }
\end{aligned}
$$

$$
\begin{gathered}
M=\{B() \rightarrow A(i, j) \mid 0 \leq i, j<100\} \\
M^{\prime}=\left\{B() \rightarrow A\left(\lambda_{0}, j\right) \mid 0 \leq \lambda_{0}, j<100 \wedge \beta=1\right\}
\end{gathered}
$$

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine

$$
\begin{gathered}
M=\{B() \rightarrow A(i, j) \mid 0 \leq i, j<100\} \\
M^{\prime}=\left\{B() \rightarrow A\left(\lambda_{0}, j\right) \mid 0 \leq \lambda_{0}, j<100 \wedge \beta=1\right\}
\end{gathered}
$$

$$
\operatorname{lexmax} M^{\prime}=\left\{B() \rightarrow A\left(\lambda_{0}, 99\right) \mid 0 \leq \lambda_{0}<100 \wedge \beta=1\right\}
$$

$$
\begin{aligned}
& \text { for (i = 0; } \mathrm{i}<100 \text {; ++i) } \\
& \text { if (t)) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j} \text { < 100; ++j) } \\
& \mathrm{a}=\mathrm{t}() \text {; } \\
& \text { B: b = a; }
\end{aligned}
$$

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})

Introducing as few Parameters as possible

Dimensions that can only attain a single value

```
for (int k = 0; k < 100; ++k) {
N: N = f();
M: M = g();
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
                a[i][j] = i + j;
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
                        h(i, j, a[i][j]);
            D
                \lambda1}(k,i,j)=
                \lambda2}(k,i,j)=
\(\Rightarrow\) no need to introduce \(\lambda_{1}\) and \(\lambda_{2}\)
```


Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})
- dimensions before ℓ

Introducing as few Parameters as possible

Dimensions before ℓ

```
for (int k = 0; k < 100; ++k) {
N: N = f();
M: M = g();
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
A :
                        a[i][j] = i + j;
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
                        h(i, j, a[i][j]);
H:
}
At \ell=1:
```

$$
M=\{\mathrm{H}(k, i, j) \rightarrow \mathrm{A}(k, i, j)\}
$$

\Rightarrow no need to introduce λ_{0} (yet) at $\ell=1$

Introducing as few Parameters as possible

Dimensions before ℓ

```
for (int k = 0; k < 100; ++k) {
N: N = f();
M: M = g();
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
A :
                        a[i][j] = i + j;
    for (int i = 0; i < N; ++i)
                for (int j = 0; j < M; ++j)
                        h(i, j, a[i][j]);
H:
}
At \ell=1:
```

$$
M=\{\mathrm{H}(k, i, j) \rightarrow \mathrm{A}(k, i, j)\}
$$

\Rightarrow no need to introduce λ_{0} (yet) at $\ell=1$
Note: all sinks are accounted for at $\ell=1$
\Rightarrow no need to consider $\ell=0$ and λ_{0} not needed at all

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})
- dimensions before ℓ

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})
- dimensions before ℓ
\Rightarrow replace β by σ : the number of implicitly equal shared iterators

$$
\begin{array}{lll}
\beta=1 & \rightarrow & \sigma \geq \ell \\
\beta=0 & \rightarrow & \sigma<\ell
\end{array}
$$

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of \mathbf{k})
- dimensions before ℓ
\Rightarrow replace β by σ : the number of implicitly equal shared iterators

$$
\begin{array}{lll}
\beta=1 & \rightarrow & \sigma \geq \ell \\
\beta=0 & \rightarrow & \sigma<\ell
\end{array}
$$

- when moving to $\ell-1$
\star introduce additional parameter $\lambda_{\ell-1}$ (if needed)
\star make implicit equality explicit
- at the end of the dataflow analysis

$$
\begin{array}{lll}
\sigma \geq \ell_{\leq} & \rightarrow & \beta=1 \\
\sigma<\ell_{\leq} & \rightarrow & \beta=0
\end{array}
$$

(ℓ_{\leq}: smallest ℓ for which parametrization was applied)
$\lambda(\mathbf{k})$ and $\beta(\mathbf{k})$ now refer to last execution of $\bar{D}(\mathbf{k})$
(\bar{D} : result of projecting out parameters from final dataflow relation)

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing

$$
\left(U^{\prime}, D\right)=\underset{U}{\operatorname{lexmax}} M
$$

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing

$$
\left(U^{\prime}, D\right)=\underset{U}{\operatorname{ex} \max } M
$$

(1) No filter on source
\Rightarrow stop (no parametrization required)

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing

$\left(U^{\prime}, D\right)=\operatorname{lexmax} M$
U
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop

Filter on source contradicts F

- Potential source filter access relation

$$
\{\mathrm{H}(i) \rightarrow(\mathrm{N}(i) \rightarrow \mathrm{n})\}
$$

- Sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n>200\}
$$

$$
\begin{aligned}
& \text { while (1) \{ } \\
& \text { N: } n=f() \text {; } \\
& \text { - Potential source filter value relation } \\
& \mathrm{a}=\mathrm{g}() \text {;potential source } \\
& \text { if (} n<10 \text { C) } \\
& \{\mathrm{H}(\mathrm{i}) \rightarrow(n) \mid i \geq 0 \wedge n<100\} \\
& \text { H: } \quad \text { a }=h() \text {; } \\
& \text { - Sink filter access relation } \\
& \{\mathrm{T}(\mathrm{i}) \rightarrow(\mathrm{N}(\mathrm{i}) \rightarrow \mathrm{n})\}
\end{aligned}
$$

Filter on source contradicts F

$$
\ell=1
$$

- Potential source filter access relation
same filter element

$$
\{\mathrm{H}(\mathrm{i}) \rightarrow(\mathbb{N}(\mathrm{i}) \rightarrow \mathrm{n})\}
$$

$\mathrm{a}=\mathrm{g}()$;potential source
H: if $\quad \begin{aligned} & (n<100) \\ \text { (a) } & =h() \text {; }\end{aligned}$
if (n > 200)
T

- Sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n>200\}
$$

Filter on source contradicts F

$$
\ell=1
$$

- Potential source filter access relation
same filter element

$$
\{\mathrm{H}(\mathrm{I}) \rightarrow(\mathbb{N}(i) \rightarrow \mathrm{n})\}
$$

```
while (1) {
```

$\mathrm{N}: \mathrm{n}=\mathrm{f}()$;

- Potential source filter value relation
$\mathrm{a}=\mathrm{g}()$;potential source

T if ($\mathrm{n}>200$)
T: t (a);

- Sink filter access relation

sink

contradiction © Sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n>200\}
$$

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing

$\left(U^{\prime}, D\right)=\operatorname{lexmax} M$
U
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing
$\left(U^{\prime}, D\right)=\underset{U}{\operatorname{lexmax}} M$
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop

Filter on source contradicts F^{\prime}

Filter on source contradicts F^{\prime}

H2 not executed

Filter on source contradicts F^{\prime}

N :	$\mathrm{n}=\mathrm{f}()$; potential source	
	if (n < 100)	$\operatorname{lexmax} M$
	(a) $=\mathrm{h}() ;$;	
	if (n < 200)	
H2	$\mathrm{a}=\mathrm{h} 2$ ();	$M=\{\mathrm{T}() \rightarrow \mathrm{H}()\}$
T:	t (@);	$U=\left\{\mathrm{T}() \mid \sigma^{\mathrm{H} 2}<0\right\}$
\}		

H2 not executed

- Updated sink filter access relation

$$
\{\mathrm{T}(\mathrm{i}) \rightarrow(\mathrm{N}(i) \rightarrow \mathrm{n})\}
$$

- Updated sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n \geq 200\}
$$

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing
$\left(U^{\prime}, D\right)=\underset{U}{\operatorname{lexmax}} M$
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop
(6) Filter on source implied by F
\Rightarrow stop (no parametrization required)

Filter on source implied by F

$$
\ell=1
$$

- Potential source filter access relation

$$
\{\mathrm{H}(\mathrm{i}) \rightarrow(\mathrm{N}(i) \rightarrow \mathrm{n})\}
$$

while (1) $\{$
$\mathrm{N}: \quad \mathrm{n}=\mathrm{f}()$

- Potential source filter value relation
$\mathrm{a}=\mathrm{g}()$;potential source
if ($n<200$)

$$
\{\mathrm{H}(i) \rightarrow(n) \mid i \geq 0 \wedge n<200\}
$$

$$
\mathrm{H}: \quad \mathrm{O}=\mathrm{h}() \text {; }
$$

$\begin{array}{ll}\mathrm{T}: & \mathrm{t} \text { (@); } \\ \text { \} } & \\ \text { sink }\end{array}$

- Sink filter access relation

$$
\{\mathrm{T}(i) \rightarrow(\mathrm{N}(i) \rightarrow \mathrm{n})\}
$$

- Sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n<100\}
$$

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop
(6) Filter on source implied by F
\Rightarrow stop (no parametrization required)

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop
(6) Filter on source implied by F
\Rightarrow stop (no parametrization required)
(3) Filter on source implied by F^{\prime}
\Rightarrow parametrize D and stop

Filter on source implied by F^{\prime}

$\mathrm{n}=\mathrm{f}() ;$ po	
if ($\mathrm{n}<200$)	$\underset{U}{\operatorname{lexmax}} M$
H: \quad a $=\mathrm{h}()$;	
if ($\mathrm{n}>100$)	
H2: $\quad \mathrm{a}=\mathrm{h} 2 \mathrm{O}$;	$M=\{\mathrm{T}() \rightarrow \mathrm{H}()\}$
T: t (a) ;	$U=\left\{\mathrm{T}() \mid \sigma^{\mathrm{H} 2}<0\right\}$
sink	

