Parametric Tiling with Inter-Tile Data Reuse

Alexandre Isoard Alain Darte

Compsys, LIP (Laboratoire de l'Informatique du Parallélisme), Lyon

IMPACT 4th International Workshop on Polyhedral Compilation Techniques January 20, 2014 Vienna, Austria

Outline

Motivation and challenges

- Kernel offloading: rules of the game
- Reminders: scheduling and tiling
- Inter-tile data reuse: example

2 Parametric analysis

- Tile index vs tile origin index
- Exact inter-tile reuse
- Approximated inter-tile reuse

3 Current implementation and results

- Current status
- Script with ISCC
- Local memory allocation for PolyBench examples

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Kernel Offloading

- Perform computations by blocks;
- Exploit data reuse;
- Use pipelining/prefetching;
- Reduce and coalesce communications (burst),

э

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Rules and objectives

Data reuse: on the full iteration domain

Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Rules and objectives

Data reuse: on the full iteration domain

Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling

- Rule 2: tiles executed in sequence (but a tile can be parallelized).
 - ☞ Increases temporal reuse, reduces local memory.
 - Increases spatial reuse, enables burst communications.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Rules and objectives

Data reuse: on the full iteration domain

- Rule 1: always use local data if already loaded or computed.
 - Reduces communication volume, increases local memory.
 - Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling

- Rule 2: tiles executed in sequence (but a tile can be parallelized).
 - Increases temporal reuse, reduces local memory.
 - Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a *p*-dimensional stripe, or at bounded distance.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Rules and objectives

Data reuse: on the full iteration domain

- Rule 1: always use local data if already loaded or computed.
 - Reduces communication volume, increases local memory.
 - Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling

- Rule 2: tiles executed in sequence (but a tile can be parallelized).
 - ☞ Increases temporal reuse, reduces local memory.
 - Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a *p*-dimensional stripe, or at bounded distance.
- Then: scheduling/pipelining & memory allocation
 - Rule 3: reuse analysis independently on scheduling.
 - Rule 4: load as late as possible, store as soon as possible.
 - Overlaps transfer and computation (multi-buffering).
 - Reduces live-ranges, and possibly local memory size.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain

- Rule 1: always use local data if already loaded or computed.
 - Reduces communication volume, increases local memory.
 - Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling

- Rule 2: tiles executed in sequence (but a tile can be parallelized).
 - ☞ Increases temporal reuse, reduces local memory.
 - Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a *p*-dimensional stripe, or at bounded distance.
- Then: scheduling/pipelining & memory allocation
 - Rule 3: reuse analysis independently on scheduling.
 - Rule 4: load as late as possible, store as soon as possible.
 - Overlaps transfer and computation (multi-buffering).
 - Reduces live-ranges, and possibly local memory size.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets

Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T} , i.e., read but not written earlier in \vec{T} .
- \vec{m} has not been loaded in a previous tile.
- *m* has not been defined earlier.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets

Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T} , i.e., read but not written earlier in \vec{T} .
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". \clubsuit This schedule is not affine in terms of tile sizes.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets

Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T} , i.e., read but not written earlier in \vec{T} .
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". This schedule is not affine in terms of tile sizes. Exact case

Reads/writes are functions of iteration points. Can we express the relation "happens before" among iterations in a quasi-affine way?

Yes. Parametric tiling with exact inter-tile reuse is feasible.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets

Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T} , i.e., read but not written earlier in \vec{T} .
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". This schedule is not affine in terms of tile sizes. Exact case

Reads/writes are functions of iteration points. Can we express the relation "happens before" among iterations in a quasi-affine way?

Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations

What if contributions of reads/writes are summarized at tile level? Approximated?
No information loss if approximations are "pointwise". More approximations needed otherwise.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

(ロ)
 (日)
 (日)

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

イロト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

< □ > < ⑦ > < ≧ > < ≧ > ≧ > うへで 6/25

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

イロト イヨト イヨト

э

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Dependences

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

イロト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Dependences

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      C[i+j] += A[i]*B[j]; // S1
   }
}</pre>
```

イロト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Scheduling alternatives: loop reversal+interchange

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
   C[k] = 0; // S0
}
for(int i=0; i<n; i++) {</pre>
```

```
for(int j=0; j<n; j++) {
    C[i+j] += A[i]*B[j]; // S1
}</pre>
```

< ロ > < 同 > < 回 > < 回 >

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Scheduling alternatives: loop reversal+interchange+tiling

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}</pre>
```

イロト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Scheduling alternatives: loop skewing

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}</pre>
```

イロト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Scheduling alternatives: loop skewing+tiling

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}</pre>
```

イロト イボト イヨト イヨト

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Scheduling alternatives: loop skewing+tiling

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // S0
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}</pre>
```

+ possibility of intra-tile parallelism.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

In a tile, **Load** \simeq first read, **Store** \simeq last write.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

In a tile strip, Load \simeq first read, Store \simeq last write.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

In a reuse domain, Load \simeq first read, Store \simeq last write. Can actually be adapted to any parameterized reuse domain.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Objective: data transfers

- Bound *n*, tiles of size $b \times b$.
- Tiling with $(i,j) \mapsto (i',j') = (n-j-1,i)$.
- Access functions m = i + j = j' + n i' 1.
- Tile origin (I, J).
- Transfers $Load_A$, $Load_B$, $Load_C$, $Store_C$.

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Objective: data transfers

- Bound *n*, tiles of size $b \times b$.
- Tiling with $(i,j) \mapsto (i',j') = (n-j-1,i)$.
- Access functions m = i + j = j' + n i' 1.

イロト イボト イヨト イヨト

8/25

- Tile origin (*I*, *J*).
- Transfers $Load_A$, $Load_B$, $Load_C$, $Store_C$.

Load sets.

 $\text{Load}_{A} = \{m \mid 0 \le m \le n-1, J \le m \le J+b-1\}$

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Objective: data transfers

- Bound *n*, tiles of size $b \times b$.
- Tiling with $(i,j) \mapsto (i',j') = (n-j-1,i)$.
- Access functions m = i + j = j' + n i' 1.

イロト イボト イヨト イヨト

8/25

- Tile origin (*I*, *J*).
- Transfers Load_A, Load_B, Load_C, Store_C.

Load sets.

$$\text{Load}_{A} = \{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}$$

$$Load_B = \{m \mid J = 0, 0 \le m \le n - 1, n - l - b \le m \le n - l - 1\}$$

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Objective: data transfers

- Bound *n*, tiles of size $b \times b$.
- Tiling with $(i,j) \mapsto (i',j') = (n-j-1,i)$.
- Access functions m = i + j = j' + n i' 1.
- Tile origin (*I*, *J*).
- Transfers Load_A, Load_B, Load_C, Store_C.

Load sets.

$$\text{Load}_{A} = \{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}$$

$$Load_B = \{m \mid J = 0, 0 \le m \le n - 1, n - l - b \le m \le n - l - 1\}$$

Load_C = {
$$m \mid 0 \le m, n - l - b \le m \le n - 1 - l, J = 0$$
}
 $\cup {m \mid max(1, J) \le m + l - n + 1 \le min(n - 1, J + b - 1)}$

Kernel offloading: rules of the game Reminders: scheduling and tiling Inter-tile data reuse: example

Objective: data transfers and local memory sizes

- Bound n, tiles of size b × b.
- Tiling with $(i,j) \mapsto (i',j') = (n-j-1,i)$.
- Access functions m = i + j = j' + n i' 1.
- Tile origin (*I*, *J*).
- Transfers Load_A, Load_B, Load_C, Store_C.

Load sets. Local memory sizes with "double-buffering".

Load_A = {
$$m \mid 0 \le m \le n-1$$
, $J \le m \le J+b-1$ }
size 2b, when $n \ge 2b+1$; at least 2 tiles available.

• size *n* when $n \leq 2b$: less than 2 tiles.

Load_B = {
$$m \mid J = 0, 0 \le m \le n - 1, n - l - b \le m \le n - l - 1$$
}

- size *b* when $n \ge b$: 1 full tile.
- size *n* when $n \le b 1$: 1 partial tile.

$$Load_{C} = \{m \mid 0 \le m, n - I - b \le m \le n - 1 - I, J = 0\}$$

$$\cup \{m \mid \max(1, J) \le m + I - n + 1 \le \min(n - 1, J + b - 1)\}$$

- size 3b 1 = (2b 1) + b si $n \ge 2b + 1$: 2 full tiles.
- size b + n 1 = (2b 1) + (n b) si $b \le n \le 2b$: 1 full tile, 1 partial tile.
- size 2n-1 si $n \le b-1$: 1 partial tile.

