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ABSTRACT
We present a novel approach for exact array dataflow anal-
ysis in the presence of constructs that are not static affine.
The approach is similar to that of fuzzy array dataflow anal-
ysis in that it also introduces parameters that represent in-
formation that is only available at run-time, but the pa-
rameters have a different meaning and are analyzed before
they are introduced. The approach was motivated by our
work on process networks, but should be generally useful
since fewer parameters are introduced on larger inputs. We
include some preliminary experimental results.

1. INTRODUCTION AND MOTIVATION
Array dataflow analysis [12] (also known as value-based

dependence analysis [20]) is of crucial importance in the
polyhedral framework with applications in array expansion
[2, 10], scheduling [13], equivalence checking [5, 27] optimiz-
ing computation/communication overlap in MPI programs
[18] and the derivation of process networks [24, 28] to name
but a few. For program fragments that are static affine,
dataflow analysis can be performed exactly [12, 15, 20]. For
programs that contain certain dynamic and/or non-affine
constructs, both exact [4] and approximate [21] approaches
have been proposed. In particular, fuzzy array dataflow
analysis (FADA) [4] introduces additional parameters, whose
values depend on run-time information, that allow the de-
pendences to be represented exactly. After all parameters
have been introduced, certain properties on the parameters
are derived that allow for a simplification of the result. In
the end, the parameters may also be projected out, resulting
in approximate but static dependences.

The initial motivation for our new approach stems from
our work on the derivation of process networks. A process
network derived from a sequential program is essentially
a refinement of the dataflow graph of the program, where
nodes in the graph correspond to processes and edges to
communication channels, and is mainly used to represent
the task-level parallelism available in the program. These
process networks may then be mapped to various hardware
implementations [17]. The parameters introduced by FADA
can be used to construct control channels between the differ-
ent processes [22]. Unfortunately, preliminary experiments
with the only known publicly available implementation of
FADA [6] have shown that this approach tends to introduce
too many parameters to be practically useful, whence the
need for an alternative approach. For our application, we
are mainly interested in dynamic and/or non-affine condi-
tions and this is currently the only extension beyond static

affine programs that we support.
Our approach shares many similarities with FADA and

is therefore also useful for other applications of this ap-
proach [3] (a description of these other applications is how-
ever beyond the scope of the present paper). In particular,
we also introduce parameters whose values depend on run-
time information. However, our parameters have a different
meaning, essentially representing the last iteration of a po-
tential source that was executed, and we analyze their effect
before they are introduced. This allows us to (typically) in-
troduce fewer parameters, resulting in simpler dependence
relations that can be computed more efficiently. Unlike the
FADA approach, our approach does not rely on a resolution
engine, but instead performs operations on affine sets and
relations to determine which parameters to add and which
constraints they should satisfy.

We start with a description of our representation of static
affine programs in Section 2 and an overview of standard
dataflow analysis in Section 3. These sections also introduce
notation that is used in later sections. The representation
of dynamic conditions in the input is explained in Section 4,
while the representation of dynamic dependence relations is
explained in Section 5. Section 6 describes the computation
of dynamic dependence relations. In Section 7, we discuss
some extensions. We conclude with preliminary experimen-
tal results in Section 8 and a comparison to related work in
Section 9.

2. PROGRAM REPRESENTATION
Each input program is represented using a polyhedral

model [14], consisting of iteration domains, access relations,
dependence relations and a schedule. Each statement has
an associated iteration domain containing the values of the
iterators of the enclosing loops for which the statement is ex-
ecuted. For example, the iteration domain of the statement
in Line 14 of Listing 1 is

{ H(k, i, j) | 0 ≤ k, j ≤ 99 ∧ 0 ≤ i < 99 }. (1)

Note that n is modified inside the program and can there-
fore not be treated as a parameter. This iteration domain
is therefore an overapproximation of the set of executed it-
erations, based on the bounds on n specified by the user in
Line 3. The mechanism for filtering out the iterations that
have not actually been executed is explained in Section 4.
An access relation maps elements of an iteration domain to
the element(s) of an array domain accessed by that itera-
tion of the associated statement through some array refer-
ence. For example, the access to a in the same statement is



1 int n, m;

2 int a[100][100];

3 #pragma value_bounds n 0 99

4 #pragma value_bounds m 0 100

5

6 N1: n = f();

7 for (int k = 0; k < 100; ++k) {

8 M: m = g();

9 for (int i = 0; i < m; ++i)

10 for (int j = 0; j <= n; ++j)

11 A: a[j][i] = g();

12 for (int i = 0; i < n; ++i)

13 for (int j = 0; j < m; ++j)

14 H: h(i, j, a[i + 1][j]);

15 N2: n = f();

16 }

Listing 1: Code with locally static conditions

represented as { H(k, i, j) → a(i + 1, j) }, simplified with re-
spect to the iteration domain. In this paper, a dependence
relation maps a (nested) read access relation to the write
access relation that wrote the value being read by the read
access. For example, the dependence relation for the above
read access is { (H(k, i, j) → a(i + 1, j)) → (A(k, j, i + 1) →
a(i + 1, j)) | 0 ≤ k, j ≤ 99 ∧ 0 ≤ i < 99 }, while the depen-
dence relation for the read of n in the bound of the enclosing
loop (simplified with respect to the iteration domain) is

{ (H(0, i, j)→ n())→ (N1()→ n()) } ∪
{ (H(k, i, j)→ n())→ (N2(k − 1)→ n()) | k ≥ 1 }.

(2)

Note that the above access and dependence relations are all
single-valued functions. We will, however, also use the “→”
notations for other relations that may not represent single-
valued functions. The schedule maps the union of all itera-
tion domains to a common space where the execution order
of the corresponding statement iterations is determined by
the lexicographical order.

Each of the above sets and relations is represented in
isl [25]. The iteration domains, the access relations and
the initial schedule are extracted using pet [26], while the
construction of the dependence relations is the topic of the
present paper. In the base case, the input program con-
sists of expression statements, if conditions and for loops
with only static quasi-affine index expressions, conditions
and bounds. The representation of dynamic (or non-affine)
conditions, the main focus of the present paper, is explained
in Section 4. Dynamic loop conditions and dynamic index
expressions are briefly discussed in Section 7. The initial
schedule describes an ordering that corresponds to the orig-
inal execution order. To simplify the exposition, we will not
take arbitrary initial schedules as input, but instead exploit
the positions of the statements inside the abstract syntax
tree, in particular the number of shared outer loops and the
relative order of pairs of statements.

3. STANDARD DATAFLOW ANALYSIS
Several algorithms have been proposed in the literature for

performing dataflow analysis in the case of static affine pro-
grams [12,15,20]. Our implementation in isl is a variation
of these algorithms. We do not claim any novelty in this

implementation and we will not describe the implementa-
tion in detail here. Instead, we only highlight those aspects
that are important for understanding the remainder of this
paper.

Dataflow analysis is performed separately for each read
access (a.k.a., “sink” or “consumer”) C. For each such read
access we consider all the write accesses (a.k.a., “potential
source”or“producer”) P that access the same array, ordering
them such that the“closest”are considered first. Let AC and
AP be the corresponding access relations. Furthermore, let
B represent the relative ordering of the statements. That is,
if I is the union of all iteration domains, then B is a binary
relation on I with i → j ∈ B iff j is executed before i. For
example, { H(k, i, j) → N2(k′) | 0 ≤ k, k′, i, j ≤ 99 ∧ k′ < k }
is a subset of B. Note that bold variable names are used
to denote (named) integer tuples. Furthermore, if S is a set
and if R, R1 and R2 are relations, then let 1S be the identity
relation on S, i.e,

1S = { s→ s | s ∈ S },

let R−1 be the inverse of R, i.e.,

R−1 = { t→ s | s→ t ∈ R },

let R2 ◦R1 be the composition of R1 and R2, i.e.,

R2 ◦R1 = { s→ u | ∃t : s→ t ∈ R1 ∧ t→ u ∈ R2 },

let R1 ×R2 denote the cross product of R1 and R2 with

R1×R2 = { (s→ t)→ (u→ v) | s→ u ∈ R1∧t→ v ∈ R2 }

and let ran−→R map a nested copy of R to its range, i.e.,

ran−→R = { (s→ t)→ t | s→ t ∈ R }.

