Parametric Tiling with Inter-Tile Data Reuse

Alexandre Isoard Alain Darte

Compsys, LIP (Laboratoire de I'Informatique du Parallélisme), Lyon

> IMPACT
> 4th International Workshop on
> Polyhedral Compilation Techniques
> January 20, 2014
> Vienna, Austria

Outline

(1) Motivation and challenges

- Kernel offloading: rules of the game
- Reminders: scheduling and tiling
- Inter-tile data reuse: example
(2) Parametric analysis
- Tile index vs tile origin index
- Exact inter-tile reuse
- Approximated inter-tile reuse
(3) Current implementation and results
- Current status
- Script with ISCC
- Local memory allocation for PolyBench examples

Kernel Offloading

- Perform computations by blocks;
- Exploit data reuse;
- Use pipelining/prefetching;
- Reduce and coalesce communications (burst).

Rules and objectives

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Rules and objectives

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

- Increases temporal reuse, reduces local memory.
- Increases spatial reuse, enables burst communications.

Rules and objectives

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

- Increases temporal reuse, reduces local memory.
- Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a p-dimensional stripe, or at bounded distance.

Rules and objectives

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

- Increases temporal reuse, reduces local memory.
- Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining \& memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

- Overlaps transfer and computation (multi-buffering).
- Reduces live-ranges, and possibly local memory size.

Rules and objectives

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

- Reduces communication volume, increases local memory.
- Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

- Increases temporal reuse, reduces local memory.
- Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed

- Iteration domain reduced thanks to hierarchical tiling.
- Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining \& memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

- Overlaps transfer and computation (multi-buffering).
- Reduces live-ranges, and possibly local memory size.

Challenges and contributions

General principle for Load sets
Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T}, i.e., read but not written earlier in \vec{T}.
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Challenges and contributions

General principle for Load sets
Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T}, i.e., read but not written earlier in \vec{T}.
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". © This schedule is not affine in terms of tile sizes.

Challenges and contributions

General principle for Load sets
Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T}, i.e., read but not written earlier in \vec{T}.
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". (2) This schedule is not affine in terms of tile sizes.
Exact case
Reads/writes are functions of iteration points. Can we express the relation "happens before" among iterations in a quasi-affine way?

- Yes. Parametric tiling with exact inter-tile reuse is feasible.

Challenges and contributions

General principle for Load sets
Load a data indexed by \vec{m} just before a tile indexed by \vec{T} if:

- \vec{m} is live-in for \vec{T}, i.e., read but not written earlier in \vec{T}.
- \vec{m} has not been loaded in a previous tile.
- \vec{m} has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus "previous" and "earlier". (2) This schedule is not affine in terms of tile sizes.
Exact case
Reads/writes are functions of iteration points. Can we express the relation "happens before" among iterations in a quasi-affine way?

- Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile level? Approximated? No information loss if approximations are "pointwise". More approximations needed otherwise.

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}
i

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}
i

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}

Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
```

for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}

```
}
```


Reads, writes, schedule

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
```

for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}

```
}
```

i

Dependences

Product of two polynomials:

- arguments in A and B;
- result in C.
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}

Dependences

$\mathrm{j} A \square \quad$ Product of two polynomials：
－arguments in A and B ；
－result in C ．
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}
i

Scheduling alternatives: loop reversal+interchange

i

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // SO
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}
```


Scheduling alternatives: loop reversal+interchange+tiling

Product of two polynomials:

- arguments in A and B;
- result in C.

