On Demand Parametric Array Dataflow Analysis

Sven Verdoolaege Hristo Nikolov Todor Stefanov

Leiden Institute for Advanced Computer Science École Normale Supérieure and INRIA

January 21, 2013

Outline

3

5

Motivation

- General Motivation
- Our Motivation
- 2 Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
 - Dynamic Conditions
 - Parametrization
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
 - Related Work
 - **Experimental Results**
 - Conclusion

Outline

- Motivation
 - General Motivation
 - Our Motivation
 - Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
 - Dynamic Conditions
 - **Parametrization**
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
 - Related Work
 - **Experimental Results**
 - Conclusion

Motivation

- Dataflow analysis determines for read access in a statement instance, the statement instance that wrote the value being read
- Many uses in polyhedral analysis/compilation
 - array expansion
 - scheduling
 - equivalence checking
 - optimizing computation/communication overlap in MPI programs
 - derivation of process networks
 - ٠...
- Standard dataflow analysis (Feautrier) requires static affine input programs
- Extensions are needed for programs with dynamic/non-affine constructs

Motivation

- Dataflow analysis determines for read access in a statement instance, the statement instance that wrote the value being read
- Many uses in polyhedral analysis/compilation
 - array expansion
 - scheduling
 - equivalence checking
 - optimizing computation/communication overlap in MPI programs
 - derivation of process networks
 - ٠...
- Standard dataflow analysis (Feautrier) requires static affine input programs
- Extensions are needed for programs with dynamic/non-affine constructs

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Our Motivation: Derivation of Process Networks

• Main purpose: extract task level parallelism from dataflow graph

statement	\rightarrow	process
flow dependence	\rightarrow	communication channel

 \Rightarrow requires dataflow analysis

• Processes are mapped to parallel hardware (e.g., FPGA)

Our Motivation: Derivation of Process Networks

• Main purpose: extract task level parallelism from dataflow graph

- $\begin{array}{rcl} \text{statement} & \rightarrow & \text{process} \\ \text{flow dependence} & \rightarrow & \text{communication channel} \end{array}$
- \Rightarrow requires dataflow analysis
- Processes are mapped to parallel hardware (e.g., FPGA)

Example:

Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
  sample = radioFrontend();
  if (state == 0) {
    state = detect(sample);
  } else {
    state = decode(sample, &value0);
    value1 = processSample0(value0);
    processSample1(value1);
  }
}
```

Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
  sample = radioFrontend();
  if (state == 0) {
    state = detect(sample);
  } else {
    state = decode(sample, &value0);
    value1 = processSample0(value0);
    processSample1(value1);
  }
}
```


▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Dynamic Process Networks

```
int state = 0;
for (i = 0; i <= 10; i++) {
  sample = radioFrontend();
  if (state == 0) {
    state = detect(sample);
  } else {
    state = decode(sample, &value0);
    value1 = processSample0(value0);
    processSample1(value1);
  }
}
```


▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

- additional control channels
- determine operation of data channels
- dataflow analysis needs to remain exact, but may depend on run-time information

Outline

- Motivation
 - General Motivation
 - Our Motivation
- 2 Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
 - Dynamic Conditions
 - Parametrization
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
 - Related Work
 - **Experimental Results**
 - Conclusion

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

Standard Array Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

Access relations:

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)
 for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);</pre>

Access relations:

A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i}; A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1^-1);
[N] -> { W[i] -> F[i',i-i'] : 0 <= i,i'< N and i'<= i }</pre>

▲□▶▲□▶▲目▶▲目▶ 目 の々で

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)
 for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);</pre>

Access relations:

A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i}; A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1⁻¹); [N] -> { W[i] -> F[i',i-i'] : 0 <= i,i'< N and i'<= i } Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single reference

for (i = 0; i < N; ++i)
 for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);</pre>

Access relations:

Map to all writes: R := A2 . (A1⁻¹);
[N] -> { W[i] -> F[i',i-i'] : 0 <= i,i'< N and i'<= i }
Last write: lexmax R; # [N] -> { W[i] -> F[i,0] : 0 <= i < N }
In general: impose lexicographical order on shared iterators</pre>