If the value read by an element in the domain of AC was
written inside the program fragment under consideration,
then it was written by one of the domain elements of one
of those write access relations AP . In particular, it is an
element of the image of the relation

(
A−1

P ◦AC

)
∩ B for

some P . Since we want to keep track of the array elements
being accessed, we can extend the above computation to

Dmem
C,P =

(
(ran−→AP )−1 ◦ (ran−→AC)

)
∩ (B × 1A) , (3)

where Dmem
C,P refers to the “memory based” dependences of

C on P and A is the union of all array domains. For
example, if AP = { N2(k) → n() | 0 ≤ k ≤ 99 } then
ran−→AP = { (N2(k) → n()) → n() | 0 ≤ k ≤ 99 }. Com-

bining this with AC = { H(k, i, j) → n() | 0 ≤ k, i, j ≤ 99 },
we obtain Dmem

C,P = { (H(k, i, j) → n()) → (N2(k′) → n()) |
0 ≤ k, k′, i, j ≤ 99 ∧ k′ < k }.

If the iteration domain of the statement containing C has
dimension d, then we first consider elements of the Dmem

C

relations such that the first d iterators in domain and range
have the same value, then d − 1 iterators, continuing un-
til we consider the case where 0 iterators have the same
value. Let ` denote this number of equal iterators. For each
value of `, we consider the potential sources P that share at
least ` outer loops, compute the maximum image element
of Dmem

C,P ∩ (E`
= × 1A), with E`

= expressing that exactly `
outer iterators have the same value, adding constraints that
ensure this maximal element is executed after any previ-
ously computed maximum at this level. When moving from
` to ` − 1, we only consider those elements from the sink



access relation for which no source has been found so far.
The main operation in this computation is then that of the
partial lexicographical maximum of a relation M on a do-
main U , which returns a relation mapping elements u of U
to the lexicographically greatest element associated to u by
M , along with a set of elements in U that do not have any
images in M . Let us define some more operations on sets
and relations. Specifically, if S1 and S2 are sets and if R is a
relation, then the universal relation from S1 to S2 is denoted

S1 → S2 = { s→ t | s ∈ S1 ∧ t ∈ S2 },

while the domain and range of R are denoted

domR = { s | s→ t ∈ R }.

and

ranR = { t | s→ t ∈ R }.

The lexicographical maximum of a relation R is then de-
noted lexmaxR and is equal to

{ s→ t | s→ t ∈ R ∧ (∀t′ : s→ t′ ∈ R⇒ t′ 4 t) },

“4” representing the lexicographical order, Finally, the par-
tial lexicographical maximum of M on U is

lexmax
U

M = (lexmax(M ∩ (U → ranM)), U \ domM)

(4)
The partial lexicographical maximum can be computed us-
ing parametric integer programming [11]. In the example,
the read of n in Line 12 can only have 0 equal loop it-
erators with the write in Line 15. We therefore compute
lexmaxU D

mem
C,P with U the (nested) sink access relation.

The result consists of the (simplified) relation { (H(k, i, j)→
n())→ (N2(k− 1)→ n()) | k > 0 } and the set { (H(0, i, j)→
n()) }. Sources for this latter part of the sink relation can
be found in Line 6. The final result is shown in (2).

4. FILTERS
As explained in Section 2, if there are any dynamic condi-

tions in the program, then the iteration domain may be an
affine overapproximation of the set of executed iterations.
To mark those iterations that are actually executed, we ap-
ply one or more filters to the iteration domain. These filters
encode the dynamic conditions that determine whether an
iteration in the iteration domain is actually executed. For
example, as shown before, the iteration domain (1) is an
overapproximation of the executed iterations of the state-
ment in Line 14 of Listing 1. The filter on this iteration
domain then expresses the dynamic conditions i < n and
j < m. Each filter consists of a sequence of filter access re-
lations, accessing variables that may be updated during the
execution of the program, and a filter value relation, map-
ping statement iterations to the possible values of the dy-
namic variables for which the iteration is executed. For sim-
plicity of exposition, we will assume that all the filter access
relations are functions and that there is only one filter. The
more general case is discussed in Appendix A. Non-affine
conditions are treated as dynamic conditions.

More formally, let S be a statement and IS its iteration
domain. Furthermore, let the filter on S consist of a filter
value relation V S and nS filter access relations FS

i . We have

FS
i ⊆ IS → (IS → A) and V S ⊆ IS → ZnS

. That is, each
filter access relation maps an iteration to an access of an

array element and the filter value relation maps an iteration
to a tuple of values. Moreover, each FS

i is a function on the
iteration domain. The application of the relation R to the
set S is defined as

R(S) = {u | ∃t : t→ u ∈ R ∧ t ∈ S }.

Furthermore, let

(aj)
n
j=1

be the n-tuple with elements aj and let V({ j → b }) be
the value of b at j. Iteration k ∈ IS is then executed iff
executedS(k) holds, with

executedS(k) =
(
V
(
FS
j (k)

))nS

j=1
∈ V S(k), (5)

where FS
j (k) is short for FS

j ({k }). An access k → a from
an iteration k is executed iff the iteration is executed, so
that executedS((k→ a)) = executedS(k). Let dom−−→R map a

nested copy of R to its domain, i.e.,

dom−−→R = { (s→ t)→ s | s→ t ∈ R },

then, initially, each filter access relation is a subset of the re-

lation
(

dom−−→(I → A)
)−1

. That is, each iteration is mapped

to an access that takes place at the same iteration.
We consider two types of filters, one for the general case

and one for the special case of “locally static affine” condi-
tions. A condition is considered to be locally static affine if
it is an affine expression in variables that are definitely not
modified between the point where they are evaluated and
all the statements that are guarded by the condition. Such
variables are called “locally static”. In this case, the accesses
to the locally static variables themselves are used as filter
accesses. Otherwise, a new statement is created that eval-
uates the condition and writes the resulting boolean value
(0 or 1) to a virtual array, as in [26, Section 4.3]. This vir-
tual array is then used as a filter access in a condition that
simply evaluates the element of the virtual array. The first
type of filter is allowed in both if-conditions and loop con-
ditions, while the second type is in the current context only
allowed in if-conditions. In Section 7.1, we explain how to
also handle the second type in loop conditions.

Consider, for example, the code in Listing 1. The condi-
tion i < n in Line 12 references the variable n which is not
a parameter because it is assigned in Line 6 and in Line 15.
However, the value of n is clearly not changed between the
condition in Line 12 and the statement in Line 14 governed
by this condition. Similarly, m is also locally static for the
statement. The filter for statement H therefore has filter
access relations

F H
1 = { H(k, i, j)→ (H(k, i, j)→ n()) } (6)

and

F H
2 = { H(k, i, j)→ (H(k, i, j)→ m()) }. (7)

The filter value relation V H is

{ H(k, i, j)→ (n,m) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < n ∧ 0 ≤ j < m }.
(8)

For convenience to the reader, the dimensions that corre-
spond to the filters have been named after the arrays (in
this case scalars) that are being accessed by the correspond-
ing filter access relations. However, the reader should keep



1 state = 0;

2 while (1) {

3 sample = radioFrontend ();

4 if (t(state)) {

5 D: state = detect(sample );

6 } else {

7 C: decode(sample , &state , &value0 );

8 value1 = processSample0(value0 );

9 processSample1(value1 );

10 }

11 }

Listing 2: Code with dynamic conditions, adapted
from [7, Figure 8.1]

in mind that these names are completely arbitrary. Note
that the condition of the loop in Line 12 is allowed since it
is locally static affine.

The code in Listing 2 has a generic dynamic condition in
Line 4. pet introduces a separate virtual array, say t0, for
storing the result of the condition and a separate statement,
say S0, for computing this result. The access relation that
writes to the filter is of the form

{ S0(i)→ t0(i) }.

Note that pet introduces an implicit iterator (called i in this
relation) with non-negative values [26, Section 3.3] for the
loop while (1) in Line 2. The filter value relation of the
statement in Line 5 is

V D = { D(i)→ (1) | i ≥ 0 }

with filter access relation

F D = { D(i)→ (D(i)→ t0(i)) }.

That is, the statement is executed for values of i greater than
or equal to 0 such that t0(i) at D(i) is equal to 1. (Recall
that t0(i) is a boolean variable that only attains values 0
and 1.) The filter value relation of the statement in Line 7
is

V C = { C(i)→ (0) | i ≥ 0 } (9)

with filter access relation

F C = { C(i)→ (C(i)→ t0(i)) }. (10)

Most of the analysis in Section 6 is based on filter values
being equal or different in different iterations. We there-
fore need to be able to identify that filter values accessed in
different iterations are actually the same. This information
can be obtained by applying dataflow analysis on the arrays
accessed by the filters. As explained below, the result of this
analysis may or may not depend on any parameters as de-
fined in Section 5. If any such parameters are involved, then
we keep the original filter access relations. If, on the other
hand, the resulting dependence relations do not depend on
any such parameters, then the original filter access relations
can be replaced by a composition with these dependence re-
lations. For the code in Listing 1, the dependence relation
for n in Line 12 is shown in (2). Applying this dependence
relation to the filter access relation in (6) yields

F H
1 = { H(0, i, j)→ (N1()→ n()) } ∪
{ H(k, i, j)→ (N2(k − 1)→ n()) | k ≥ 1 }.