```
for(int k=0; k<2*n-1; k++) {
    C[k] = 0; // SO
}
for(int i=0; i<n; i++) {
    for(int j=0; j<n; j++) {
        C[i+j] += A[i]*B[j]; // S1
    }
}
```


Scheduling alternatives：loop skewing

Product of two polynomials：

－arguments in A and B ；
－result in C ．
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}
i

Scheduling alternatives：loop skewing＋tiling

Product of two polynomials：

－arguments in A and B ；
－result in C ．
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}
i

Scheduling alternatives: loop skewing+tiling

Product of two polynomials:

- arguments in A and B;
- result in C.
for(int k=0; k<2*n-1; k++) {
for(int k=0; k<2*n-1; k++) {
C[k] = 0; // SO
C[k] = 0; // SO
}
}
for(int i=0; i<n; i++) {
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {
for(int j=0; j<n; j++) {
C[i+j] += A[i]*B[j]; // S1
C[i+j] += A[i]*B[j]; // S1
}
}
}
}i
+ possibility of intra-tile parallelism.

Inter-tile data reuse in a tile strip

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \operatorname{for}(j=0 ; j<n ; j++) \\
& \qquad C[i+j]=C[i+j]+A[i] * B[j] ;
\end{aligned}
$$

$$
(i, j) \mapsto(n-j-1, i)
$$

$$
(i, j) \mapsto(i+j, i)
$$

In a tile, Load \simeq first read, Store \simeq last write.

Inter-tile data reuse in a tile strip

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \quad \operatorname{for}(j=0 ; j<n ; j++) \\
& \qquad C[i+j]=C[i+j]+A[i] * B[j] ;
\end{aligned}
$$

$$
(i, j) \mapsto(n-j-1, i)
$$

$$
(i, j) \mapsto(i+j, i)
$$

In a tile strip, Load \simeq first read, Store \simeq last write.

Inter-tile data reuse in a tile strip