Multiple Potential Sources

- Dataflow is typically performed per read access ("sink") C
- Corresponding writes ("potential sources") *P* are considered in turn
- Map to all potential source iterations: D^{mem}_{C,P} = (A⁻¹_P ∘ A_C) ∩ B^P_C ("memory based dependences"; B^P_C: P executed before C)
- Source may already be known for some sink iterations
 ⇒ compute *partial* lexicographical maximum

$$(U', D) = \operatorname{lexmax}_{U} M$$

U: sink iterations for which no source has been found

M: part of memory based dependences for particular potential source $U' = U \setminus \operatorname{dom} M$

$$M' = \operatorname{lexmax}(M \cap (U \to \operatorname{ran} M))$$

Note: here, dependence relations map sink iterations to source iterations

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)
- Parametric result is exact
- Parameters can be projected out to obtain approximate but static dataflow

Fuzzy Array Dataflow Analysis

- Introduces parameters for each lexmax involving dynamic behavior
- Parameters represent dynamic solution of lexmax operation
- Derives properties on parameters after dataflow analysis (using resolution)
- Parametric result is exact
- Parameters can be projected out to obtain approximate but static dataflow

Main problem for deriving process networks: Introduces too many parameters \Rightarrow too many control channels

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

On Demand Parametric Array Dataflow Analysis

Similar to FADA:

- Exact, possibly parametric, dataflow
- Introduces parameters to represent dynamic behavior

But:

- + Parameters have a different meaning
- + Effect analyzed before parameters are introduced
- + All computations are performed directly on affine sets and maps
- Currently only supports dynamic conditions

Outline

- Motivation
 - General Motivation
 - Our Motivation
- Array Dataflow Analysis
 - Standard
 - Fuzzy

3

• On Demand Parametric

Dynamic Conditions

- Parametrization
- Overview
- Representation
- Introduction
- Additional Constraints
- Related Work
 - **Experimental Results**
- Conclusion

Representing Generic Dynamic Conditions

```
while (1) {
    sample = radioFrontend();
    if (t(state)) {
        state = detect(sample);
        } else { /* ... */ }
    }
```

```
while (1) {
    sample = radioFrontend();
    if (t(state)) {
        state = detect(sample);
        } else { /* ... */ }
    }
```

Dynamic condition (t(state)) represented by filter

 Filter access relation(s): access to (virtual) array representing condition

$$\{D(i) \to (S_0(i) \to t_0(i))\}$$

```
• Filter value relation:
```

$$\{ \mathsf{D}(i) \to (1) \mid i \ge 0 \}$$

Dynamic condition (t(state)) represented by filter

• Filter access relation(s):

access to (virtual) array representing condition

$$\{D(i) \to (S_0(i) \to t_0(i))\}$$

```
• Filter value relation:
```

$$\{ \mathsf{D}(i) \to (1) \mid i \ge 0 \}$$

Dynamic condition (t(state)) represented by filter

```
• Filter access relation(s):
```

access to (virtual) array representing condition

filter array

$$\{D(i) \to (S_0(i) \to t_0(i))\}$$

• Filter value relation:

$$\{ D(i) \rightarrow (1) \mid i \geq 0 \}$$

Dynamic condition (t(state)) represented by filter

 Filter access relation(s): statement writing to filter array access to (virtual) array representing condition filter array

$$\{D(i) \to (S_0(i) \to t_0(i))\}$$

• Filter value relation:

$$\{ \mathsf{D}(i) \to (1) \mid i \ge 0 \}$$

Dynamic condition (t(state)) represented by filter

 Filter access relation(s): statement writing to filter array access to (virtual) array representing condition

filter array

$$D(i) \to (S_0(i) \to t_0(i))\}$$

• Filter value relation: statement reading from filter array values of filter array elements for which statement is executed

$$\{ D(i) \rightarrow (1) \mid i \geq 0 \}$$

Representing Locally Static Affine Conditions

```
N1: n = f();
for (int k = 0; k < 100; ++k) {
M: m = g();
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
A: a[j][i] = g();
N2: n = f();
}
Values of m and n not changed inside i and j loops
\Rightarrow locally static affine loop conditions
```

Representing Locally Static Affine Conditions

Values of ${\tt m} \text{ and } {\tt n} \text{ not changed inside } {\tt i} \text{ and } {\tt j} \text{ loops}$