(11)

For the filter access relation in (10), no dataflow analysis
needs to be performed since we know each element of the
virtual array t0 is written by exactly one iteration of the
statement S0. The filter access relation can therefore be
replaced by

F C = { C(i)→ (S0(i)→ t0(i)) }. (12)

In principle, the meaning of V depends on whether sources
have been found for the filter array or not, i.e., whether we
have been able to compose the original filter access relations
with dependence relations or not. In particular, if sources
have been found, then V({ j → b }) is the value of b after
the write in iteration j, while if sources have not been found,
then V({ j → b }) is the value of b before the read in itera-
tion j. In practice, however, this difference is not important
since filter accesses for which no sources have been found
will never be matched to any other filter accesses.

5. PARAMETER REPRESENTATION
If the iteration domain of a potential source P is affected

by any filters, then we cannot simply compute the lexico-
graphical maximum in (4) since the maximal element in the
range of M may not actually be executed, even if some of
the other elements are. We will therefore introduce param-
eters that represent the “last executed” source iteration. By
equating the iterators in the range of M to these parame-
ters, the lexicographical maximization operation will simply
return these parameters, which are guaranteed to represent
an executed iteration.

The exact form and meaning of the parameters depends
on whether we are considering the final result of the data-
flow analysis or intermediate results. Let us first consider
the final result. Let DC,P be the final dependence relation,

the description of which may involve some parameters βQ
C (k)

and λQ
C(k), where Q may be either P or some other poten-

tial source and k is an element of the sink access relation
AC . Note that in principle the parameters depend on the
sink access k, but as we will explain below, we do not need
to make this dependence explicit in our representation. Let
D′C,P be the result of projecting out all these parameters.
The parameters then have the following meaning. The pa-
rameter βQ

C (k) is a boolean variable that expresses whether

any of the elements in D′C,P (k) is executed. If βQ
C (k) = 1,

then λQ
C(k) represents the last element in D′C,P (k) that is

executed. (If βQ
C (k) = 0, then λQ

C(k) is undefined.) In other
words, we have

βP
C (k) = 0⇒∀j ∈ D′C,P (k) : ¬executedSP (j)

βP
C (k) = 1⇒executedSP (λP

C(k)) ∧

∀j ∈ D′C,P (k) : j � λP
C(k)⇒ ¬executedSP (j),

(13)
with SP the statement containing access P and executed as
defined in (5). For example, let C by the access to state in
the statement S0 evaluating the condition in Line 4 of List-
ing 2. Let P by the access to the same variable (state) from
statement C. The dependence relation for the dependence
of C on P is of the form (βP

C , λ
P
C)→ { (S0(i)→ state())→

(C(λP
C(i))→ state()) | βP

C (i) = 1∧i = λP
C(i)+1 ≥ 1 }. That

is, there is only a dependence if access P (from statement
C) was ever executed (before S0(i)) and if the last execution
was in the previous iteration. Note that if the last execution



was in some earlier iteration, then C would not depend on
the access in statement C, but on that in statement D. This
result is obtained in Section 6.4.

During the computation, the resulting dependence rela-
tion is obviously not known, but we do know that it is a
subset of Dmem

C,P (3). The relation M in the current maxi-
mization problem (4) is also a subset ofDmem

C,P . We can there-

fore temporarily treat λP
C(k) as the last element of Dmem

C,P (k)
that is executed. Note that because we still assume static
affine index expressions, the array element accessed by this
last executed element of Dmem

C,P (k) is necessarily the same as
that accessed by k. We can also exploit additional informa-
tion to reduce the number of elements in the λP

C(k) vector
that need to be explicitly represented. In particular, we
know that the first ` iterators in the domain and range of M
(with ` as in Section 3) are pairwise equal and that the same
property holds for the previously considered maximization
problems within the current dataflow problem, i.e., for the
same C. This allows us to avoid introducing elements of the
λP

C(k) vector until we really need them. In particular, we
keep track in σP

C (k) of the number of initial elements in the
domain of k and in λP

C(k) that are (implicitly) equal to each
other. Values of σP

C (k) smaller than ` then mean that there
is no element in Dmem

C,P (k) that is executed and that shares
the values of the first ` iterators with k. As a special case,
σP
C (k) < 0 means that no element in Dmem

C,P (k) is executed.
Summarizing, (13) is replaced by

σP
C (k) < `⇒∀j ∈ D′′C,P (k) : ¬executedSP (j)

σP
C (k) ≥ `⇒executedSP (λP

C(k)) ∧

∀j ∈ D′′C,P (k) : j � λP
C(k)⇒ ¬executedSP (j),

(14)
where D′′C,P = Dmem

C,P ∩E`
≥, with E`

≥ expressing that at least
` outer iterators have the same value.

After the dataflow computation has finished, we need to
convert the intermediate representation (14) to the final rep-
resentation (13). If `P≤ is the smallest value of ` for which we
had to apply parametrization for a given potential source P ,
then we do not need to introduce dimensions of λP

C before
`P≤. Instead, we need to make the equalities implied by σP

explicit and set βP
C (k) = 1 when σP ≥ `P≤ and βP

C (k) = 0

when σP < `P≤. The parameter σP can then be projected

out. Besides dimensions before `P≤, we also do not need to

introduce dimensions of λP
C for which Dmem

C,P (k) attains a
single value (for any given value of k) or that correspond to
loops inside the innermost condition that is not static affine.

Since λP
C and σP

C depend on the sink iteration, it may
appear that we would need to treat them as uninterpreted
functions. During the entire computation, there is however
no interaction between different sink iterations. That is,
any of the intermediate relations during the computation
only refers to a single sink iteration and the parameters λP

C

and σP
C (if present) always refer to that single sink iteration.

This means that we can keep the relation between λP
C and

σP
C on one hand and k on the other hand entirely implicit

and simply treat λP
C and σP

C as parameters. The intended
meaning of those parameters is then the value of the cor-
responding functions at the particular value of k involved
in the given access or dependence relation. This reasoning
is essentially the same as that of [1] for showing that his α
vectors can be treated as parameters.

Algorithm 1: Parametric partial lexicographical maxi-
mum

(type, S1, S2) = parametrization(M , U)
if type = Input then

M := intersect range(M , S1)
U := intersect(U , S2)

else if type = Empty then
M := empty(M)

end
(R,E) = partial lexmax(M , U)
if type = Output then

R := intersect range(R, S1)
end

6. PARAMETRIZATION
Recall that during dataflow analysis (Section 3), we fre-

quently compute a partial lexicographical maximum of the
form (4). The inputs to this operation are based on the
static affine iteration domains and so we may need to in-
troduce parameters representing the last executed source
iteration (Section 5) to take into account the filters (Sec-
tion 4) on the iteration domains. In particular, we replace a
call “(R,E) = partial lexmax(M , U)”, corresponding to (4),
by the pseudocode in Algorithm 1. The different types of
parametrization in this code are explained in Section 6.1,
while the determination of which of these parametrizations
should be applied is explained in Section 6.3. The sets S1

and S2 used during the parametrization are constructed in
Section 6.2 and Section 6.4.

6.1 Types of Parametrization
We are presented with a maximization problem of the

form (4), with U a set of iterations of a sink C and M
a relation between sink iterations and iterations of a po-
tential source P and we want to decide if we need to in-
troduce parameters. In principle, the result is that either
parametrization is required (type = Input) or it is not re-
quired (type = None). However, we also consider a couple
of other special cases (type = Empty and type = Output).
In particular, we may find that it is impossible for any of
the source iterations to execute given that the corresponding
sink is executed. In such cases we want to avoid introducing
parameters since there is no dependence and we therefore
do not need any extra parameters to represent the depen-
dence. However, we cannot indicate to the dataflow analysis
that no parametrization is required (type = None) as then
it would treat the source iterations as definitely being ex-
ecuted. Instead, we communicate to the dataflow analysis
that M should be replaced by an empty relation (type =
Empty). Another special case occurs when we are able to
determine that no parametrization is required, but that this
detection depends on information available about other po-
tential sources. For reasons beyond the scope of the present
paper, the construction of process networks can in this case
be facilitated by introducing parameters anyway, but only
on the result of the maximization problem rather than on
the input of the maximization problem (type = Output).
A schematic overview of the determination of the type of
parametrization to apply is shown in Algorithm 2. The pro-
cess is explained in more detail in Section 6.3.