- ・ロト ・ 四 ト ・ 王 ト ・ 王 ・ つ へ ()・
 - 8 / 25

File index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Outline

1 Motivation and challenges

2 Parametric analysis

- Tile index vs tile origin index
- Exact inter-tile reuse
- Approximated inter-tile reuse

3 Current implementation and results

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by $\vec{s} = (s_1, \ldots, s_n)$)

$$\vec{i} \in \mathsf{Tile}(\vec{T}) \Leftrightarrow \begin{cases} s_1 T_1 \le i_1 < s_1(T_1+1) \\ \vdots \\ s_n T_n \le i_n < s_n(T_n+1) \end{cases}$$

• Schedule on iteration points: $\vec{i'} < \vec{i} \Leftrightarrow (\vec{T'}, \vec{i'}) <_{lex} (\vec{T}, \vec{i})$.

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by $\vec{s} = (s_1, \ldots, s_n)$)

$$\vec{i} \in \mathsf{Tile}(\vec{T}) \Leftrightarrow \begin{cases} s_1 T_1 \leq i_1 < s_1(T_1+1) \\ \vdots \\ s_n T_n \leq i_n < s_n(T_n+1) \end{cases}$$

n iteration points: $\vec{i'} < \vec{i} \Leftrightarrow (\vec{T'}, \vec{i'}) <_{lex} (\vec{T}, \vec{i}).$

• Schedule on iteration points: $i' < i \Leftrightarrow (T', i') <_{lex} (T, i)$

With indices of tile origins

$$\vec{i} \in \text{Tile}(\vec{I}) \Leftrightarrow \begin{cases} I_1 \leq i_1 < I_1 + s_1 & \\ \vdots & \text{with } \vec{I}, \text{ origin of Tile}(\vec{T}), \\ \vdots & \\ I_n \leq i_n < I_n + s_n & \\ \end{cases}$$

Schedule on iteration points, for a tiling specified by a given tile:

$$\vec{i'} <_{\vec{l}} \vec{i} \Leftrightarrow \vec{i'} <_{\vec{l'}} \vec{i} \Leftrightarrow (\vec{l'}, \vec{i'}) <_{lex} (\vec{l}, \vec{i}) \text{ and } \vec{l'} \stackrel{\vec{s}}{\equiv} \vec{l}$$

Intuitive expression of Load/Store sets

For Tile(\vec{I}) with data reuse in ReuseDomain:

$$\mathsf{Load}(\vec{I}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{I})} \left(\operatorname{read}(\vec{i}) \setminus \bigcup_{\substack{\vec{i'} < \vec{i} \\ \vec{i'} \in \mathsf{ReuseDomain}}} \operatorname{read}(\vec{i'}) \cup \operatorname{write}(\vec{i'}) \right)$$
$$\mathsf{Store}(\vec{I}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{I})} \left(\operatorname{write}(\vec{i}) \setminus \bigcup_{\substack{\vec{i'} > \vec{i} \\ \vec{i'} \in \mathsf{ReuseDomain}}} \operatorname{write}(\vec{i'}) \right)$$

where $\vec{i'} < \vec{i}$ means that i' is executed before i in the tiled schedule.

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Intuitive expression of Load/Store sets

For Tile(\vec{I}) with data reuse in ReuseDomain:

$$\mathsf{Load}(\vec{I}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{I})} \left(\operatorname{read}(\vec{i}) \setminus \bigcup_{\substack{\vec{i'} < \vec{i} \\ \vec{i'} \in \mathsf{ReuseDomain}}} \operatorname{read}(\vec{i'}) \cup \operatorname{write}(\vec{i'}) \right)$$
$$\mathsf{Store}(\vec{I}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{I})} \left(\operatorname{write}(\vec{i}) \setminus \bigcup_{\substack{\vec{i'} > \vec{i} \\ \vec{i'} \in \mathsf{ReuseDomain}}} \operatorname{write}(\vec{i'}) \right)$$

where $\vec{i'} < \vec{i}$ means that i' is executed before i in the tiled schedule. • Can we express $\vec{i'} < \vec{i}$ ("happens before") in a parametric way?