 \Rightarrow locally static affine loop conditions

- Filter access relations: $\{ A(k, i, j) \rightarrow (M(k) \rightarrow m()) \}$ $\{ A(0, i, j) \rightarrow (N1() \rightarrow n()) \} \cup \{ A(k, i, j) \rightarrow (N2(k - 1) \rightarrow n()) \mid k \ge 1 \}$
- Filter value relation:

$$\{ \mathbf{A}(k,i,j) \rightarrow (m,n) \mid 0 \le k \le 99 \land 0 \le i < m \land 0 \le j < n \}$$

Note: filter access relations exploit (static) dataflow analysis on m and n $_{aaa}$

Outline

- Motivatio
 - General Motivation
 - Our Motivation
- Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
 - **Dynamic Conditions**
 - Parametrization
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
 - Related Work
 - **Experimental Results**
- **Conclusion**

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Parametrization

Overview

- Dataflow analysis performed for each read access (sink) separately
- Potential sources considered from closest to furthest
 - number of shared loop iterators ℓ
 - textual order
- For each lexmax operation
 - is it possible for potential source not to execute when sink is executed? (based on filters)
 - if so, parametrize lexmax problem

Parametrization

```
state = 0:
  while (1) {
      sample = radioFrontend();
      if (t(state)) {
           state = detect(sample);
D:
      } else {
C:
          decode(sample, &state, &value0);
          value1 = processSample0(value0);
          processSample1(value1);
      }
  }
```

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Parametrization

```
state = 0:
  while (1) {
                           sink C
      sample = radioFrontend();
      if (t(state)) {
           state = detect(sample);
D:
      } else {
                         potential source P
C:
           decode(sample, &state, &value0);
           value1 = processSample0(value0);
           processSample1(value1);
      }
  }
```

Parametrization

```
state = 0:
  while (1) {
                            sink C
      sample = radioFrontend();
      if (t(state)) {
           state = detect(sample);
D:
      } else {
                          potential source P
           decode(sample, &state, &value0);
C :
           value1 = processSample0(value0);
           processSample1(value1);
      }
  }
```

Memory based dependences: $D_{C,P}^{\text{mem}} = \{ S_0(i) \rightarrow D(i') \mid 0 \le i' < i \}$ At $\ell = 1$: $M = D_{C,P}^{\text{mem}} \cap \{ S_0(i) \rightarrow D(i) \} = \emptyset$ At $\ell = 0$: $M = \{ S_0(i) \rightarrow D(i') \mid 0 \le i' < i \}$ Potential source D(i') may not have executed even if sink $S_0(i)$ is executed \Rightarrow parametrization required

Parameter Representation

Original:

$$M = \{ S_{\mathbb{Q}}(i) \rightarrow D(i') \mid 0 \le i' < i \}$$

After parameter introduction:

$$M' = \left\{ S_{0}(i) \to D(\lambda_{C}^{P}(i)) \mid 0 \leq \lambda_{C}^{P}(i) < i \land \beta_{C}^{P}(i) = 1 \right\}$$

 \Rightarrow lexmax M' = M'

Parameter Representation

Original:

$$M = \{ S_{\mathbb{Q}}(i) \rightarrow D(i') \mid 0 \le i' < i \}$$

After parameter introduction:

$$M' = \left\{ S_{0}(i) \to D(\lambda_{C}^{P}(i)) \mid 0 \leq \lambda_{C}^{P}(i) < i \land \beta_{C}^{P}(i) = 1 \right\}$$

 $\Rightarrow \text{lexmax } M' = M'$

Meaning of the parameters:

- $\lambda_{C}^{P}(\mathbf{k})$: last executed iteration of $D_{CP}^{\text{mem}}(\mathbf{k})$
- $\beta_{C}^{P}(\mathbf{k})$: any iteration of $D_{CP}^{\text{mem}}(\mathbf{k})$ is executed

Note: FADA introduces separate set of parameters for each lexmax Note: $\lambda_C^P(\mathbf{k})$ and $\beta_C^P(\mathbf{k})$ depend on \mathbf{k} , but dependence can be kept implicit $\Rightarrow \lambda_C^P$ and β_C^P

