
January 21, 2013 1 / 43

On Demand Parametric Array Dataflow Analysis

Sven Verdoolaege Hristo Nikolov Todor Stefanov

Leiden Institute for Advanced Computer Science
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Motivation

Dataflow analysis determines for read access in a statement
instance, the statement instance that wrote the value being read
Many uses in polyhedral analysis/compilation

I array expansion
I scheduling
I equivalence checking
I optimizing computation/communication overlap in MPI programs
I derivation of process networks
I . . .

Standard dataflow analysis (Feautrier) requires static affine input
programs

Extensions are needed for programs with dynamic/non-affine
constructs
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Our Motivation: Derivation of Process Networks

Main purpose: extract task level parallelism from dataflow graph

statement → process
flow dependence → communication channel

⇒ requires dataflow analysis

Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (i = 0; i < n; ++i) {
a = f();

g(a);

}

f

g



Motivation Our Motivation January 21, 2013 5 / 43

Our Motivation: Derivation of Process Networks

Main purpose: extract task level parallelism from dataflow graph

statement → process
flow dependence → communication channel

⇒ requires dataflow analysis

Processes are mapped to parallel hardware (e.g., FPGA)

Example:

for (i = 0; i < n; ++i) {
a = f();

g(a);

}

f

g



Motivation Our Motivation January 21, 2013 6 / 43

Dynamic Process Networks

int state = 0;
for (i = 0; i <= 10; i++) {
sample = radioFrontend();

if (state == 0) {
state = detect(sample);

} else {
state = decode(sample, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}
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additional control channels
determine operation of data channels
dataflow analysis needs to remain exact,
but may depend on run-time information
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Standard Array Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
[N] -> { W[i] -> F[i’,i-i’] : 0 <= i,i’< N and i’<= i }

Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

In general: impose lexicographical order on shared iterators
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Standard Array Dataflow Analysis
Multiple Potential Sources

Dataflow is typically performed per read access (“sink”) C

Corresponding writes (“potential sources”) P are considered in turn

Map to all potential source iterations: Dmem
C ,P = (A−1

P ◦ AC) ∩ BP
C

(“memory based dependences”; BP
C : P executed before C)

Source may already be known for some sink iterations
⇒ compute partial lexicographical maximum

(U′,D) = lexmax
U

M

U: sink iterations for which no source has been found
M: part of memory based dependences for particular potential source
U′ = U \ dom M
M′ = lexmax(M ∩ (U → ran M))

Note: here, dependence relations map sink iterations to source iterations
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Fuzzy Array Dataflow Analysis

Introduces parameters for each lexmax involving dynamic behavior

Parameters represent dynamic solution of lexmax operation

Derives properties on parameters after dataflow analysis
(using resolution)

Parametric result is exact

Parameters can be projected out to obtain approximate but static
dataflow

Main problem for deriving process networks:
Introduces too many parameters
⇒ too many control channels
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On Demand Parametric Array Dataflow Analysis

Similar to FADA:

Exact, possibly parametric, dataflow

Introduces parameters to represent dynamic behavior

But:

+ Parameters have a different meaning

+ Effect analyzed before parameters are introduced

+ All computations are performed directly on affine sets and maps

− Currently only supports dynamic conditions
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Representing Generic Dynamic Conditions
while (1) {

sample = radioFrontend();

if ( t(state) ) {

D: state = detect(sample);

} else { /* ... */ }

}

Dynamic condition (t(state)) represented by filter
Filter access relation(s):
access to (virtual) array representing condition{

D

statement reading from filter array

(i)→ (S0

statement writing to filter array

(i)→ t0

filter array

(i))
}

Filter value relation:
values of filter array elements for which statement is executed{

D(i)→ (1) | i ≥ 0
}

S0: t0 = t(state);
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Representing Locally Static Affine Conditions
N1: n = f();

for (int k = 0; k < 100; ++k) {

M: m = g();

for (int i = 0; i < m; ++i)

for (int j = 0; j < n; ++j)

A: a[j][i] = g();

N2: n = f();

}

Values of m and n not changed inside i and j loops
⇒ locally static affine loop conditions

Filter access relations:{
A(k , i, j)→ (M(k)→ m())

}{
A(0, i, j)→ (N1()→ n())

}
∪

{
A(k , i, j)→ (N2(k − 1)→ n()) | k ≥ 1

}
Filter value relation:
{ A(k , i, j)→ (m, n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < m ∧ 0 ≤ j < n }

Note: filter access relations exploit (static) dataflow analysis on m and n
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Overview

Dataflow analysis performed for each read access (sink) separately
Potential sources considered from closest to furthest

I number of shared loop iterators `
I textual order

For each lexmax operation
I is it possible for potential source not to execute when sink is executed?