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

イロト イヨト イヨト

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

イロト イヨト イヨト

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Load/Store computations with In/Out sets

Contribution of reads/writes summarized at tile level:

$$\begin{cases} \operatorname{In}(\vec{l}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{l})} \left(\operatorname{read}(\vec{i}) \setminus \bigcup_{\vec{i'} \in \mathsf{Tile}(\vec{l}), \, \vec{i'} <_{lex} \vec{i}} \operatorname{write}(\vec{i'}) \right) \\ \operatorname{Out}(\vec{l}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{l})} \operatorname{write}(\vec{i}) \end{cases} \end{cases}$$

Load/Store computations with In/Out sets

Contribution of reads/writes summarized at tile level:

$$\begin{cases} \operatorname{In}(\vec{l}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{l})} \left(\operatorname{read}(\vec{i}) \setminus \bigcup_{\vec{i}' \in \mathsf{Tile}(\vec{l}), \, \vec{i}' <_{lex} \vec{i}} \operatorname{write}(\vec{i}') \right) \\ \operatorname{Out}(\vec{l}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{l})} \operatorname{write}(\vec{i}) \\ \operatorname{Load}(\vec{l}) = \bigcup_{\vec{i} \in \mathsf{Tile}(\vec{l})} \left(\operatorname{read}(\vec{i}) \setminus \bigcup_{\substack{\vec{i}' < \vec{i} \\ \vec{i}' \in \mathsf{ReuseDomain}}} \operatorname{read}(\vec{i}') \cup \operatorname{write}(\vec{i}') \right) \\ \bullet \quad \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\bigcup_{\substack{\vec{l}' \prec \vec{s} \mid \vec{l}}} \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left((\operatorname{In}(\vec{l}) \cap \operatorname{In}(\vec{l}') \cup \operatorname{Out}(\vec{l}') \right) \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\operatorname{In}(\vec{l}) \cap \operatorname{In}(\vec{l}) \cup \operatorname{Out}(\vec{l}') \right) \\ \overset{\circ}{=} \operatorname{Load}(\vec{l}) = \operatorname{In}(\vec{l}) \setminus \left(\operatorname{In}(\vec{l}) \cap \operatorname{In}(\vec{l}) \cup \operatorname{In}(\vec{l}') \cup \operatorname{In}(\vec{l}') \right) \right) \\ \overset{\circ}{=} \operatorname{In}(\vec{l}) \in \operatorname{In}(\vec{l}) \setminus \operatorname{In}(\vec{l}) \cup \operatorname{In}(\vec{l})$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Approximations: why?

Some operations may execute

• if conditions that are not analyzable.

Some data may be accessed

• access functions that are not fully analyzable.

Approximated \ln/Out sets for tiles $rac{d}{}$ Tin, \overline{Out} , \underline{Out} .

- due to the analysis (e.g., array regions);
- by choice to represent simpler sets (e.g., hyper-rectangles);
- to simplify the analysis (e.g., Fourier-Motzkin).

Approximated Load/Store sets \bullet $\overline{\text{Store}}$, $\overline{\text{Load}}$.

- to simplify code generation;
- to perform communications by blocks;
- to simplify memory allocation;
- . . .

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{I}) = \overline{\operatorname{Ra}}_{\vec{I}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I'} \sqsubset_{\vec{s}} \vec{I}))$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{I}) = \overline{\operatorname{Ra}}_{\vec{I}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I'} \sqsubset_{\vec{s}} \vec{I}))$$

Simplified "exact" load formula, with aligned tiles

$$\operatorname{Load}(\vec{\textit{I}}) = (\overline{\operatorname{In}} \cup \overline{\operatorname{Out}})(\vec{\textit{I}}) \setminus (\overline{\operatorname{In}} \cup \overline{\operatorname{Out}})(\vec{\textit{I'}} \sqsubset_{\vec{s}} \vec{\textit{I}})$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{I}) = \overline{\operatorname{Ra}}_{\vec{I}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I'} \sqsubset_{\vec{s}} \vec{I}))$$