```
for(i=O; i<n; i++)
    for(j=0; j<n; j++)
        C[i+j] = C[i+j] + A[i]*B[j];
```

$$
(i, j) \mapsto(n-j-1, i)
$$

$$
(i, j) \mapsto(i+j, i)
$$

In a reuse domain, Load \simeq first read, Store \simeq last write.
Can actually be adapted to any parameterized reuse domain.

Objective: data transfers

- Bound n, tiles of size $b \times b$.
- Tiling with $(i, j) \mapsto\left(i^{\prime}, j^{\prime}\right)=(n-j-1, i)$.
- Access functions $m=i+j=j^{\prime}+n-i^{\prime}-1$.
- Tile origin (I, J).
- Transfers $\operatorname{Load}_{A}, \operatorname{Load}_{B}, \operatorname{Load}_{C}$, Storec $_{C}$.

Objective: data transfers

- Bound n, tiles of size $b \times b$.
- Tiling with $(i, j) \mapsto\left(i^{\prime}, j^{\prime}\right)=(n-j-1, i)$.
- Access functions $m=i+j=j^{\prime}+n-i^{\prime}-1$.
- Tile origin (I, J).
- Transfers $\operatorname{Load}_{A}, \operatorname{Load}_{B}, \operatorname{Load}_{C}$, Storec $_{C}$.

Load sets.
$\operatorname{Load}_{A}=\{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}$

Objective: data transfers

- Bound n, tiles of size $b \times b$.
- Tiling with $(i, j) \mapsto\left(i^{\prime}, j^{\prime}\right)=(n-j-1, i)$.
- Access functions $m=i+j=j^{\prime}+n-i^{\prime}-1$.
- Tile origin (I, J).
- Transfers $\operatorname{Load}_{A}, \operatorname{Load}_{B}, \operatorname{Load}_{C}$, Store $_{C}$.

Load sets.
$\operatorname{Load}_{A}=\{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}$
$\operatorname{Load}_{B}=\{m \mid J=0,0 \leq m \leq n-1, n-I-b \leq m \leq n-I-1\}$

Objective: data transfers

- Bound n, tiles of size $b \times b$.
- Tiling with $(i, j) \mapsto\left(i^{\prime}, j^{\prime}\right)=(n-j-1, i)$.
- Access functions $m=i+j=j^{\prime}+n-i^{\prime}-1$.
- Tile origin (I, J).
- Transfers $\operatorname{Load}_{A}, \operatorname{Load}_{B}, \operatorname{Load}_{C}$, Store $_{C}$.

Load sets.

$$
\operatorname{Load}_{A}=\{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}
$$

$\operatorname{Load}_{B}=\{m \mid J=0,0 \leq m \leq n-1, n-I-b \leq m \leq n-I-1\}$
$\operatorname{Load}_{C}=\{m \mid 0 \leq m, n-I-b \leq m \leq n-1-I, J=0\}$
$\cup\{m \mid \max (1, J) \leq m+I-n+1 \leq \min (n-1, J+b-1)\}$

Objective: data transfers and local memory sizes

- Bound n, tiles of size $b \times b$.
- Tiling with $(i, j) \mapsto\left(i^{\prime}, j^{\prime}\right)=(n-j-1, i)$.
- Access functions $m=i+j=j^{\prime}+n-i^{\prime}-1$.
- Tile origin (I, J).
- Transfers $\operatorname{Load}_{A}, \operatorname{Load}_{B}, \operatorname{Load}_{C}$, Store $_{C}$.

Load sets. Local memory sizes with "double-buffering".
$\operatorname{Load}_{A}=\{m \mid 0 \leq m \leq n-1, J \leq m \leq J+b-1\}$

- size $2 b$, when $n \geq 2 b+1$: at least 2 tiles available.
- size n when $n \leq 2 b$: less than 2 tiles.
$\operatorname{Load}_{B}=\{m \mid J=0,0 \leq m \leq n-1, n-I-b \leq m \leq n-I-1\}$
- size b when $n \geq b$: 1 full tile.
- size n when $n \leq b-1$: 1 partial tile.
$\operatorname{Load}_{C}=\{m \mid 0 \leq m, n-I-b \leq m \leq n-1-I, J=0\}$
$\cup\{m \mid \max (1, J) \leq m+I-n+1 \leq \min (n-1, J+b-1)\}$
- size $3 b-1=(2 b-1)+b$ si $n \geq 2 b+1: 2$ full tiles.
- size $b+n-1=(2 b-1)+(n-b)$ si $b \leq n \leq 2 b$: 1 full tile, 1 partial tile.
- size $2 n-1$ si $n \leq b-1$: 1 partial tile.

Outline

(1) Motivation and challenges
(2) Parametric analysis

- Tile index vs tile origin index
- Exact inter-tile reuse
- Approximated inter-tile reuse

3 Current implementation and results

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by $\left.\vec{s}=\left(s_{1}, \ldots, s_{n}\right)\right)$

$$
\vec{i} \in \text { Tile }(\vec{T}) \Leftrightarrow\left\{\begin{array}{c}
s_{1} T_{1} \leq i_{1}<s_{1}\left(T_{1}+1\right) \\
\vdots \\
s_{n} T_{n} \leq i_{n}<s_{n}\left(T_{n}+1\right)
\end{array}\right.
$$

- Schedule on iteration points: $\overrightarrow{i^{\prime}}<\vec{i} \Leftrightarrow\left(\overrightarrow{T^{\prime}}, \overrightarrow{i^{\prime}}\right)<\operatorname{lex}(\vec{T}, \vec{i})$.

