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Kernel Offloading

Host

CPU

Global Memory

Accelerator

FPGA/GPU/MPPA/...

Local Memoryslow

fast

* Perform computations by blocks;
* Exploit data reuse;
* Use pipelining/prefetching;
* Reduce and coalesce communications (burst).
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Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.
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Challenges and contributions

General principle for Load sets
Load a data indexed by ~m just before a tile indexed by ~T if:

~m is live-in for ~T , i.e., read but not written earlier in ~T .
~m has not been loaded in a previous tile.
~m has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus “previous”
and “earlier”. � This schedule is not affine in terms of tile sizes.

Exact case
Reads/writes are functions of iteration points. Can we express the
relation “happens before” among iterations in a quasi-affine way?
* Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile
level? Approximated? * No information loss if approximations
are “pointwise”. More approximations needed otherwise.
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Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.
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Inter-tile data reuse in a tile strip

for(i=0; i<n; i++)
for(j=0; j<n; j++)

C[i+j] = C[i+j] + A[i]*B[j];

(i , j) 7→ (n − j − 1, i)
j

i

(i , j) 7→ (i + j, i)

i

j

In a tile, Load ' first read, Store ' last write.

Can actually be adapted to any parameterized reuse domain.
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Objective: data transfers

and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets.

Local memory sizes with “double-buffering”.

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}

size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.
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Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by ~s = (s1, . . . , sn))

~i ∈ Tile(~T )⇔


s1T1 ≤ i1 < s1(T1 + 1)

...
snTn ≤ in < sn(Tn + 1)

* Schedule on iteration points: ~i ′ <~i ⇔ ( ~T ′, ~i ′) <lex (~T ,~i).

With indices of tile origins

~i ∈ Tile(~I)⇔


I1 ≤ i1 < I1 + s1

...
In ≤ in < In + sn

with ~I, origin of Tile(~T ),
i.e., ~I = (s1T1, . . . , snTn).

* Schedule on iteration points, for a tiling specified by a given tile:

~i ′ <~I
~i ⇔ ~i ′ <~I′

~i ⇔ (~I ′, ~i ′) <lex (~I,~i) and ~I ′ ~s
≡~I
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Intuitive expression of Load/Store sets

For Tile(~I) with data reuse in ReuseDomain:

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)



Store(~I) =
⋃

~i∈Tile(~I)

write(~i) \
⋃
~i ′>~i

~i ′∈ReuseDomain

write(~i ′)


where ~i ′ <~i means that i ′ is executed before i in the tiled schedule.

* Can we express ~i ′ <~i (“happens before”) in a parametric way?
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Load/Store computations with In/Out sets
Contribution of reads/writes summarized at tile level:

In(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃

~i ′∈Tile(~I), ~i ′<lex~i

write(~i ′)


Out(~I) =

⋃
~i∈Tile(~I)

write(~i)

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)



* Load(~I) = In(~I) \

 ⋃
~I′≺~s~I

In(~I ′) ∪Out(~I ′)
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Approximations: why?

Some operations may execute
if conditions that are not analyzable.

Some data may be accessed
access functions that are not fully analyzable.

Approximated In/Out sets for tiles * In, Out, Out.
due to the analysis (e.g., array regions);
by choice to represent simpler sets (e.g., hyper-rectangles);
to simplify the analysis (e.g., Fourier-Motzkin).

Approximated Load/Store sets * Store, Load.
to simplify code generation;
to perform communications by blocks;
to simplify memory allocation;
. . .
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Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′)

?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X ) =

⋃
X∈C′′ F (X ).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)
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Pointwise functions

Definition (Function stable for unions)
F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃

X∈C′ X =
⋃

X∈C′′ X ⇒
⋃

X∈C′ F (X ) =
⋃

X∈C′′ F (X ).

equivalent to

Definition (Pointwise function)
A, B two sets, C ⊆ P(A). F : C → P(B) is pointwise iff there
exists f : A → P(B) such that ∀X ∈ C, F (X ) =

⋃
x∈X f (x).

Ex: F (~I) = (In ∪Out)(~I) =
⋃

~i∈T (~I)(read ∪ write)(~i).

Point-wise approximations
Largest pointwise under-approximation: f (x) =

⋂
Y∈C, x∈Y

F (Y ).

Pointwise over-approximations schemes are possible.
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Current implementation and future work

In progress: development of an automated tool
iscc script (see demo) ⇒ complete tool based on ISL.
Implement approximation schemes: due to code and/or by
choice (complexity issues). Integrate with PIPS?
Improve memory size computation: complexity issues,
schedules (parallelism), piecewise lattice-based allocation.