- Updated sink filter access relation

$$
\{\mathrm{T}(i) \rightarrow(\mathrm{N}(i) \rightarrow \mathrm{n})\}
$$

- Updated sink filter value relation

$$
\{\mathrm{T}(i) \rightarrow(n) \mid i \geq 0 \wedge n \leq 100\}
$$

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop
(6) Filter on source implied by F
\Rightarrow stop (no parametrization required)
(3) Filter on source implied by F^{\prime}
\Rightarrow parametrize D and stop

When to Introduce Parameters

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
(1) No filter on source
\Rightarrow stop (no parametrization required)
(2) Let F be the filter on the sink
(3) Filter on source contradicts F
\Rightarrow replace M by empty relation and stop
(4) Let F^{\prime} be equal to F updated with information from other sources
(5) Filter on source contradicts F^{\prime}
\Rightarrow replace M by empty relation and stop
(6) Filter on source implied by F
\Rightarrow stop (no parametrization required)
(3) Filter on source implied by F^{\prime}
\Rightarrow parametrize D and stop
(3) Parametrize M

Additional Constraints on Parameters

- Some source iterations are definitely executed $\Rightarrow \lambda$ no later than definitely executed iterations

Additional Constraints on Parameters

- Some source iterations are definitely executed $\Rightarrow \lambda$ no later than definitely executed iterations
- Eliminate (some) conflicts with other parameters

```
    state = 0;
    while (1) {
        sample = radioFrontend();
    if (t(state)) {
        state = detect(sample);
    } else {
C: decode(sample, &state, &valueQ);
        value1 = processSample0(value0);
        processSample1(value1);
    }
}
=>\lambda}\mp@subsup{\lambda}{0}{\textrm{C}}(i)\mathrm{ and }\mp@subsup{\lambda}{0}{\textrm{D}}(i)\mathrm{ cannot both be smaller than i-1
```


Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric
(3) Dynamic Conditions
(4) Parametrization
- Overview
- Representation
- Introduction
- Additional Constraints

(5) Related Work

6. Experimental Results
(7) Conclusion

Interaction with Libraries

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations pet: extracts polyhedral model from clang AST
isa: prototype tool set including

- derivation of process networks (with On Demand Parametric ADA)
- equivalence checker

Interaction with Libraries

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations pet: extracts polyhedral model from clang AST
isa: prototype tool set including

- derivation of process networks (with On Demand Parametric ADA)
- equivalence checker

PPCG: Polyhedral Parallel Code Generator

Related Work

- Fuzzy Array Dataflow Analysis
\Rightarrow only known publicly available implementation: fadatool
- Pugh et al. (1994) and Maslov (1995) produce approximate results
- Collard et al. (1999)
- handle unstructured programs
- only collect constraints
- assume Omega can solve the constraints, but it cannot

Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric

3 Dynamic Conditions
(4) Parametrization

- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work

6 Experimental Results
(7) Conclusion

Experimental Results

input	da			fadatool			fadatool -s		
	time	p	d	time	p	I	time	p	I
Example from paper	0.01 s	0	5	0.01 s	6	6	0.01 s	6	6
Example from slides	0.01 s	4	9	0.01 s	6	16	incorrect		
fuzzy4	0.06 s	3	9	0.02 s	4	9	0.01 s	0	9
for1	0.02 s	2	3	0.01 s	4	46	0.02 s	2	3
for2	0.03 s	2	3	0.09 s	12	5 k	0.04 s	4	3
for3	0.04 s	2	3	42 s	24	1 M	0.08 s	6	3
for4	0.06 s	2	3				0.16 s	8	3
for5	0.08 s	2	3				0.25 s	10	3
for6	0.14 s	2	3				0.42 s	12	3
cascade_if1	0.02 s	2	3	0.01 s	2	4	0.01 s	2	4
cascade_if2	0.02 s	2	10	0.02 s	4	52	0.02 s	2	8
cascade_if3	0.03 s	2	22	0.03	6	723	0.36 s	3	16
cascade_if4	0.02 s	2	10	0.17 s	8	9 k	1 m	4	28
while1	0.01 s	0	4	0.00 s	1	4	0.01 s	0	4
while2	0.03 s	3	4	0.01 s	5	6	incorrect		
if_var	0.03 s	4	3	0.01 s	2	8	0.01 s	2	4
if_while	0.04 s	2	14	0.01 s	5	58	0.02 s	4	58
if2	0.02 s	2	2	0.46 s	12	29 k	0.04 s	4	2