(based on filters)
I if so, parametrize lexmax problem
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Parametrization
state = 0;

while (1) {

sample = radioFrontend();

if (t( state )) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

Memory based dependences: Dmem
C ,P =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
At ` = 1: M = Dmem

C ,P ∩
{
S0(i)→ D(i)

}
= ∅

At ` = 0: M =
{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
Potential source D(i′) may not have executed even if sink S0(i) is executed
⇒ parametrization required

sink C

potential source P
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Parameter Representation

Original:
M =

{
S0(i)→ D(i′) | 0 ≤ i′ < i

}
After parameter introduction:

M′ =
{
S0(i)→ D(λP

C(i)) | 0 ≤ λ
P
C(i) < i ∧ βP

C(i) = 1
}

⇒ lexmax M′ = M′

Meaning of the parameters:

λP
C(k): last executed iteration of Dmem

C ,P (k)

βP
C(k): any iteration of Dmem

C ,P (k) is executed

Note: FADA introduces separate set of parameters for each lexmax
Note: λP

C(k) and βP
C(k) depend on k, but dependence can be kept implicit

⇒ λP
C and βP

C
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Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators
However, in many cases, we can avoid introducing some of those elements

dimensions inside innermost condition that is not static affine
dimensions that can only attain a single value (for a given value of k)
dimensions before `

⇒ replace β by σ: the number of implicitly equal shared iterators
β = 1 → σ ≥ `

β = 0 → σ < `

I when moving to ` − 1
F introduce additional parameter λ`−1 (if needed)
F make implicit equality explicit

I at the end of the dataflow analysis
σ ≥ `≤ → β = 1
σ < `≤ → β = 0

(`≤: smallest ` for which parametrization was applied)
λ(k) and β(k) now refer to last execution of D(k)
(D: result of projecting out parameters from final dataflow relation)
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Introducing as few Parameters as possible
Dimensions that can only attain a single value

for (int k = 0; k < 100; ++k) {

N: N = f();

M: M = g();

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

A: a[i][j] = i + j;

for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j)

H: h(i, j, a[i][j]);

}

Dmem
H,A =

{
H(k , i, j)→ A(k ′, i, j) | k ′ ≤ k

}
λ1(k , i, j) = i

λ2(k , i, j) = j
⇒ no need to introduce λ1 and λ2

a
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Introducing as few Parameters as possible
Dimensions before `

for (int k = 0; k < 100; ++k) {

N: N = f();
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H: h(i, j, a[i][j]);

}

At ` = 1:
M =

{
H(k , i, j)→ A(k , i, j)

}
⇒ no need to introduce λ0 (yet) at ` = 1

Note: all sinks are accounted for at ` = 1
⇒ no need to consider ` = 0 and λ0 not needed at all

a
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When to Introduce Parameters
Sink C
Potential source P
Subset of sink iteration U
Mapping to potential source iterations M

Computing

(U′,D) = lexmax
U

M

1 No filter on source
⇒ stop (no parametrization required)

2 Let F be the filter on the sink
3 Filter on source contradicts F
⇒ replace M by empty relation and stop

4 Let F ′ be equal to F updated with information from other sources
5 Filter on source contradicts F ′

⇒ replace M by empty relation and stop
6 Filter on source implied by F
⇒ stop (no parametrization required)

7 Filter on source implied by F ′

⇒ parametrize D and stop
8 Parametrize M
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Filter on source contradicts F

while (1) {

N: n = f();

a = g();

if (n < 100)

H: a = h();

if (n > 200)

T: t( a );

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 100
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n > 200
}

potential source

sink

same filter element

contradiction
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Filter on source contradicts F ′

N: n = f();

if (n < 100)