Simplified "exact" load formula, with aligned tiles

$$\mathrm{Load}(\vec{I}) = (\overline{\mathrm{In}} \cup \overline{\mathrm{Out}})(\vec{I}) \setminus \bigcup_{\vec{I}' \sqsubset_{\vec{s}} \vec{I}} (\overline{\mathrm{In}} \cup \overline{\mathrm{Out}})(\vec{I}')$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{\textit{I}}) = \overline{\operatorname{Ra}}_{\vec{\textit{I}}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{\textit{I}}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{\textit{I}'} \sqsubset_{\vec{\textit{s}}} \vec{\textit{I}}))$$

Simplified "exact" load formula, with aligned tiles

$$\operatorname{Load}(\vec{I}) = F(\vec{I}) \setminus \bigcup_{\vec{I}' \subseteq_{\vec{s}} \vec{I}} F(\vec{I}')$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{I}) = \overline{\operatorname{Ra}}_{\vec{I}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{I'} \sqsubset_{\vec{s}} \vec{I}))$$

Simplified "exact" load formula, with aligned tiles or all tiles?

$$\operatorname{Load}(\vec{I}) = F(\vec{I}) \setminus \bigcup_{\vec{I}' \subseteq_{\vec{s}} \vec{I}} F(\vec{I}') \stackrel{?}{=} F(\vec{I}) \setminus \bigcup_{\vec{I}' \prec_{\vec{s}} \vec{I}} F(\vec{I}')$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Equality of unions

"Exact approximated" load formula

$$\operatorname{Load}(\vec{\textit{I}}) = \overline{\operatorname{Ra}}_{\vec{\textit{I}}} \cap ((\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{\textit{I}}) \setminus (\overline{\operatorname{In}}' \cup \overline{\operatorname{Out}})(\vec{\textit{I}'} \sqsubset_{\vec{\textit{s}}} \vec{\textit{I}}))$$

Simplified "exact" load formula, with aligned tiles or all tiles?

$$\operatorname{Load}(\vec{I}) = F(\vec{I}) \setminus \bigcup_{\vec{I}' \subseteq_{\vec{s}} \vec{I}} F(\vec{I}') \stackrel{?}{=} F(\vec{I}) \setminus \bigcup_{\vec{I}' \prec_{\vec{s}} \vec{I}} F(\vec{I}')$$

Definition (Function stable for unions)

$$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{B}) \text{ is stable for unions iff } \forall \mathcal{C}', \mathcal{C}'' \subseteq \mathcal{C}, \\ \bigcup_{X \in \mathcal{C}'} X = \bigcup_{X \in \mathcal{C}''} X \Rightarrow \bigcup_{X \in \mathcal{C}'} F(X) = \bigcup_{X \in \mathcal{C}''} F(X).$$

$$\bigcup_{\vec{l}' \sqsubseteq \vec{s}\vec{l}} \mathsf{Tile}(\vec{l}') = \bigcup_{\vec{l}' \prec \vec{s}\vec{l}} \mathsf{Tile}(\vec{l}') \stackrel{?}{\Rightarrow} \bigcup_{\vec{l}' \sqsubseteq \vec{s}\vec{l}} F(\vec{l}') = \bigcup_{\vec{l}' \prec \vec{s}\vec{l}} F(\vec{l}')$$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Pointwise functions

Definition (Function stable for unions)

$$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{B}) \text{ is stable for unions iff } \forall \mathcal{C}', \mathcal{C}'' \subseteq \mathcal{C}, \\ \bigcup_{X \in \mathcal{C}'} X = \bigcup_{X \in \mathcal{C}''} X \Rightarrow \bigcup_{X \in \mathcal{C}'} F(X) = \bigcup_{X \in \mathcal{C}''} F(X).$$

equivalent to

Definition (Pointwise function)

 \mathcal{A}, \mathcal{B} two sets, $\mathcal{C} \subseteq \mathcal{P}(\mathcal{A})$. $F : \mathcal{C} \to \mathcal{P}(\mathcal{B})$ is *pointwise* iff there exists $f : \mathcal{A} \to \mathcal{P}(\mathcal{B})$ such that $\forall X \in \mathcal{C}, F(X) = \bigcup_{x \in X} f(x)$.