6.2 Application
If parametrization is required, then we need to equate the

source iteration to the parameters λP representing the last
executed iteration of the potential source P (14). That is,
the range of M (or, more precisely, the domain of the nested
relation in this range) is intersected with

(λP
I , σ

P )→ { SP (j) | jI = λP
I ∧ σP ≥ ` }, (15)

where I selects the elements of λP that need to be explicitly
represented as explained in Section 5 and ` the number of
equal outer iterators in the domain and range of M as in
Section 3. These constraints determine the set S1 in Algo-
rithm 1. For example, let C be the read of A in Line 14 of
Listing 1 and let P be the write in Line 11. The correspond-
ing statements share at most one loop iterator. When ` = 1,
then we have that M is equal to

{ (H(k, i, j)→ a(i+ 1, j))→ (A(k, j, i+ 1)→ a(i+ 1, j)) },
(16)

where the outer dimensions k are equal because ` = 1 and
the inner dimensions i′ and j′ are equal to j and i + 1 be-
cause the same array element is accessed. As we will see in
Section 6.3, no parametrization is required for this problem,
but let us for illustrative purposes assume that we do want
to apply parametrization. Dimension 0 of λ does not need
to be introduced (yet) because 0 < `. Since Dmem

C,P is equal
to

{ (H(k, i, j)→ a(i+ 1, j))

→ (A(k′, j, i+ 1)→ a(i+ 1, j)) | k′ ≤ k },
the remaining dimensions of λ do not need to be intro-
duced either because they are fully determined by Dmem

C,P

(and therefore also by D′C,P ⊆ Dmem
C,P ). In effect, we would

only need to introduce σP with constraint σP ≥ 1.
The parametrization of the source domain expresses that

the source is (essentially) the last of the potential source it-
erations associated to the sink through Dmem

C,P . However, it
only does so through the introduction of parameters that im-
plicitly depend on the sink iteration k. The parametrization
of the sink takes care of expressing that this last iteration,
if it exists, actually belongs to Dmem

C,P (k). In particular, we
first split the set of sink iterations U into two parts, one with
associated potential source iterations and one without, i.e.,

U1 = U ∩ (domM) and U2 = U \ (domM). (17)

The parametrization is only applied to U1 and expresses that
either none of the potential source iterations in Dmem

C,P (k)
that share the first ` iterators is executed or that there is
such an executed potential source iteration and that it be-
longs to Dmem

C,P (k). That is, the sink C is intersected with

(λP , σP )→
{
k | σP < ` ∨

(
λP ∈ Dmem

C,P (k) ∧ σP ≥ `
)}

.

(18)
These constraints, together with those of Section 6.4 below,
determine the set S2 in Algorithm 1. In practice, we only
introduce the same set of dimensions of the λP vector as
introduced by (15). In particular, the second disjunct is ob-
tained by applying the parametrization of (15) to the range
of Dmem

C,P and computing the domain of the result.

6.3 Detection
Let us now explain in more detail the steps in the de-

termination of which parametrization to apply as sketched

Algorithm 2: Type of parametrization

1 if M is empty, U is empty or there are no filters on the
source then

2 return None
3 end
4 F := filters on the sink
5 if filters on the source contradict F then
6 return Empty
7 end
8 F ′ := update(F , filters on other sources)
9 if filters on the source contradict F ′ then

10 return Empty
11 end
12 if filters on the source imply F then
13 return None
14 end
15 if filters on the source imply F ′ then
16 return Output
17 end
18 return Input

in Algorithm 2. If M and/or U are empty or if P is not
affected by any filter, then no parametrization is required
(Line 2). Otherwise, we compute the possible values for the
filter elements at the potential source, given that the sink is
executed. Clearly, we can only do this if the sink is affected
by a filter and if source and sink have some filter accesses in
common. If the computed possible values are disjoint from
the filter value relation on the source, then no source itera-
tion is executed when the sink is executed and we indicate
that M should be replaced by an empty relation (Line 6).
Otherwise, we check if U references any parameters that
were introduced by previous calls to the parametrization.
If so, we use the constraints on those parameters and the
filters of the associated (other) potential sources to derive
extra information about the filters at the sink (Line 8). This
derivation is explained in Section 6.3.2. The resulting infor-
mation is then propagated again to potential source P and
a new relation of possible values is computed. If this rela-
tion is disjoint from the filter value relation on the source,
then we again indicate that M should be replaced by an
empty relation (Line 10). Otherwise, if the computed re-
lation is a subset of the filter value relation on the source,
then we know the source is always executed and we indi-
cate that either no parametrization is required (Line 13) or
that parametrization is only required on the output of the
maximization (Line 16), depending on whether the relation
computed based on only information on the sink was already
a subset of the filter value relation. Finally, if none of these
cases apply, then parametrization is required (on the input
of the maximization problem, Line 18).

6.3.1 Filter Values implied by the Sink
Let us illustrate the derivation of filter value constraints

on the potential source from those on the sink based on an
example. The general case is explained in Section A.2. In
particular, let us reconsider the example from Section 6.2.
Let M1 be the result of projecting out the array elements
from M , i.e.,

M1 = { H(k, i, j)→ A(k, j, i+ 1) | 0 ≤ i ≤ 98 },



where we omit the constraints on j and k for brevity. The
filters on statement A are similar to those on H in (6) and (7).
The first of these was updated in (11) to take into account
the filter source. The second can be updated to

F H
2 = { H(k, i, j)→ (M(k)→ m()) | 0 ≤ i ≤ 98 }.

For statement A, we have, say,

F A
1 = { A(k, i, j)→ (M(k)→ m()) | 0 ≤ j ≤ 99 }.

We want to check whether the fact that the sink is executed
tells us anything about the values of these filter variables at
the source. Note that if the sink is not executed, then it
does not need any values and so there is no need to com-
pute dataflow dependences for sink iterations that are not
executed.

The first step is to check whether any of the source filter
arrays are also accessed by the corresponding sink iterations.
To do so, we pull back the filter access relations over M1,
resulting in

F A
1 ◦M1 = { H(k, i, j)→ (M(k)→ m()) | 0 ≤ i ≤ 98 },

where the constraints 0 ≤ i ≤ 98 derive from 0 ≤ i+ 1 ≤ 99
and the domain constraints of M1. Since this relation is a
subset of F H

2 i.e., ∀j ∈M1(k) : F A
1 (j) ⊆ F H

2 (k), and similarly
for F A

2 ◦M1 ⊆ F H
1 , we know that (5) also holds for the source

filter accesses for all j ∈M1(k), i.e.,(
V
(
F A
i (j)

))2
i=1
∈ V1(k)

with V1 derived from V H in (8) by changing the order of the
range dimensions to match the matching of the filters, i.e.,

{ H(k, i, j)→ (m,n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < n ∧ 0 ≤ j < m }.

Note that in this particular example, we have F A
1 ◦M1 = F H

2

and F A
2 ◦M1 = F H

1 but equality is not required in the general
case. There is also no need for every filter access relation on
the source to match a filter access relation on the sink and
vice versa. Besides reordering dimensions of V H, we may in
the general case also have to project out dimensions and/or
introduce unconstrained dimensions.

Precomposing V1 with M−1
1 , we obtain a mapping from

source iterations to filter values that allow one or more cor-
responding sink iterations to be executed. In the example,
we obtain

{A(k, i, j)→ (m,n) | 0 ≤ k ≤ 99∧0 ≤ j−1 < n∧0 ≤ i < m}.

Since this relation is a subset of the filter value relation on
A, i.e.,

{ A(k, i, j)→ (m,n) | 0 ≤ k ≤ 99 ∧ 0 ≤ i < m ∧ 0 ≤ j ≤ n },

we know that for each sink iteration in the domain of M ′

that is executed, the corresponding source iterations are also
executed and therefore no parametrization is required.

6.3.2 Filter Values implied by Other Sources
The derivation of extra information from other potential

sources is again illustrated based on an example. The gen-
eral case is explained in Section A.3. In particular, let us
consider the determination of the sources for the access to
state in Line 4 of Listing 2. We first consider the write P
in Line 7 as a potential source for ` = 0. Parametrization is
required and in particular (18) specializes to

(λP
0 , σ

P )→
{
S0(i) | σP < 0 ∨

(
0 ≤ λP

0 < i ∧ σP ≥ 0
)}

.

The dataflow analysis then continues looking for sources
from the write Q in Line 5. Let us now consider the case
where σP < 0. Since statement S0 is not affected by any
filters, we need to turn to the other potential sources, in
particular P , for any constraints that could help us deter-
mine whether parametrization is required.