H: a = h();

if (n < 200)

H2: a = h2();

T: t( a );

}

lexmax
U

M

M =
{
T()→ H()

}
U =

{
T() | σH2 < 0

}

Updated sink filter access relation{
T(i)→ (N(i)→ n)

}
Updated sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n ≥ 200
}

potential source

sink

H2 not executed
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Filter on source implied by F

while (1) {

N: n = f();

a = g();

if (n < 200)

H: a = h();

if (n < 100)

T: t( a );

}

` = 1

Potential source filter access relation{
H(i)→ (N(i)→ n)

}
Potential source filter value relation{

H(i)→ (n) | i ≥ 0 ∧ n < 200
}

Sink filter access relation{
T(i)→ (N(i)→ n)

}
Sink filter value relation{

T(i)→ (n) | i ≥ 0 ∧ n < 100
}

potential source

sink
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Filter on source implied by F ′
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Additional Constraints on Parameters

Some source iterations are definitely executed
⇒ λ no later than definitely executed iterations

Eliminate (some) conflicts with other parameters

state = 0;

while (1) {

sample = radioFrontend();

if (t( state )) {

D: state = detect(sample);

} else {

C: decode(sample, &state, &value0);

value1 = processSample0(value0);

processSample1(value1);

}

}

⇒ λC0(i) and λD0(i) cannot both be smaller than i − 1
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Interaction with Libraries

clang GMP

isl NTL PolyLib

pet barvinok

PPCG

isa iscc

HiPEAC 2013

IMPACT 2012

IMPACT 2011

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
isa: prototype tool set including

derivation of process networks (with On Demand Parametric ADA)
equivalence checker

PPCG: Polyhedral Parallel Code Generator
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Related Work

Fuzzy Array Dataflow Analysis
⇒ only known publicly available implementation: fadatool

Pugh et al. (1994) and Maslov (1995) produce approximate results
Collard et al. (1999)

I handle unstructured programs
I only collect constraints
I assume Omega can solve the constraints, but it cannot
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Experimental Results
input da fadatool fadatool -s

time p d time p l time p l
Example from paper 0.01s 0 5 0.01s 6 6 0.01s 6 6
Example from slides 0.01s 4 9 0.01s 6 16 incorrect
fuzzy4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
cascade if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
cascade if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
cascade if3 0.03s 2 22 0.03 6 723 0.36s 3 16
cascade if4 0.02s 2 10 0.17s 8 9k 1m 4 28
while1 0.01s 0 4 0.00s 1 4 0.01s 0 4
while2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if while 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2
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for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
cascade if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
cascade if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
cascade if3 0.03s 2 22 0.03 6 723 0.36s 3 16
cascade if4 0.02s 2 10 0.17s 8 9k 1m 4 28
while1 0.01s 0 4 0.00s 1 4 0.01s 0 4
while2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if while 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2
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Larger Example — Input
for (j = 1; j <= frame; j++) {

initialize(frame, n_act, &scor, &act, &ps, cmp,

&s, &n, &idx, &mixw_cb, &cmp_l, &n_act_l, &act_l, &scor_l);

for (i = 0; i < n; ++i) {

initFeatBuff(i, &feat_buff , &featbuf_l);

copyFeat(&s, frame, i, idx, &s);

mgau_dist(&s, frame, i, &featbuf_l , &s);

hist_l = mgau_norm(&s, frame, i);

if (mixw_cb >= 1) {

if (cmp_l >= 1)

get_scors_4b_all(&s, i, hist_l, &scor_l, &scor_l);

else

get_scors_4b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);

} else {

if (cmp_l >= 1)

get_scors_8b_all(&s, i, hist_l, &scor_l, &scor_l);

else

get_scors_8b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l);

}

write_scor(&scor_l, &scor_l);

}

}
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Larger Example — Dataflow Graph
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Larger Example — (Partial) Process Network
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Conclusion

Conclusions

Dynamic behavior represented using “filters”

Exact, possibly parametric, dataflow analysis

Prototype implementation in isa
Similar to FADA, but

I Parameters have a different meaning
I Effect analyzed before parameters are introduced
I All computations are performed directly on affine sets and maps

Future work

Tighter integration into pet
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