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by $\left.\vec{s}=\left(s_{1}, \ldots, s_{n}\right)\right)$

$$
\vec{i} \in \operatorname{Tile}(\vec{T}) \Leftrightarrow\left\{\begin{array}{c}
s_{1} T_{1} \leq i_{1}<s_{1}\left(T_{1}+1\right) \\
\vdots \\
s_{n} T_{n} \leq i_{n}<s_{n}\left(T_{n}+1\right)
\end{array}\right.
$$

- Schedule on iteration points: $\overrightarrow{i^{\prime}}<\vec{i} \Leftrightarrow\left(\overrightarrow{T^{\prime}}, \overrightarrow{i^{\prime}}\right)<\operatorname{lex}(\vec{T}, \vec{i})$.

With indices of tile origins

$$
\vec{i} \in \operatorname{Tile}(\vec{l}) \Leftrightarrow\left\{\begin{array}{cl}
I_{1} \leq i_{1}<I_{1}+s_{1} & \text { with } \vec{l} \text {, origin of Tile }(\vec{T}), \\
\vdots & \text { i.e., } \vec{l}=\left(s_{1} T_{1}, \ldots, s_{n} T_{n}\right) .
\end{array}\right.
$$

- Schedule on iteration points, for a tiling specified by a given tile:

$$
\overrightarrow{i^{\prime}}<_{\vec{l}} \vec{i} \Leftrightarrow \overrightarrow{i^{\prime}}<_{\vec{r}} \vec{i} \Leftrightarrow\left(\overrightarrow{l^{\prime}}, \overrightarrow{i^{\prime}}\right)<l_{\text {ex }}(\vec{l}, \vec{i}) \text { and } \vec{l}^{\prime} \stackrel{\vec{s}}{=} \overrightarrow{ }
$$

Intuitive expression of Load/Store sets

For Tile (\vec{l}) with data reuse in ReuseDomain:

$$
\operatorname{Load}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\operatorname{read}(\vec{i}) \backslash \bigcup_{\substack{\vec{i}<\vec{i} \\ \overrightarrow{i^{\prime}} \in \operatorname{ReuseDomain}}} \operatorname{read}\left(\vec{i}^{\prime}\right) \cup \operatorname{write}\left(\vec{i}^{\prime}\right)\right)
$$

$$
\operatorname{Store}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\begin{array}{ll}
\operatorname{write}(\vec{i}) \backslash & \bigcup_{\substack{\vec{i}>\vec{i} \\
\vec{i} \in \operatorname{ReuseDomain}}} \operatorname{write}\left(\overrightarrow{i^{\prime}}\right)
\end{array}\right)
$$

where $\overrightarrow{i^{\prime}}<\vec{i}$ means that i^{\prime} is executed before i in the tiled schedule.

Intuitive expression of Load/Store sets

For Tile (\vec{l}) with data reuse in ReuseDomain:

$$
\operatorname{Load}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\begin{array}{cc}
\operatorname{read}(\vec{i}) \backslash & \bigcup_{\substack{\vec{i}<\vec{i} \\
\overrightarrow{i^{\prime}} \in \operatorname{ReuseDomain}}} \operatorname{read}\left(\overrightarrow{i^{\prime}}\right) \cup \operatorname{write}\left(\vec{i}^{\prime}\right)
\end{array}\right)
$$

$$
\operatorname{Store}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\begin{array}{cc}
\operatorname{write}(\vec{i}) \backslash & \bigcup_{\substack{\vec{i}>\vec{i} \\
\vec{i} \in \operatorname{ReuseDomain}}} \operatorname{write}\left(\overrightarrow{i^{\prime}}\right)
\end{array}\right)
$$

where $\overrightarrow{i^{\prime}}<\vec{i}$ means that i^{\prime} is executed before i in the tiled schedule.

- Can we express $\overrightarrow{i^{\prime}}<\vec{i}$ ("happens before") in a parametric way?

Tiling, relation "happens before" and unaligned tiles

Tiling, relation "happens before" and unaligned tiles

Tiling, relation "happens before" and unaligned tiles

Load/Store computations with In/Out sets

Contribution of reads/writes summarized at tile level:

$$
\left\{\begin{array}{l}
\operatorname{In}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\operatorname{read}(\vec{i}) \backslash \bigcup_{\overrightarrow{i^{\prime}} \in \operatorname{Tile}(\vec{l}), \vec{i}^{\prime}<\operatorname{lex} \vec{i}} \operatorname{write}\left(\overrightarrow{i^{\prime}}\right)\right) \\
\operatorname{Out}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})} \operatorname{write}(\vec{i})
\end{array}\right.
$$

Load/Store computations with In/Out sets

Contribution of reads/writes summarized at tile level:

$$
\begin{aligned}
& \left\{\operatorname{In}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\operatorname{read}(\vec{i}) \backslash \bigcup_{\vec{i} \in \operatorname{Tile}\left(\vec{l}, \vec{i}^{\prime}<\operatorname{lex}\right.} \bigcup_{\vec{i}} \operatorname{write}\left(\vec{i}^{\prime}\right)\right)\right. \\