We first construct a relation N mapping sink iterations
to iterations of P that have definitely not been executed
(according to (14) and given σP < 0), i.e.,

N = { S0(i)→ C(i′) | 0 ≤ i′ < i }.

This relation can be constructed by subtracting iterations
that may have executed from Dmem

C,P (with the array ele-
ments projected out). In the example, there are no itera-
tions that may have executed (since σP < 0) and so in this
case N = Dmem

C,P . From (5), we know that the values of the
corresponding filter elements (12) do not satisfy the filter
access relation (9), i.e., for all S0(i)→ C(i′) ∈ N we have

V(F C(C(i′))) 6∈ V C(C(i′)).

In other words,

V(F C(C(i′))) ∈ V1(C(i′)),

with

V1 = { C(i)→ (1) | i ≥ 0 }.

Note that t_0 is a boolean variable, so if its value is not 0, it
must be 1. Combining N and F C (12) into a single relation,
we obtain

N1 = { (S0(i)→ (S0(i
′)→ t0(i

′))→ C(i′) | 0 ≤ i′ < i }.

Let R1oR2 be the domain product of two relations, mapping
nested pairs of domain elements from R1 and R2 to their
shared images, i.e.,

R1 oR2 = { (s→ t)→ u | s→ u ∈ R1 ∧ t→ u ∈ R2 }.

In general, we then have N1 = N o
(
F C
)−1

. The relation
N1 maps a pair of sink iteration and filter access to source
iterations that have definitely not been executed and that
perform the filter access, with value in V1. The same filter
element may be accessed by multiple source iterations, each
of them imposing the V1 constraints. We therefore compute
the intersection of the V1 images over all associated source
iterations. In the example, only a single source iteration is
associated to a given filter element and we obtain

V2 = { (S0(i)→ (S0(i
′)→ t0(i

′))→ (1) | 0 ≤ i′ < i }.

Projecting out the filter access, we obtain the filter value
relation

V3 = { S0(i)→ (1) | 1 ≤ i },

which is valid for any element of F C(N(S0(i))), with i ≥ 1.
This information can then be propagated to the potential
source Q using the technique of Section 6.3.1, from which it
can be concluded that Q is always executed (in the current
case where σP < 0) and that therefore no parametrization is
required. Note that the combined filter access relation F C◦N
is no longer a function, but, as explained in Section A.2, the
computations are also valid for multi-valued access relations.
We just need to be careful about the domains of the access
relations.



6.4 Additional Constraints
If we determine that we need to apply parametrization,

then we may in some cases wish to impose additional con-
straints on the introduced parameters beyond those of Sec-
tion 6.2. In particular, we may find that not all potential
source iterations are executed (otherwise no parametriza-
tion would be required), but that some potential source it-
erations are definitely executed. If so, we add constraints
that impose that there is a last execution (σP ≥ `) and that
this last execution is no earlier than any of the definitely
executed iterations.

Additionally, we check for conflicts between the filters as-
sociated to the source of the newly added parameters and
those of previously added parameters, introducing extra con-
straints that avoid the conflicts. As usual, we only show an
example, while the details are explained in Section A.4. Con-
tinuing from the example in Section 6.3.2, let us consider the
case where we are looking for an instance of the write Q in
Line 5 of Listing 2 that is executed after the last execution
of the write P in Line 7. Parametrization is required in this
case, but the sink already contains parameters that refer to
P , so we look for possible conflicts between the parameters
of P and Q.

Based on dataflow analysis on the filter arrays, e.g., (12),
we know that identical iterations of D and C access the same
filter element, written in the same iteration. These filter
elements therefore need to have the same value. Let us try
to derive conflicts from iterations of both statements that are
not executed. To ease the notation, we will only consider the
case σP , σQ ≥ 0 and omit these variables and constraints.
The iterations in Dmem

C,P that are not executed are given by

λP
0 → { S0(i)→ C(i′) | 0 ≤ λP

0 < i′ < i }

with filter value { C(i′)→ (1) } and similarly for Q. Pairing
up the non-executed iterations of C and D and restricting
them to the pairs that should have the same value, we obtain

(λP
0 , λ

Q
0 )→ { S0(i)→ (C(i′)→ D(i′)) | 0 ≤ λP

0 , λ
Q
0 < i′ < i }.

Considering now the pairs of iterations from the two state-
ments that map to values that allow the iterations to not be
executed and such that these values are the same, we find
that there are no such pairs. Subtracting this set of pairs
of iterations that have the same value from the range of the
relation above, we obtain a mapping from sink iterations to
pairs of source iterations that should have the same values
for their filters but in fact do not. In this example, an empty
set is subtracted so that the relation remains the same. The
domain of this relation, i.e.,

(λP
0 , λ

Q
0 )→ { S0(i) | 0 ≤ λP

0 , λ
Q
0 ≤ i− 2 }.

represents conflicting values of the parameters. In particu-
lar, it is impossible for the last executed iterations of P and
Q to both be before the previous iteration of the loop. These
impossible cases are removed from the sink parametrization
S2.

7. EXTENSIONS
In this section, we briefly discuss two extensions, dynamic

loop bounds, which are supported by our dataflow analysis
implementation, and dynamic index expressions, which are
currently not supported.

1 for (int x1 = 0; x1 < n; ++x1) {

2 S1: s = f();

3 for (int x2 = 0; P(x1, x2); ++x2) {

4 S2: s = g(s);

5 }

6 R: h(s);

7 }

Listing 3: C version of example E1 from [1, Sec-
tion 3.2.2]

7.1 Dynamic Loop Conditions
In principle, dynamic loop conditions can be handled by

introducing a filter that represents the last executed itera-
tion of the loop. Consider, for example, the loop in Line 3
of Listing 3. The loop condition depends on some unknown
function P applied to the loop iterator and is therefore not
(locally) static affine. We could introduce a virtual scalar,
say m, that represents the final iteration of the loop and that
implicitly depends on x1. The filter value relation would
then be of the form (n) → { S2(x1, x2) → (m) | 0 ≤ x1 <
n ∧ 0 ≤ x2 ≤ m }. Unfortunately, the resulting dataflow
dependence relations would not be practically useful for the
construction of process networks since this last executed it-
eration is not known in advance.

Instead, we record the result of the dynamic loop condi-
tion in a virtual array and make the body of the loop depend
on the value of the current and all previous iterations of the
loop being 1. That is, the statement on Line 4 has filter
value relation

V S2 = (n)→ { S2(x1, x2)→ (1) | 0 ≤ x1 < n ∧ x2 ≥ 0 }

with filter access relation

F S2 = n→ { S2(x1, x2)→ t0(x1, a) | 0 ≤ a ≤ x2 }.

Note that this filter access relation is not a function, but
a multi-valued filter access relation and therefore requires
the treatment of Appendix A. The statement evaluating
the condition is made to depend on all previous iterations.
Note that we currently only handle dynamic loop conditions
for the purpose of dataflow analysis and not for the actual
construction of process networks.

7.2 Dynamic Index Expressions
Our implementation currently does not support dynamic

index expressions. We would have to allow the access rela-
tions to be approximate as well and the parameters would
change to mean that the iteration is executed and that the
element being accessed is the same as that accessed by the
sink. This change in meaning would limit the conclusions
we could draw from the new parameters.

8. EXPERIMENTS
Our approach has been implemented in the da and pn

tools of the isa prototype tool suite (git://repo.or.cz/
isa.git). The da tool performs dataflow analysis and sup-
ports dynamic loop conditions, while the pn tool addition-
ally constructs a process network and currently does not
support dynamic loop conditions. Table 1 shows the re-
sults of a preliminary experimental comparison of our da

tool against that of [6], which is an implementation of the

git://repo.or.cz/isa.git
git://repo.or.cz/isa.git


input da fadatool fadatool -s
time p d time p l time p l

Lst 1 0.01s 0 5 0.01s 6 6 0.01s 6 6
Lst 2 0.01s 4 9 0.01s 6 16 incorrect
fuzz4 0.06s 3 9 0.02s 4 9 0.01s 0 9
for1 0.02s 2 3 0.01s 4 46 0.02s 2 3
for2 0.03s 2 3 0.09s 12 5k 0.04s 4 3
for3 0.04s 2 3 42s 24 1M 0.08s 6 3
for4 0.06s 2 3 0.16s 8 3
for5 0.08s 2 3 0.25s 10 3
for6 0.14s 2 3 0.42s 12 3
c if1 0.02s 2 3 0.01s 2 4 0.01s 2 4
c if2 0.02s 2 10 0.02s 4 52 0.02s 2 8
c if3 0.03s 2 22 0.03 6 723 0.36s 3 16
c if4 0.02s 2 10 0.17s 8 9k 1m 4 28
whil1 0.01s 0 4 0.00s 1 4 0.01s 0 4
whil2 0.03s 3 4 0.01s 5 6 incorrect
if var 0.03s 4 3 0.01s 2 8 0.01s 2 4
if wh 0.04s 2 14 0.01s 5 58 0.02s 4 58
if2 0.02s 2 2 0.46s 12 29k 0.04s 4 2

Table 1: Experimental Results

approach that most closely resembles our own. In particu-
lar, we use version isa-0.11-319-gead5e27 of da and version
fda6009 of fadatool. We use fadatool both with and with-
out the -s option, since the results can be wildly different.
It should be noted that both tested tools are prototypes.
We should therefore be careful about drawing conclusions
from these results, especially since fadatool -s sometimes
produces incorrect results. Since the inputs in the table are
relatively simple, correctness was determined through visual
inspection.