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

• dimensions inside innermost condition that is not static affine

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

 $M = \{B() \rightarrow A(i, j) \mid 0 \le i, j < 100\}$

• dimensions inside innermost condition that is not static affine

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

• dimensions inside innermost condition that is not static affine

for (i = 0; i < 100; ++i)
if (t())
A:
B: b = a;

$$M' = \{B() \rightarrow A(\lambda_0, j) \mid 0 \le \lambda_0, j < 100 \land \beta = 1\}$$

・ロト ・母 ト ・ヨ ト ・ヨ ・ つくで

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

• dimensions inside innermost condition that is not static affine

for (i = 0; i < 100; ++i)
if (t())
for (j = 0; j < 100; ++j)
A:
B: b = a;

$$M = \{B() \rightarrow A(i,j) \mid 0 \le i, j < 100\}$$

 $M' = \{B() \rightarrow A(\lambda_0, j) \mid 0 \le \lambda_0, j < 100 \land \beta = 1\}$
lexmax $M' = \{B() \rightarrow A(\lambda_0, 99) \mid 0 \le \lambda_0 < 100 \land \beta = 1\}$

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣�?

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of k)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Introducing as few Parameters as possible

Dimensions that can only attain a single value

 \Rightarrow no need to introduce λ_1 and λ_2

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of **k**)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of k)
- $\bullet\,$ dimensions before $\ell\,$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Introducing as few Parameters as possible

Dimensions before ℓ

Introducing as few Parameters as possible

Dimensions before ℓ

At $\ell = 1$:

$$M = \{ \mathrm{H}(k, i, j) \to \mathrm{A}(k, i, j) \}$$

 $\label{eq:linear_state} \begin{array}{l} \Rightarrow \text{ no need to introduce } \lambda_0 \text{ (yet) at } \ell = 1 \\ \text{Note: all sinks are accounted for at } \ell = 1 \\ \Rightarrow \text{ no need to consider } \ell = 0 \text{ and } \lambda_0 \text{ not needed at all} \end{array}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of k)
- $\bullet\,$ dimensions before $\ell\,$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of k)
- dimensions before ℓ

 \Rightarrow replace β by σ : the number of implicitly equal shared iterators

$$\begin{array}{ll} \beta = 1 & \rightarrow & \sigma \ge \ell \\ \beta = 0 & \rightarrow & \sigma < \ell \end{array}$$

Introducing as few Parameters as possible

In principle, the number of elements in λ is equal to the number of iterators However, in many cases, we can avoid introducing some of those elements

- dimensions inside innermost condition that is not static affine
- dimensions that can only attain a single value (for a given value of k)
- dimensions before ℓ
 - \Rightarrow replace β by σ : the number of implicitly equal shared iterators

$$\begin{array}{ll} \beta = 1 & \rightarrow & \sigma \ge \ell \\ \beta = 0 & \rightarrow & \sigma < \ell \end{array}$$

- when moving to $\ell 1$
 - * introduce additional parameter $\lambda_{\ell-1}$ (if needed)
 - ★ make implicit equality explicit
- at the end of the dataflow analysis

$$\begin{array}{ll} \sigma \geq \ell_{\leq} & \rightarrow & \beta = 1 \\ \sigma < \ell_{\leq} & \rightarrow & \beta = 0 \end{array}$$

(ℓ_{\leq} : smallest ℓ for which parametrization was applied)

 $\lambda(\mathbf{k})$ and $\beta(\mathbf{k})$ now refer to last execution of $\overline{D}(\mathbf{k})$

 $(\overline{D}$: result of projecting out parameters from final dataflow relation)

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source

 \Rightarrow stop (no parametrization required)

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Filter on source contradicts F
 - \Rightarrow replace *M* by empty relation and stop

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

Filter on source contradicts F

• Potential source filter access relation

 $\left\{ \mathrm{H}(i) \to (\mathrm{N}(i) \to \mathrm{n}) \right\}$

while (1) { Potential source filter value relation n = f(): N: a = g(); potential source $\left\{ \mathrm{H}(i) \rightarrow (n) \mid i \geq 0 \land n < 100 \right\}$ **if** (n < 100)a = h();H: if (n > 200)Sink filter access relation t(a); T: } $\{\mathbf{T}(i) \rightarrow (\mathbf{N}(i) \rightarrow \mathbf{n})\}$ sink

Sink filter value relation

 $\left\{ \mathsf{T}(i) \to (n) \mid i \ge 0 \land n > 200 \right\}$

Sink filter value relation

 $\left\{ \mathsf{T}(i) \to (n) \mid i \ge 0 \land n > 200 \right\}$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Filter on source contradicts F