& \operatorname{Out}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})} \operatorname{write(}(\vec{i}) \\
& \operatorname{Load}(\vec{l})=\bigcup_{\vec{i} \in \operatorname{Tile}(\vec{l})}\left(\operatorname{read}(\vec{i}) \backslash \bigcup_{\substack{\vec{i}<\vec{i} \\
\vec{i} \in \operatorname{ReuseDomain}}} \operatorname{read}\left(\overrightarrow{i^{\prime}}\right) \cup \operatorname{write}\left(\overrightarrow{i^{\prime}}\right)\right) \\
& \text { - } \operatorname{Load}(\vec{l})=\operatorname{In}(\vec{l}) \backslash\left(\bigcup_{\vec{l}\langle\vec{s}} \operatorname{In}(\vec{l}) \cup \operatorname{Out}(\vec{l})\right)
\end{aligned}
$$

Approximations: why?

Some operations may execute

- if conditions that are not analyzable.

Some data may be accessed

- access functions that are not fully analyzable.

Approximated In/Out sets for tiles $\overline{\mathrm{In}}, \overline{\mathrm{Out}}$, Out.

- due to the analysis (e.g., array regions);
- by choice to represent simpler sets (e.g., hyper-rectangles);
- to simplify the analysis (e.g., Fourier-Motzkin).

Approximated Load/Store sets $\overline{\text { Store }}, \overline{\text { Load }}$.

- to simplify code generation;
- to perform communications by blocks;
- to simplify memory allocation;
- ...

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}}_{\vec{l}} \cap\left(\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)\left(\vec{l}^{\prime} \sqsubset_{\vec{s}} \vec{l}\right)\right)
$$

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}_{\vec{l}}} \cap\left(\left(\overline{\operatorname{In}}{ }^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\overline{\operatorname{In}}^{\prime}} \cup \overline{\mathrm{Out}}\right)\left(\vec{l}^{\prime} ᄃ_{\vec{s}} \vec{l}\right)\right)
$$

Simplified "exact" load formula, with aligned tiles

$$
\operatorname{Load}(\vec{l})=(\overline{\overline{\operatorname{In}}} \cup \overline{\mathrm{Out}})(\vec{l}) \backslash(\overline{\mathrm{In}} \cup \overline{\mathrm{Out}})\left(\overrightarrow{l^{\prime}} \sqsubset_{\vec{s}} \vec{l}\right)
$$

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}} \vec{l}^{\cap} \cap\left(\left(\overline{\operatorname{In}}{ }^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\overline{\operatorname{In}}^{\prime}} \cup \overline{\mathrm{Out}}\right)\left(\overrightarrow{l^{\prime}} ᄃ_{\vec{s}} \vec{l}\right)\right)
$$

Simplified "exact" load formula, with aligned tiles

$$
\operatorname{Load}(\vec{l})=(\overline{\mathrm{In}} \cup \overline{\mathrm{Out}})(\vec{l}) \backslash \bigcup_{\overrightarrow{l^{\prime} \subset \bar{s} l}}(\overline{\overline{I n}} \cup \overline{\mathrm{Out}})\left(\overrightarrow{l^{\prime}}\right)
$$

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}_{\vec{l}}} \cap\left(\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)\left(\vec{l}^{\prime} ᄃ_{\vec{s}} \vec{l}\right)\right)
$$

Simplified "exact" load formula, with aligned tiles

$$
\operatorname{Load}(\vec{l})=F(\vec{l}) \backslash \bigcup_{\overrightarrow{l^{\prime} \sqsubset \vec{s}} \vec{l}} F\left(\vec{l}^{\prime}\right)
$$

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}} \vec{l}^{\cap} \cap\left(\left(\overline{\operatorname{In}}{ }^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\overline{\operatorname{In}}^{\prime}} \cup \overline{\mathrm{Out}}\right)\left(\overrightarrow{l^{\prime}} ᄃ_{\vec{s}} \vec{l}\right)\right)
$$

Simplified "exact" load formula, with aligned tiles or all tiles?

$$
\operatorname{Load}(\vec{l})=F(\vec{l}) \backslash \bigcup_{\vec{\prime} \sqsubset \sqsubset_{\vec{s}} \vec{l}} F\left(\overrightarrow{l^{\prime}}\right) \stackrel{?}{=} F(\vec{l}) \backslash \bigcup_{\overrightarrow{l^{\prime}} \prec_{\vec{s}} \vec{l}} F\left(\overrightarrow{l^{\prime}}\right)
$$

Equality of unions

"Exact approximated" load formula

$$