For each tool and for each test case, we report the time
taken by the analysis, the number of parameters introduced
and the number of disjuncts in the dependence relations (for
da) or the number of leaves in the quasts (for fadatool).
Note that as explained in Section 9 below, the internal rep-
resentation of dependence relations inside fadatool includes
an additional parameter similar to our β. Since these inter-
nal parameters are not explicitly printed in the output of
the tool, they are not included in the parameter count for
fadatool. By contrast, the β parameters are included in
the parameter count for da. The first two inputs are those of
Listing 1 and Listing 2, modified to pass through the default
fadatool parser. In particular, the parser does not support
multiple writes in a single statement. It was therefore diffi-
cult to convert our more extensive test cases. The remaining
cases (with some of the names abbreviated) come from the
fadalib distribution. We omit those test cases that contain
index expressions that are not static affine since we cannot
handle them. Of note is that fadatool fails to recognize that
no parameters need to be introduced on Listing 1 and that
without the -s option, it quickly runs out of control on the
for test cases. The cascade_if results may be somewhat
misleading since pet recognizes that the filter variables used
in the if conditions are the same and that some of the inner
tests are implied by the outer test, greatly simplifying the
input to da.

9. RELATED WORK
Despite its name, FADA is to the best of our knowledge

the only alternative approach that allows for an exact (but
run-time dependent) dataflow analysis in the presence of
dynamic and/or non-affine conditions or index expressions.
The main differences are that FADA introduces different pa-
rameters (with a different meaning), that they are only ana-
lyzed after all parameters have been introduced and that the
analysis is performed using resolution on general first order
logic formulas. A new vector of parameters α is introduced
for every maximization problem similar to (4), meaning that
potentially many more parameters are introduced. The ab-
sence of a solution (similar to our β = 0) is represented as ⊥
on paper and is reported to be represented by a scalar vari-
able similar to our β inside the implementation of [6]. Note
that it is sometimes suggested [8, 22] to use a value outside
the iteration domain, but this may not always be easy to
determine and is impossible for 0D iteration domains. Our
dataflow analysis on filter arrays is a special case of the it-
erative approach of [1].

Other approaches to dataflow analysis [16, 21] produce
approximate results in the presence of constructs that are
not static affine. The approach of [16] in particular prop-
agates values to discover static affine constraints in con-
structs that do not at first appear to be static affine. The
authors of [9] propose an algorithm for computing reach-
ing definitions for arrays that applies to both structured
and unstructured programs. However, they only focus on
how to collect constraints and do not explain how to solve
them. Instead, they introduce uninterpreted functions and
rely on Omega [19] for solving formulas containing such un-
interpreted functions. Unfortunately, the support in Omega

for uninterpreted functions is very limited and cannot han-
dle the constraints they collect. The iegenlib library [23]
has more extensive support for uninterpreted functions, but
does not support a difference operation and can therefore
not be used to perform value-based dependence analysis.

10. CONCLUSIONS AND FUTURE WORK
We have presented a novel approach for exact array data-

flow analysis in the presence of constructs that are not static
affine. Dynamic behavior in the input program is repre-
sented using filters. An analysis of these filters determines if
the dependences are also run-time dependent. If so, param-
eters are introduced to represent this run-time dependence,
where we are careful to introduce as few parameters as possi-
ble. This is made possible by a judicious definition of these
parameters. We plan on working on a closer integration
with pet so that we can perform the dependence analysis
incrementally, allowing us to locally treat some variables in
the input as symbolic constants (as advocated by [15]) and
more easily detect some cases (such as that of Listing 1)
where no parameters need to be introduced. Note that the
techniques developed in this paper would still be useful on
more complicated inputs.
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APPENDIX
A. MULTI-VALUED FILTER ACCESS RE-

LATIONS
In this appendix, we describe how to extend the repre-

sentation and manipulation of filters to handle multi-valued
filter access relations.

A.1 Filters
In Section 4, we assumed that all filter access relations

access a single element in each iteration. Here, we describe
how to extend the definitions to handle multi-valued filter
access relations. The trickiest part is not so much handling
filter access relations that access more than one data ele-
ment, but filter access relations that may access zero data
elements for some iterations. We therefore allow several fil-
ters on the same iteration domain, with disjoint domains,
and impose that in each filter the domain of the filter value
relation is a subset of the domains of all the filter access
relations. In particular, each statement S has µS filters on
its iteration domain, with µS ≥ 0. Each of the filters Fi,
with 1 ≤ i ≤ µS , is represented by a sequence of filter access
relations FS

i,j with 1 ≤ j ≤ nS
i and nS

i the number of filter

access relations, and a filter value relation V S
i . As in Sec-

tion 4, we have FS
i,j ⊆ IS → (IS → A) and V S

i ⊆ IS → ZnS
i .

Furthermore, we impose

domFS
i,j ⊇ domV S

i ,

for all 1 ≤ i ≤ µS and 1 ≤ j ≤ nS
i , to ensure that all

the filter access relations are total on the domains of the
corresponding filter value relations, and

domV L
i1 ∩ domV L

i2 = ∅

for all 1 ≤ i1, i2 ≤ µS such that i1 6= i2, to ensure that the
domains of the filter value relations are disjoint.

The definition of executedS(k) (5) is then replaced by

∀(f1, . . . , fnS
i

) ∈
nS
i∏

j=1

FS
i,j(k) : (V (f j))

nS
i

j=1 ∈ V
S
i (k) (19)

if k ∈ domV S
i and is simply true on those parts of the it-

eration domain IS that do not intersect any of the domV S
i .

That is, an element of the iteration domain IS is only exe-
cuted if the tuples of values of all the tuples of accessed filter
array elements satisfy the active filter value relation.

A.2 Filter Values implied by the Sink
In this section, we describe the derivation illustrated in

Section 6.3.1. We will assume that only a single sink filter
and a single potential source filter apply to the domain and
range of M . That is, we will assume that domM1 ⊆ domV C

and ranM1 ⊆ domV P , with M1 the result of projecting out
the array elements from M as in Section 6.3.1. In general,
M needs to be split up according to the filters.

Let the sink filter consist of n filter access relations Fi

and the potential source filter of m filter access relations
Gj . Since we are going to compare the filters, we replace
the filter access relations by their sources, as explained at
the end of Section 4. In particular, Fi ⊆ IC → (I → A) and
Gi ⊆ IP → (I → A). We construct a relation H between
their possible values, initialized as

H = Zn → Zm.

Let Bj represents the bounds on the values of the array
elements accessed by Gj as specified by the user through a
pragma value_bounds [26, Section 2], or Z if no such bounds
have been specified. Let B be the Cartesian product of these
bounds, i.e.,

B =

m∏
j=1

Bj . (20)

The relation can then be refined to

H = Zn → B.

In the next step, we iterate over the potential source fil-
ter access relations and check if we have any information
about them in the sink filter value. In particular, we check
if any of the sink filter access relations accesses “the same”
value(s). If so, we equate the corresponding dimensions in
the mapping between filter values. To check if “the same”
value(s) are accessed, we pull back the filter access relation
over M1. This results in a relation between sink domain
iterations and filter sources such that there is at least one
potential source corresponding to the sink domain iteration
that accesses that filter source. If this relation is a subset
of the filter access relation at the sink, then we know that
everything we know about the values of the filter accesses at
the sink also applies to the values of the corresponding fil-
ter accesses at the corresponding potential source iterations.
Note that there may be more than one potential source it-
eration associated to a given sink iteration and that each of
these potential source iteration may access a different ele-
ment from the filter array. The above process ensures that
source and sink values are only equated if all of these filter
array elements are covered by the sink filter access relation.