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Filter on source contradicts F
 - \Rightarrow replace *M* by empty relation and stop

Computing

$$(U', D) = \operatorname{lexmax}_{U} M$$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- ilter on source contradicts F
 ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Filter on source contradicts F'
 - \Rightarrow replace *M* by empty relation and stop

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

Filter on source contradicts F'

N:	n = f();	potential source
	if (n < 100)	
H:	a = h()	
	if $(n < 200)$	
H2:	a = h2()	; $M = \{$
Τ:	t(<mark>a)</mark> ;	$U = \langle$
}	sink	

$$\underset{U}{\operatorname{lexmax}} M$$

$$M = \{ \mathsf{T}() \to \mathsf{H}() \}$$
$$U = \{ \mathsf{T}() \mid \sigma^{\mathsf{H2}} < \mathsf{0} \}$$

Filter on source contradicts F'

N:	n = f();	ootential source
	if (n < 100)	7
H:	a = h();	
	if (n < 200)	
H2:	a = h2();	; /
Τ:	t (a);	
}	sink	

$$lexmax M$$

$$M = \{ T() \rightarrow H() \}$$

$$U = \{ T() | \sigma^{H2} < 0 \}$$
H2 not executed

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Filter on source contradicts F'

Updated sink filter access relation

$$\left\{ \mathtt{T}(i) \rightarrow (\mathtt{N}(i) \rightarrow \mathtt{n}) \right\}$$

Updated sink filter value relation

$$\left\{ \mathsf{T}(i) \to (n) \mid i \geq 0 \land n \geq 200 \right\}$$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- ilter on source contradicts F
 ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Filter on source contradicts F'
 - \Rightarrow replace *M* by empty relation and stop

Computing

$$(U', D) = \operatorname{lexmax}_{U} M$$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Iter on source contradicts F ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Solution F'
 ⇒ replace M by empty relation and stop
- Filter on source implied by F
 - \Rightarrow stop (no parametrization required)

Computing

$$(U', D) = \operatorname{lexmax}_{U} M$$

Filter on source implied by F

- $\ell = 1$
 - Potential source filter access relation

$$\left\{ \mathrm{H}(i) \rightarrow (\mathrm{N}(i) \rightarrow \mathrm{n}) \right\}$$

• Potential source filter value relation urce $\left\{ \mathrm{H}(i) \rightarrow (n) \mid i \geq 0 \land n < 200 \right\}$

• Sink filter access relation

 $\left\{ \mathrm{T}(i) \rightarrow (\mathrm{N}(i) \rightarrow \mathrm{n}) \right\}$

Sink filter value relation

 $\left\{ \mathsf{T}(i) \to (n) \mid i \ge 0 \land n < 100 \right\}$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Iter on source contradicts F ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Solution F'
 ⇒ replace M by empty relation and stop
- Filter on source implied by F
 - \Rightarrow stop (no parametrization required)

Computing

$$(U', D) = \operatorname{lexmax}_{U} M$$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Filter on source contradicts F
 ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Solution F'
 ⇒ replace M by empty relation and stop
- Filter on source implied by F
 - \Rightarrow stop (no parametrization required)
- Filter on source implied by F'
 - \Rightarrow parametrize *D* and stop

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

Filter on source implied by F'

Updated sink filter access relation

$$\left\{ \mathbf{T}(i) \rightarrow (\mathbf{N}(i) \rightarrow \mathbf{n}) \right\}$$

Updated sink filter value relation

$$\left\{ \mathsf{T}(i) \to (n) \mid i \ge 0 \land n \le 100 \right\}$$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Filter on source contradicts F
 ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Solution F'
 ⇒ replace M by empty relation and stop
- Filter on source implied by F
 - \Rightarrow stop (no parametrization required)
- Filter on source implied by F'
 - \Rightarrow parametrize *D* and stop

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

- Sink C
- Potential source P
- Subset of sink iteration U
- Mapping to potential source iterations M
- No filter on source
 - \Rightarrow stop (no parametrization required)
- Let F be the filter on the sink
- Filter on source contradicts F
 ⇒ replace M by empty relation and stop
- Let F' be equal to F updated with information from other sources
- Solution F'
 ⇒ replace M by empty relation and stop
- Silter on source implied by F
 ⇒ stop (no parametrization required)
- Filter on source implied by F'
 - \Rightarrow parametrize *D* and stop
- Parametrize M