Ex: $F(\vec{l}) = (\overline{\text{In}} \cup \overline{\text{Out}})(\vec{l}) = \bigcup_{\vec{i} \in T(\vec{l})} (\overline{\text{read}} \cup \overline{\text{write}})(\vec{i}).$

Tile index vs tile origin index Exact inter-tile reuse Approximated inter-tile reuse

Pointwise functions

Definition (Function stable for unions)

$$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{B}) \text{ is stable for unions iff } \forall \mathcal{C}', \mathcal{C}'' \subseteq \mathcal{C}, \\ \bigcup_{X \in \mathcal{C}'} X = \bigcup_{X \in \mathcal{C}''} X \Rightarrow \bigcup_{X \in \mathcal{C}'} F(X) = \bigcup_{X \in \mathcal{C}''} F(X).$$

equivalent to

Definition (Pointwise function)

 \mathcal{A}, \mathcal{B} two sets, $\mathcal{C} \subseteq \mathcal{P}(\mathcal{A})$. $F : \mathcal{C} \to \mathcal{P}(\mathcal{B})$ is *pointwise* iff there exists $f : \mathcal{A} \to \mathcal{P}(\mathcal{B})$ such that $\forall X \in \mathcal{C}, F(X) = \bigcup_{x \in X} f(x)$.

Ex:
$$F(\vec{l}) = (\overline{\text{In}} \cup \overline{\text{Out}})(\vec{l}) = \bigcup_{\vec{i} \in \mathcal{T}(\vec{l})} (\overline{\text{read}} \cup \overline{\text{write}})(\vec{i}).$$

Point-wise approximations

- Largest pointwise under-approximation: $\underline{f}(x) = \bigcap F(Y)$.
- Pointwise over-approximations schemes are possible.

 $Y \in \mathcal{C}, x \in Y$

Current status Script with ISCC Local memory allocation for PolyBench examples

Outline

2 Parametric analysis

- 3 Current implementation and results
 - Current status
 - Script with ISCC
 - Local memory allocation for PolyBench examples

Current implementation and future work

In progress: development of an automated tool

- ISCC script (see demo) \Rightarrow complete tool based on ISL.
- Implement approximation schemes: due to code and/or by choice (complexity issues). Integrate with PIPS?
- Improve memory size computation: complexity issues, schedules (parallelism), piecewise lattice-based allocation.
- To do: experiments with blocking

- (see also DATE'13)
- FPGA? Workstation? GPU? Kalray MPPA?
- Cost model for hierarchical tiling.
- Other schemes of reuse (partial storage).

Pointwise functions

• Useful for other approximations?

Current status Script with ISCC Local memory allocation for PolyBench examples

Script ISCC 1/3

```
# Inputs
Params := [N, s_1, s_2] \rightarrow \{ : s_1 \ge 0 \text{ and } s_2 \ge 0 \};
Domain := [N] -> { # Iteration domains
  S 1[k] : 0 \le k \le 2N-1:
  S_2[i, j] : 0 \le i, j \le N;
} * Params;
Read := [N] \rightarrow \{ \# \text{ Read access functions} \}
 S_2[i, j] -> A[i];
  S_2[i, j] \rightarrow B[j];
  S_2[i, j] -> C[i+j]; } * Domain;
Write := [N] -> { # Write access functions
  S 1[k] \rightarrow C[k];
  S 2[i, j] -> C[i+j]; } * Domain;
Theta := [N] -> { # Preliminary mapping
  S_1[k] \rightarrow [k, 0, 0];
  S 2[i, j] -> [i+j, i, 1]; };
```