In particular, for any k ∈ domV C that is executed, we
know from (19),

∀(f1, . . . , fn) ∈
n∏

j=1

FC
j (k) : (V (f j))

n
j=1 ∈ V

C(k).

If we haveGP
j ◦M1 ⊆ FC

i , i.e., ∀t ∈M1(k) : GP
j (t) ⊆ FC

i (k),
then we know

∀t ∈M1(k) :∀(f1, . . . , fm) ∈
n∏

j=1

GP
j (t) : (V (f j))

n
j=1 ∈ V1(k),

(21)
with V1 = H ◦ V C . The relation H takes care of projecting
out those dimensions in V C for which we were unable to find
a corresponding filter access GP

j , reordering those for which
we did find a correspondence and introducing dimensions for
those filter accesses GP

j for which we were unable to find a

corresponding filter access FC
i . The relation V1 ⊆ IC → Zm

represents what we know about the filter values at the po-
tential sources associated to a given sink domain iteration,
given that the sink domain iteration is executed. A further
composition with (the inverse of) M1 ⊆ IC → IP , yields a
subset of IP → Zm. This relation maps potential source iter-
ations to filter values that allow for one or more correspond-
ing sink iterations to be executed. In particular, if there is
an element k ∈M−1

1 (t) that is executed, then (V(f j))
m
j=1 is

an element of V1(k). Given that there is such a k, the tu-
ple (V(f j))

m
j=1 is therefore an element of the union of V1(k′)

over all k′ ∈ M−1
1 (t). That is, (V(f j))

m
j=1 is an element of

(V1 ◦M−1
1 )(t). In other words, for values of the filters out-

side the relation V1 ◦M−1
1 , no corresponding (according to



M1) sink domain iterations are executed. Note that we can-
not take the intersection of V1(k′) over all k′ because (21)
only applies to those k that are executed and we only know
that at least one of the k′ ∈ M−1

1 (t) is executed, not that
all of them are executed.

A.3 Filter Values implied by Other Sources
In this section, we describe the derivation illustrated in

Section 6.3.2. In particular, we describe the “update” func-
tion in Line 8 of Algorithm 2. In particular, during the com-
putation of the partial lexicographical maximum of M on U
(4), the set U may already involve parameters that refer to
the last iterations of (other) potential sources. We describe
how we can exploit the constraints on these parameters to
derive extra information about the filter values at the sink.
The procedure of Section A.2 then needs to be applied to
the updated sink filter to actually derive information about
the filter values at the original potential source.

Specifically, we will derive information from the fact that
some potential source iterations have not been executed.
The conditions on the filter values at the potential source
that allow the sink to be executed, but not the potential
source are mapped back to the sink, first by taking the in-
tersection over all potential source iterations associated to
a given sink iteration and filter element and then by taking
the union over all accessed filter elements. We take the in-
tersection over the potential source iterations since we know
that all those iterations are not executed and so all of the
corresponding constraints apply. We take the union over the
accessed filter elements, since we need to obtain constraints
that are valid for all of those elements. As in Section A.2, we
assume that only a single sink filter and a single potential
source filter applies to the domain and range of M , i.e., that
domM1 ⊆ domV C and ranM1 ⊆ domV P . As before, M1

is the result of projecting out the array elements from M .
Let us similarly define a U1 that is the result of projecting
out the access array element from U . In the remainder of
this section, we will take Dmem

C,Q to have the array elements
projected out, i.e., Dmem

C,Q ⊆ IC → IQ.
Let us now look at the construction in more detail. We

start with the construction of a mapping from sink iter-
ations to iterations of some access Q that have not been
executed (according to information in U). We first apply
the parametrization of (15) to the iteration domain of Q
and construct a relation N0 ⊆ U1 → I ′Q (with I ′Q the re-
sult of the parametrization) that is universal, except that
the first ` dimensions in domain and range are equated.
Note that some of the extra parameters in I ′Q also appear in
U1 (otherwise we would not consider this potential source).
This means that the relation N0 relates sink iterations to
potential source iterations that include the last potential
source iteration executed before the sink iteration. That
is, {k → λQ

C(k) | k ∈ U1 ∧ σQ
C (k) ≥ ` } is a subset of

N0. In particular, according to (14), the last element of
Dmem

C,Q (k), with k ∈ U1, that shares the first ` iterators and
where the filter values satisfy the filtered iteration domain
of Q is included in this relation. The relation may also con-
tain additional elements since we may not have introduced
a parameter for each dimension as explained in Section 5.
Projecting out all parameters introduced in (15) (for any
iteration domain), we obtain a relation between sink iter-
ations and potential source iterations that include the last
potential source iteration for any value of the other param-

eters. Further combining this relation with a relation map-
ping potential source iterations to earlier potential source
iterations { SQ(i) → SQ(i′) | i < i′ } results in a relation
between sink iterations and potential source iterations that
may have executed. In particular, the potential source it-
erations that are not related to a given sink iteration (and
that share the first ` iterators) are definitely not executed.
To obtain this relation between sink iterations and potential
source iterations that are definitely not executed we subtract
the relation computed above from the corresponding mem-
ory based dependences Dmem

C,Q (with the first ` dimensions
equated). Let us call the resulting relation N ⊆ IC → IQ.
Due to the construction, we have for each k → j ∈ N that
¬executedSQ(j).

If N is empty, then we cannot use it to derive any in-
formation and the computation stops. Otherwise, the first
step in our derivation is to apply the computation of Sec-
tion A.2 to N . This assumes that domN ⊆ domV C and
ranN ⊆ domV Q, for some filter of Q. The first condi-
tion can be enforced by intersecting N with domM → IQ,
since we are only interested in sink iterations that belong
to domM in any case. If we cannot find a filter on Q such
that the second condition holds, then the computation stops.
During the course of the computation, we will remove filter
access relations GQ

j that are not single-valued. We therefore
check if the filter on Q has any single-valued filter access
relations. If not, the computation stops.

Applying the computation in Section A.2 (with M re-
placed by N and the potential source P by the other po-

tential source Q), we obtain a relation V0 ⊆ IQ → Zm′
such

that for each k→ j ∈ N , we have

∀(f1, . . . , fm′) ∈
m′∏
i=1

GQ
i (j) : (V(f i))

m′

i=1 ∈ V0(j).

For the same j, since ¬executedSQ(j), we also know

∃(f1, . . . , fm′) ∈
m′∏
i=1

GQ
i (j) : (V(f i))

m′

i=1 6∈ V
Q(j).

Combining these results, we have

∃(f1, . . . , fm′) ∈
m′∏
i=1

GQ
i (j) : (V(f i))

m′

i=1 ∈
(
V0 \ V Q

)
(j).

Unfortunately, knowing that there is some sequence of filter
elements f i will not allow us to derive any further informa-
tion. We will therefore assume that that all filter access
relations GQ

i are single-valued. Effectively, this means that
we remove those filter access relations that are not single-
valued and project out the corresponding dimensions from
V0 \V Q. Let V1 be the result of this projection. That is, for
each k→ j ∈ N , (

V(GQ
i (j))

)m′′

i=1
∈ V1(j).

Let G be the range product of the single-valued filter access
relations GQ

i .
At this point we have a relation N ⊆ IC → IQ map-

ping sink iterations to corresponding non-executed potential

source iterations, a relation G ⊆ IQ → (I → A)m
′′

, map-
ping potential source iterations to (single) filter elements,

and a relation V1 ⊆ IQ → Zm′′
, mapping potential source



iterations to corresponding filter values that do not allow
the potential source iteration to be executed, but do allow
the corresponding sink iteration to be executed. We first
combine N and G into a single relation

N1 = N oG−1

The result is a subset of (IC → (I → A)m
′′

) → IQ. We
have, for each (k→ (f)i)→ j ∈ N1,

(V(f i))
m′′

i=1 ∈ V1(j).

Note that because they represent (part of) a filter, we have
domG ⊇ domV Q. Combined with our assumption that
ranN ⊆ domV Q, this ensures that we do not remove any
elements from the range of N . We now connect the pairs of
sink iterations and filter elements to the possible values of
those filter elements at the corresponding potential source
iterations by computing

V2 : domN1 → Zm′′
: V2(k→ f) =

⋂
j∈N1(k→f)

V1(j). (22)

That is, we consider the potential source iterations j that
have definitely not been executed before a certain sink iter-
ation k and compute the intersection of the possible values
of the filter elements f over all those definitely not executed
source iterations. We have, for each k→ (f)i ∈ domV2,

(V(f i))
m′′

i=1 ∈ V2(k→ (f)i).