Computing

 $(U', D) = \operatorname{lexmax}_{U} M$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Additional Constraints on Parameters

 Some source iterations are definitely executed ⇒ λ no later than definitely executed iterations

Additional Constraints on Parameters

- Some source iterations are definitely executed ⇒ λ no later than definitely executed iterations
- Eliminate (some) conflicts with other parameters

```
state = 0:
  while (1) {
        sample = radioFrontend();
        if (t(state)) {
             state = detect(sample);
D:
        } else {
C :
             decode(sample, &state, &value0);
             value1 = processSample0(value0);
             processSample1(value1);
        }
   }
\Rightarrow \lambda_0^{\rm C}(i) and \lambda_0^{\rm D}(i) cannot both be smaller than i-1
```

Outline

- Motivatio
 - General Motivation
 - Our Motivation
- Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
- Dynamic Conditions
- **Parametrization**
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
- Related Work
 - **Experimental Results**
- Conclusion

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Interaction with Libraries

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations pet: extracts polyhedral model from clang AST

- isa: prototype tool set including
 - derivation of process networks (with On Demand Parametric ADA)
 - equivalence checker

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Interaction with Libraries

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations pet: extracts polyhedral model from clang AST isa: prototype tool set including

- derivation of process networks (with On Demand Parametric ADA)
- equivalence checker

PPCG: Polyhedral Parallel Code Generator

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Related Work

Fuzzy Array Dataflow Analysis

 \Rightarrow only known publicly available implementation: fadatoo1

- Pugh et al. (1994) and Maslov (1995) produce approximate results
- Collard et al. (1999)
 - handle unstructured programs
 - only collect constraints
 - assume Omega can solve the constraints, but it cannot

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Outline

- Motivation
 - General Motivation
 - Our Motivation
- Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
- Dynamic Conditions
- **Parametrization**
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
- Related Work
 - **Experimental Results**
- **Conclusion**

Experimental Results

input	da			fadatool			fadatool -s			
	time	р	d	time	р	I	time	р	I	
Example from paper	0.01s	0	5	0.01s	6	6	0.01s	6	6	
Example from slides	0.01s	4	9	0.01s	6	16	incorrect			
fuzzy4	0.06s	3	9	0.02s	4	9	0.01s	0	9	
for1	0.02s	2	3	0.01s	4	46	0.02s	2	3	
for2	0.03s	2	3	0.09s	12	5k	0.04s	4	3	
for3	0.04s	2	3	42s	24	1M	0.08s	6	3	
for4	0.06s	2	3				0.16s	8	3	
for5	0.08s	2	3				0.25s	10	3	
for6	0.14s	2	3				0.42s	12	3	
cascade_if1	0.02s	2	3	0.01s	2	4	0.01s	2	4	
cascade_if2	0.02s	2	10	0.02s	4	52	0.02s	2	8	
cascade_if3	0.03s	2	22	0.03	6	723	0.36s	3	16	
cascade_if4	0.02s	2	10	0.17s	8	9k	1m	4	28	
while1	0.01s	0	4	0.00s	1	4	0.01s	0	4	
while2	0.03s	3	4	0.01s	5	6	incorrect			
if₋var	0.03s	4	3	0.01s	2	8	0.01s	2	4	
if₋while	0.04s	2	14	0.01s	5	58	0.02s	4	58	
if2	0.02s	2	2	0.46s	12	29k	0.04s	∍ ,4 ,	_ ,2	æ