\operatorname{Load}(\vec{l})=\overline{\operatorname{Ra}_{\vec{l}}} \cap\left(\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)(\vec{l}) \backslash\left(\overline{\operatorname{In}}^{\prime} \cup \overline{\mathrm{Out}}\right)\left({\overrightarrow{I^{\prime}}}^{\sqsubset_{s}} \vec{l}\right)\right)
$$

Simplified "exact" load formula, with aligned tiles or all tiles?

$$
\operatorname{Load}(\vec{l})=F(\vec{l}) \backslash \bigcup_{\vec{\prime} ᄃ_{\bar{s}} \vec{l}} F\left(\overrightarrow{l^{\prime}}\right) \stackrel{?}{=} F(\vec{l}) \backslash \bigcup_{\overrightarrow{l^{\prime}} \prec_{\vec{s}} \vec{l}} F\left(\vec{l}^{\prime}\right)
$$

Definition (Function stable for unions)

$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \rightarrow \mathcal{P}(\mathcal{B})$ is stable for unions iff $\forall \mathcal{C}^{\prime}, \mathcal{C}^{\prime \prime} \subseteq \mathcal{C}$, $\cup_{X \in \mathcal{C}^{\prime}} X=\bigcup_{X \in \mathcal{C}^{\prime \prime}} X \Rightarrow \bigcup_{X \in \mathcal{C}^{\prime}} F(X)=\bigcup_{X \in \mathcal{C}^{\prime \prime}} F(X)$.

Pointwise functions

Definition (Function stable for unions)

$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \rightarrow \mathcal{P}(\mathcal{B})$ is stable for unions iff $\forall \mathcal{C}^{\prime}, \mathcal{C}^{\prime \prime} \subseteq \mathcal{C}$,
$\cup_{X \in \mathcal{C}^{\prime}} X=\bigcup_{X \in \mathcal{C}^{\prime \prime}} X \Rightarrow \bigcup_{X \in \mathcal{C}^{\prime}} F(X)=\bigcup_{X \in \mathcal{C}^{\prime \prime}} F(X)$.

equivalent to

Definition (Pointwise function)

\mathcal{A}, \mathcal{B} two sets, $\mathcal{C} \subseteq \mathcal{P}(\mathcal{A})$. $F: \mathcal{C} \rightarrow \mathcal{P}(\mathcal{B})$ is pointwise iff there exists $f: \mathcal{A} \rightarrow \mathcal{P}(\mathcal{B})$ such that $\forall X \in \mathcal{C}, F(X)=\bigcup_{x \in X} f(x)$.

Ex: $F(\vec{l})=(\overline{\operatorname{In}} \cup \overline{\text { Out }})(\vec{l})=\bigcup_{\vec{i} \in T(\vec{l})}(\overline{\text { read }} \cup \overline{\text { write }})(\vec{i})$.

Pointwise functions

Definition (Function stable for unions)

$F: \mathcal{C} \subseteq \mathcal{P}(\mathcal{A}) \rightarrow \mathcal{P}(\mathcal{B})$ is stable for unions iff $\forall \mathcal{C}^{\prime}, \mathcal{C}^{\prime \prime} \subseteq \mathcal{C}$,
$\bigcup_{X \in \mathcal{C}^{\prime}} X=\bigcup_{X \in \mathcal{C}^{\prime \prime}} X \Rightarrow \bigcup_{X \in \mathcal{C}^{\prime}} F(X)=\bigcup_{X \in \mathcal{C}^{\prime \prime}} F(X)$.

equivalent to

Definition (Pointwise function)

\mathcal{A}, \mathcal{B} two sets, $\mathcal{C} \subseteq \mathcal{P}(\mathcal{A})$. $F: \mathcal{C} \rightarrow \mathcal{P}(\mathcal{B})$ is pointwise iff there exists $f: \mathcal{A} \rightarrow \mathcal{P}(\mathcal{B})$ such that $\forall X \in \mathcal{C}, F(X)=\bigcup_{x \in X} f(x)$.

Ex: $F(\vec{l})=(\overline{\operatorname{In}} \cup \overline{\text { Out }})(\vec{l})=\bigcup_{\vec{i} \in T(\vec{l})}(\overline{\text { read }} \cup \overline{\text { write }})(\vec{i})$.
Point-wise approximations

- Largest pointwise under-approximation: $\underline{f}(x)=\bigcap F(Y)$. $Y \in \mathcal{C}, x \in Y$
- Pointwise over-approximations schemes are possible.

Outline

(1) Motivation and challenges
(2) Parametric analysis
(3) Current implementation and results

- Current status
- Script with ISCC
- Local memory allocation for PolyBench examples

Current implementation and future work

In progress: development of an automated tool

- ISCC script (see demo) \Rightarrow complete tool based on ISL.
- Implement approximation schemes: due to code and/or by choice (complexity issues). Integrate with PIPS?
- Improve memory size computation: complexity issues, schedules (parallelism), piecewise lattice-based allocation.
To do: experiments with blocking
- FPGA? Workstation? GPU? Kalray MPPA?
- Cost model for hierarchical tiling.
- Other schemes of reuse (partial storage).

Pointwise functions

- Useful for other approximations?

Script ISCC 1/3