Note that different potential source iterations associated to
the same sink iteration may access different elements from
the filter arrays. We therefore need to be careful to only
combine constraints on values associated to the same ele-
ments. If N1 is single-valued, the intersection in (22) is
computed over a single element and so we can simply com-
pute V2 as

V2 = V1 ◦N1.

Otherwise, it is computed as

V2 = N1 v V −1
1 ,

with v the non-empty subset operation on two relations,
which constructs a relation between the domain elements of
the two relations such that the image of the first domain ele-
ment is a subset of the image of the second domain element.
That is, R1 v R2 is equal to

{ s→ t | s ∈ domR1 ∧ t ∈ domR2 ∧R1(s) ⊆ R2(t) }

The constraint R1(s) ⊆ R2(t) can be expressed as

∀u : s→ u ∈ R1 ⇒ t→ u ∈ R2

or

¬∃u : s→ u ∈ R1 ∧ t→ u 6∈ R2

where u may be restricted to ranR1. The operation can
therefore be computed as

R1 v R2 = R−1
2 ◦R1 \

(
((domR2 → ranR1) \R2)−1 ◦R1

)
.

Finally, we project out filter elements and compute

V3 : IC → Zm′′
: V3(k) =

⋃
f∈(domV2)(k)

V2(k→ f).

The resulting relation contains all values of all filter elements
read by any non-executed iteration associated to a certain
sink iteration. That is, for every k ∈ domV3 = domN ,

∀(f1, . . . , fm′′) ∈
m′′∏
i=1

GQ
i (N(k))) : (V(f i))

m′′

i=1 ∈ V3(k).

V3 can be computed as

V3 = V2 ◦ (dom−−→(W−1(domV2)))−1,

with W−1S extracting the nested relation from the set S,
i.e.,

W−1S = { s→ t | (s→ t) ∈ S }.

The relation V3 may only apply to a subset of the domain of
M1. Since we do not have any information about elements
outside domV3 = domN , we extend V3 to the entire domain
of M1 as

V4 = V3 ∪
(

(domM1 \ domN)→ Zm′′)
.

We now want want to intersect V C with V4, but as in
Section A.2 we first need to align the filter access relations,
by constructing a relation H mapping the filter values of V4

to those of V C . In this case, however, we also allow extra
filter access relations to be added, both to the original set
of filter access relations of the sink and to the filter access
relations associated to V4. We do this to be able to collect as
much information as possible at the sink. In particular, some
of the sources may involve the same filter access relations
even if these filter access relations do not originally appear
among those of the sink and we still want to combine the
information from different sources at the sink.

More specifically, we look for filter access relations FC
i

that are identical to some GQ
j ◦N . If we cannot find such an

FC
i , we add GQ

j ◦N to the sink filter access relations (adjust-

ing V C). In both cases, we express the correspondence in
H. Additionally, we look for filter access relations FC

i that
form a (strict) subset of some GQ

j ◦N . If so, we add FC
i to

the filter access relations associated to V4, adjusting V4 by
duplicating the constraints on the corresponding dimension
to the new dimension that corresponds to the extra filter
access relation. Again, we express the correspondence in H.
At the end, we apply H to V4 and intersect V C with the
result.

A.4 Avoid Inconsistencies
As explained in Section 6.4, some values of the parame-

ters expressing the last iteration of potential source P , in-
troduced in Section 6.2 and constrained by (18), may not
be consistent with the fact that the sink C is executed or
with the values of parameters expressing the last iteration of
other potential sources introduced before. In this section, we
describe how we can remove some of these inconsistencies.
Note that leaving in these inconsistencies does not lead to
incorrect results, but only to less accurate results. We there-
fore do not need to remove every possible inconsistency, but
instead try to remove those that we can easily discover.

Let us start with inconsistencies that arise from the fact
that two potential sources, the current one (P ) and one that
was considered before (Q), are executed. In particular, as-
sume that iteration i of P is executed and iteration j of Q



as well. According to (19), we then have

∀(f1, . . . , fm) ∈
m∏

j=1

FP
j (i) : (V(f j))

m
j=1 ∈ V

P (i) (23)

for some filter of P and

∀(f1, . . . , fm′) ∈
m′∏
j=1

FQ
1 (j) : (V(f j))

m′

j=1 ∈ V
Q(j) (24)

for some filter of Q. If we can find a pair of subsequences of
filter access relations that access some sequence of filter ar-
ray elements in common, then the corresponding dimensions
of V P (i) and V Q(j) need to have some value in common. Let
K ⊆ IP × IQ contain those pairs of iteration that access the

same filter array elements and let H ⊆ Zm × Zm′
express

the correspondence of values. That is, H is expressed as one
or more equalities equating pairs of dimensions, one from
V P (i) and one from V Q(j). The relation

T =W−1

((
V P × V Q

)−1

(WH)

)
, (25)

where

WR = { (s→ t) | s→ t ∈ R },

then contains those pairs of iterations that allow for a com-
mon value. Removing those from K, we obtain the relation

K′ = K \ T

of pairs of iterations that should allow for a common value,
but in fact do not. To map these inconsistencies to the pa-
rameters we construct a relation D1 from Dmem

C,P (with array
elements projected out). In particular, we intersect the do-
main of Dmem

C,P with the parametrization of (15) and equate
the first ` dimensions of domain and range. We similarly
construct a relation D2 from Dmem

C,Q . The inconsistent values
of the parameters are then obtained as

(D1 oD2) (WK′) (26)

and the result is removed from the sink parametrization.
The above procedure may be repeated for any appropriate

pair of K and H. In our implementation, we currently only
construct a single such pair in a greedy way. In particular,
we start out with a universal K and H and consider pairs of
filter access relations FP

i ⊆ IP → (I → A) and FQ
j ⊆ IQ →

(I → A) that access the same array. For each such pair, we
compute

Ki,j =
(
FQ
j

)−1

◦ FP
i ⊆ IP → IQ (27)

and check if Ki,j has a non-empty intersection with the cur-
rent value of K. If so, we replace K with this intersection
and adjust H accordingly. Otherwise, we skip this pair of
filter access relations.

We have only considered inconsistencies based on pairs of
potential sources that are executed. It is also possible to
derive inconsistencies based on one or both of the potential
sources not being executed. Let us first consider the case
where P is not executed and Q is executed. In this case,
(23) is replaced by

∃(f1, . . . , fm) ∈
m∏

j=1

FP
j (i) : (V(f j))

m
j=1 6∈ V

P (i).

Whereas in the case of (23) and (24) a conflict occurs as
soon as there is any sequence of accessed elements for which
no matching value can be found, in this case we only know
something about some sequence of accessed elements at P
and we can therefore only arrive at a conflict if all of the
accessed elements are also accessed by Q. In particular, (27)
needs to be replaced by

Ki,j = FLP
i v FLQ

j ⊆ ILP → ILQ .

Additionally, V P in (25) should be replaced by

(ILP → B) \ V LP

with B the bounds on the possible values on the array el-
ements, as computed in (20), while D1 in (26) should refer
to iterations that are not executed. That is, rather than
intersecting Dmem

C,P with the parametrization of (15), we first
map this parametrization to lexicographically later elements
and take the union with the set

(σP )→ { SSP (j) | σP < ` }.

This second part accounts for the fact that when σP < `,
none of the iterations that share the first ` iterators have
executed.

The case where P is executed and Q is not executed is
handled similarly. For the case where both P and Q are
not executed, we can only draw any conclusion for those
iterations that access a single filter element. That is, Ki,j

of (27) is replaced by

{ i→ j ∈ (domFP
i )→ (domFQ

j ) |

∀f1, f2 ∈ FP
i (i), f3, f4 ∈ FQ

j (j) : f1 = f2 = f3 = f4 }.

This relation can be computed by removing

dom
((
FP
i n FP

i

)
\ (IP → 1I→A)

)
from the domain of

(
FQ
j

)−1

◦ FP
i and

dom
((
FQ
j n FQ

j

)
\ (IQ → 1I→A)

)
from its range, with

R1 nR2 = { s→ (t→ u) | s→ t ∈ R1 ∧ s→ u ∈ R2 }.

That is, we consider pairs of image elements associated to
the same domain element of FP

i or FQ
j and remove pairs of

identical image elements. That only leaves pairs of different
image elements and the domain of the relation represents
those domain elements that have multiple image elements
associated to them.

Inconsistencies between the potential source P and the
sink C are removed in a similar way, except that C is al-
ways executed so that we only need to consider two cases,
one where P is executed and one where P is not executed.
Furthermore, the relation D2 in (26) is replaced by the iden-
tity relation on the iteration domain of the sink, i.e., 1IC .
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