Sar

Experimental Results

input	da			fadatool			fadatool -s			
	time	р	d	time	р	I	time	р	I	
Example from paper	0.01s	0	5	0.01s	6	6	0.01s	6	6	
Example from slides	0.01s	4	9	0.01s	6	16	incorrect			
fuzzy4	0.06s	3	9	0.02s	4	9	0.01s	0	9	
for1	0.02s	2	3	0.01s	4	46	0.02s	2	3	
for2	0.03s	2	3	0.09s	12	5k	0.04s	4	3	
for3	0.04s	2	3	42s	24	1M	0.08s	6	3	
for4	0.06s	2	3				0.16s	8	3	
for5	0.08s	2	3				0.25s	10	3	
for6	0.14s	2	3				0.42s	12	3	
cascade_if1	0.02s	2	3	0.01s	2	4	0.01s	2	4	
cascade_if2	0.02s	2	10	0.02s	4	52	0.02s	2	8	
cascade_if3	0.03s	2	22	0.03	6	723	0.36s	3	16	
cascade_if4	0.02s	2	10	0.17s	8	9k	1m	4	28	
while1	0.01s	0	4	0.00s	1	4	0.01s	0	4	
while2	0.03s	3	4	0.01s	5	6	incorrect			
if₋var	0.03s	4	3	0.01s	2	8	0.01s	2	4	
if₋while	0.04s	2	14	0.01s	5	58	0.02s	4	58	
if2	0.02s	2	2	0.46s	12	29k	0.04s	∍ ,4,	≣ ,2	101

Sac

Experimental Results

input	da			fadatool			fadatool -s			
	time	р	d	time	р	I	time	р	I	
Example from paper	0.01s	0	5	0.01s	6	6	0.01s	6	6	
Example from slides	0.01s	4	9	0.01s	6	16	incorrect			
fuzzy4	0.06s	3	9	0.02s	4	9	0.01s	0	9	
for1	0.02s	2	3	0.01s	4	46	0.02s	2	3	
for2	0.03s	2	3	0.09s	12	5k	0.04s	4	3	
for3	0.04s	2	3	42s	24	1M	0.08s	6	3	
for4	0.06s	2	3				0.16s	8	3	
for5	0.08s	2	3				0.25s	10	3	
for6	0.14s	2	3				0.42s	12	3	
cascade_if1	0.02s	2	3	0.01s	2	4	0.01s	2	4	
cascade_if2	0.02s	2	10	0.02s	4	52	0.02s	2	8	
cascade_if3	0.03s	2	22	0.03	6	723	0.36s	3	16	
cascade_if4	0.02s	2	10	0.17s	8	9k	1m	4	28	
while1	0.01s	0	4	0.00s	1	4	0.01s	0	4	
while2	0.03s	3	4	0.01s	5	6	incorrect			
if₋var	0.03s	4	3	0.01s	2	8	0.01s	2	4	
if₋while	0.04s	2	14	0.01s	5	58	0.02s	4	58	
if2	0.02s	2	2	0.46s	12	29k	0.04s	∍ ,4 ,	<mark>∍</mark> ,2	æ

Sar

Larger Example — Input for $(j = 1; j \le \text{frame}; j++)$ { initialize(frame, n_act, &scor, &act, &ps, cmp, &s, &n, &idx, &mixw_cb, &cmp_1, &n_act_1, &act_1, &scor_1) for (i = 0; i < n; ++i){ initFeatBuff(i, &feat_buff, &featbuf_1); copyFeat(&s, frame, i, idx, &s); mgau_dist(&s, frame, i, &featbuf_1, &s); hist_l = mgau_norm(&s, frame, i); if $(mixw_cb >= 1)$ { **if** $(cmp_1 >= 1)$ get_scors_4b_all(&s, i, hist_l, &scor_l, &scor_l); else get_scors_4b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l); } else { if $(cmp_1 \ge 1)$ get_scors_8b_all(&s, i, hist_l, &scor_l, &scor_l); else get_scors_8b(&s, i, hist_l, n_act_l, &act_l, &scor_l, &scor_l); } write_scor(&scor_l, &scor_l); }

Larger Example — Dataflow Graph

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Larger Example — (Partial) Process Network

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Outline

- Motivatio
 - General Motivation
 - Our Motivation
- Array Dataflow Analysis
 - Standard
 - Fuzzy
 - On Demand Parametric
- Dynamic Conditions
- **Parametrization**
 - Overview
 - Representation
 - Introduction
 - Additional Constraints
- Related Work
 - **Experimental Results**
- Conclusion

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Conclusion

Conclusions

- Dynamic behavior represented using "filters"
- Exact, possibly parametric, dataflow analysis
- Prototype implementation in isa
- Similar to FADA, but
 - Parameters have a different meaning
 - Effect analyzed before parameters are introduced
 - All computations are performed directly on affine sets and maps

Future work

• Tighter integration into pet