Current status Script with ISCC Local memory allocation for PolyBench examples

Script ISCC 2/3

```
# Tools for set manipulations
Tiling := [s_1, s_2] \rightarrow \{ \# \text{ Two dimensional tiling} \}
  [[I 1, I 2] -> [i 1, i 2, k]] -> [i 1, i 2, k] :
      I_1 \le i_1 \le I_1 + s_1 and I_2 \le i_2 \le I_2 + s_2;
Coalesce := { [I 1, I 2] -> [[I 1, I 2] -> [i 1, i 2, k]] };
Strip := { [I 1, I 2] -> [I 1, I 2'] };
Prev := { # Lexicographic order
  [[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1', i_2', k']] :
      i_1' \le i_1 - 1 or (i_1' \le i_1 \text{ and } i_2' \le i_2 - 1)
      or (i 1' <= i 1 and i 2' <= i 2 and k' <= k - 1) }:
TiledPrev := [s 1, s 2] -> { # Special 'lexicographic' order
  [I 1, I 2] \rightarrow [I 1', I 2'] : I 1' \leq I 1 - s 1 or
      (I 1' <= I 1 and I 2' <= I 2 - s 2) } * Strip;
TiledNext := TiledPrev^-1;
TiledRead := Tiling.(Theta^-1).Read;
TiledWrite := Tiling.(Theta^-1).Write;
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Current status Script with ISCC Local memory allocation for PolyBench examples

Script ISCC 3/3

```
# Set/relation computations
In := Coalesce.(TiledRead - (Prev.TiledWrite));
Out := Coalesce.TiledWrite;
Load := In - ((TiledPrev.In) + (TiledPrev.Out));
Store := Out - (TiledNext.Out);
print coalesce (Load % Params);
print coalesce (Store % Params);
```

Current status Script with ISCC Local memory allocation for PolyBench examples

Pipelined schedule

Current status Script with ISCC Local memory allocation for PolyBench examples

Sizes of arrays in local memory

Transformation for tiling	Sequential memory size
jacobi-1d-imper	
$S_0(t,i)\mapsto (t,2t+i,0)$	$A[2s_1 + s_2]$
$S_1(t,j)\mapsto (\underline{t,2t+j+1},1)$	$B[2s_1 + s_2 - 1]$
jacobi-2d-imper	
$S_0(t,i,j)\mapsto (t,2t+i,2t+i+j,0)$	$A[2s_1 + s_2, \min(2s_1, s_2 + 1) + s_3]$
$S_1(t,i,j) \mapsto (\overline{t,2t+i+1,2t+i+j+1},1)$	$B[2s_1 + s_2 - 1, \min(2s_1, s_2) + s_3 - 1]$
seidel-2d	
$S_0(t,i,j) \mapsto (\underline{t,t+i,2t+i+j})$	$ \begin{bmatrix} s_1 + s_2 + 1, \\ min(2s_1 + 2, s_1 + s_2, 2s_2 + 2) + s_3 \end{bmatrix} $
floyd-warshall	
$S_0(k,i,j)\mapsto (k,\underline{i,j})$	$path \begin{bmatrix} \max(k+1, n-k), \\ \max(k+1, n-k) \end{bmatrix}$

Current status Script with ISCC Local memory allocation for PolyBench examples

Sizes of arrays in local memory

Transformation for tiling	Pipelined memory size
jacobi-1d-imper	
$S_0(t,i)\mapsto (t,2t+i,0)$	$A[2s_1 + 2s_2]$
$S_1(t,j)\mapsto (\underline{t,2t+j+1},1)$	$B[2s_1 + 2s_2 - 2]$
jacobi-2d-imper	
$S_0(t,i,j)\mapsto (t,2t+i,2t+i+j,0)$	$A[2s_1 + s_2, \min(2s_1, s_2 + 1) + 2s_3]$
$S_1(t,i,j) \mapsto (\overline{t,2t+i+1,2t+i+j+1},1)$	$B[2s_1 + s_2 - 1, \min(2s_1, s_2 + 1) + 2s_3 - 2]$
seidel-2d	
$S_0(t,i,j)\mapsto (\underline{t,t+i,2t+i+j})$	$ \left[\begin{array}{c} \mathtt{A} \begin{bmatrix} s_1 + s_2 + 1, \\ \min(2s_1 + 2, s_1 + s_2, 2s_2 + 2) + 2s_3 \end{bmatrix} \right] $
floyd-warshall	
$S_0(k,i,j) \mapsto (k,\underline{i,j})$	$path\left[\max(k+1, n-k), \\ \max(k+1, n-k, 2s_2)\right]$

Current status Script with ISCC Local memory allocation for PolyBench examples

Merci

${\sf Questions}\ ?$

◆□ → < □ → < Ξ → < Ξ → < Ξ → Ξ の < C 25 / 25