Experimental Results

input	da			fadatool			fadatool -s		
	time	p	d	time	p	I	time	p	I
Example from paper	0.01 s	0	5	0.01 s	6	6	0.01 s	6	6
Example from slides	0.01 s	4	9	0.01 s	6	16	incorrect		
fuzzy4	0.06 s	3	9	0.02 s	4	9	0.01 s	0	9
for1	0.02 s	2	3	0.01 s	4	46	0.02 s	2	3
for2	0.03 s	2	3	0.09 s	12	5 k	0.04 s	4	3
for3	0.04 s	2	3	42 s	24	1 M	0.08 s	6	3
for4	0.06 s	2	3				0.16 s	8	3
for5	0.08 s	2	3				0.25 s	10	3
for6	0.14 s	2	3				0.42 s	12	3
cascade_if1	0.02 s	2	3	0.01 s	2	4	0.01 s	2	4
cascade_if2	0.02 s	2	10	0.02 s	4	52	0.02 s	2	8
cascade_if3	0.03 s	2	22	0.03	6	723	0.36 s	3	16
cascade_if4	0.02 s	2	10	0.17 s	8	9 k	1 m	4	28
while1	0.01 s	0	4	0.00 s	1	4	0.01 s	0	4
while2	0.03 s	3	4	0.01 s	5	6	incorrect		
if_var	0.03 s	4	3	0.01 s	2	8	0.01 s	2	4
if_while	0.04 s	2	14	0.01 s	5	58	0.02 s	4	58
if2	0.02 s	2	2	0.46 s	12	29 k	0.04 s	4	2

Experimental Results

input	da			fadatool			fadatool -s		
	time	p	d	time	p	I	time	p	I
Example from paper	0.01 s	0	5	0.01 s	6	6	0.01 s	6	6
Example from slides	0.01 s	4	9	0.01 s	6	16	incorrect		
fuzzy4	0.06 s	3	9	0.02 s	4	9	0.01 s	0	9
for1	0.02 s	2	3	0.01 s	4	46	0.02 s	2	3
for2	0.03 s	2	3	0.09 s	12	5 k	0.04 s	4	3
for3	0.04 s	2	3	42 s	24	1 M	0.08 s	6	3
for4	0.06 s	2	3				0.16 s	8	3
for5	0.08 s	2	3				0.25 s	10	3
for6	0.14 s	2	3				0.42 s	12	3
cascade_if1	0.02 s	2	3	0.01 s	2	4	0.01 s	2	4
cascade_if2	0.02 s	2	10	0.02 s	4	52	0.02 s	2	8
cascade_if3	0.03 s	2	22	0.03	6	723	0.36 s	3	16
cascade_if4	0.02 s	2	10	0.17 s	8	9 k	1 m	4	28
while1	0.01 s	0	4	0.00 s	1	4	0.01 s	0	4
while2	0.03 s	3	4	0.01 s	5	6	incorrect		
if_var	0.03 s	4	3	0.01 s	2	8	0.01 s	2	4
if_while	0.04 s	2	14	0.01 s	5	58	0.02 s	4	58
if2	0.02 s	2	2	0.46 s	12	29 k	0.04 s	4	2

Larger Example - Input

```
for (j = 1; j <= frame; j++) {
    initialize(frame, n_act, &scor, &act, &ps, cmp,
                            &s, &n, &idx, &mixw_cb, &cmp_l, &n_act_l, &act_l, &scor_l)
    for (i = 0; i < n; ++i) {
        initFeatBuff(i, &feat_buff, &featbuf_l);
        copyFeat(&s, frame, i, idx, &s);
        mgau_dist(&s, frame, i, &featbuf_l, &s);
        hist_l = mgau_norm(&s, frame, i);
        if (mixw_cb >= 1) {
            if (cmp_l >= 1)
                get_scors_4b_all(&s, i, hist_l, &scor_l, &scor_l);
        else
            get_scors_4b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);
        } else {
        if (cmp_l >= 1)
            get_scors_8b_all(&s, i, hist_l, &scor_l, &scor_l);
        else
            get_scors_8b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);
        }
        write_scor(&scor_l, &scor_l);
    }
}
```


Larger Example - Dataflow Graph

Larger Example - (Partial) Process Network

Outline

Motivation

- General Motivation
- Our Motivation
(2) Array Dataflow Analysis
- Standard
- Fuzzy
- On Demand Parametric

3 Dynamic Conditions
(4) Parametrization

- Overview
- Representation
- Introduction
- Additional Constraints
(5) Related Work
(6) Experimental Results
(7) Conclusion

Conclusion

Conclusions

- Dynamic behavior represented using "filters"
- Exact, possibly parametric, dataflow analysis
- Prototype implementation in isa
- Similar to FADA, but
- Parameters have a different meaning
- Effect analyzed before parameters are introduced
- All computations are performed directly on affine sets and maps

Future work

- Tighter integration into pet