To do: experiments with blocking (see also DATE’13)
FPGA? Workstation? GPU? Kalray MPPA?
Cost model for hierarchical tiling.
Other schemes of reuse (partial storage).

Pointwise functions
Useful for other approximations?
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Script iscc 1/3

# Inputs
Params := [N, s_1, s_2] -> { : s_1 >= 0 and s_2 >= 0 };
Domain := [N] -> { # Iteration domains

S_1[k] : 0 <= k < 2N-1;
S_2[i, j] : 0 <= i,j < N;

} * Params;
Read := [N] -> { # Read access functions

S_2[i, j] -> A[i];
S_2[i, j] -> B[j];
S_2[i, j] -> C[i+j]; } * Domain;

Write := [N] -> { # Write access functions
S_1[k] -> C[k];
S_2[i, j] -> C[i+j]; } * Domain;

Theta := [N] -> { # Preliminary mapping
S_1[k] -> [k, 0, 0];
S_2[i, j] -> [i+j, i, 1]; };
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Script iscc 2/3

# Tools for set manipulations
Tiling := [s_1, s_2] -> { # Two dimensional tiling

[[I_1, I_2] -> [i_1, i_2, k]] -> [i_1, i_2, k] :
I_1 <= i_1 < I_1 + s_1 and I_2 <= i_2 < I_2 + s_2 };

Coalesce := { [I_1, I_2] -> [[I_1, I_2] -> [i_1, i_2, k]] };
Strip := { [I_1, I_2] -> [I_1, I_2’] };
Prev := { # Lexicographic order

[[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1’, i_2’, k’]] :
i_1’ <= i_1 - 1 or (i_1’ <= i_1 and i_2’ <= i_2 - 1)
or (i_1’ <= i_1 and i_2’ <= i_2 and k’ <= k - 1) };

TiledPrev := [s_1, s_2] -> { # Special ‘‘lexicographic’’ order
[I_1, I_2] -> [I_1’, I_2’] : I_1’ <= I_1 - s_1 or

(I_1’ <= I_1 and I_2’ <= I_2 - s_2) } * Strip;
TiledNext := TiledPrev^-1;
TiledRead := Tiling.(Theta^-1).Read;
TiledWrite := Tiling.(Theta^-1).Write;
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Script iscc 3/3

# Set/relation computations
In := Coalesce.(TiledRead - (Prev.TiledWrite));
Out := Coalesce.TiledWrite;
Load := In - ((TiledPrev.In) + (TiledPrev.Out));
Store := Out - (TiledNext.Out);
print coalesce (Load % Params);
print coalesce (Store % Params);

21 / 25



Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Pipelined schedule

Compute(0) Store(0)

Store(−1)

Load(1) Compute(1) Store(1)

Load(2) Compute(2) Store(2)

Load(3)

Load(0)
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Sizes of arrays in local memory

Transformation for tiling Sequential memory size
jacobi-1d-imper

S0(t, i)7→(t, 2t + i , 0)
S1(t, j) 7→(t, 2t + j + 1, 1)

A[2s1 + s2]
B[2s1 + s2 − 1]

jacobi-2d-imper
S0(t, i , j) 7→(t, 2t + i , 2t + i + j, 0)
S1(t, i , j) 7→(t, 2t + i + 1, 2t + i + j + 1, 1)

A[2s1 + s2,min(2s1, s2 + 1) + s3]
B[2s1 + s2 − 1,min(2s1, s2) + s3 − 1]

seidel-2d

S0(t, i , j) 7→(t, t + i , 2t + i + j) A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + s3

]
floyd-warshall

S0(k, i , j)7→(k, i , j) path
[
max(k + 1, n − k),
max(k + 1, n − k)

]
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Sizes of arrays in local memory

Transformation for tiling Pipelined memory size
jacobi-1d-imper

S0(t, i)7→(t, 2t + i , 0)
S1(t, j) 7→(t, 2t + j + 1, 1)

A[2s1 + 2s2]
B[2s1 + 2s2 − 2]

jacobi-2d-imper
S0(t, i , j) 7→(t, 2t + i , 2t + i + j, 0)
S1(t, i , j) 7→(t, 2t + i + 1, 2t + i + j + 1, 1)

A[2s1 + s2,min(2s1, s2 + 1) + 2s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + 2s3 − 2]

seidel-2d

S0(t, i , j) 7→(t, t + i , 2t + i + j) A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + 2s3

]
floyd-warshall

S0(k, i , j)7→(k, i , j) path
[
max(k + 1, n − k),
max(k + 1, n − k, 2s2)

]
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Merci

Questions ?
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