```
# Inputs
Params := [N, s_1, s_2] -> { : s_1 >= 0 and s_2 >= 0 };
Domain := [N] -> { # Iteration domains
    S_1[k] : 0 <= k < 2N-1;
    S_2[i, j] : 0 <= i,j < N;
} * Params;
Read := [N] -> { # Read access functions
    S_2[i, j] -> A[i];
    S_2[i, j] -> B[j];
    S_2[i, j] -> C[i+j]; } * Domain;
Write := [N] -> { # Write access functions
    S_1[k] -> C[k];
    S_2[i, j] -> C[i+j]; } * Domain;
Theta := [N] -> { # Preliminary mapping
    S_1[k] -> [k, 0, O];
    S_2[i, j] -> [i+j, i, 1]; };
```


Script ISCC 2/3

\# Tools for set manipulations
Tiling := [s_1, s_2] -> \{ \# Two dimensional tiling

$$
\left.\left[\left[I _1, I_{-} 2\right] ~->~\left[i _1, ~ i _2, k\right]\right] ~ \rightarrow i_{-} 1, ~ i _2, k\right]:
$$

$$
\left.I_{-} 1<=i_{-} 1<I_{-} 1+s_{-} 1 \text { and } I_{-} 2<=i_{-} 2<I_{-} 2+s_{-} 2\right\} ;
$$

Coalesce := \{ [I_1, I_2] -> [[I_1, I_2] -> [i_1, i_2, k]] \};
Strip := \{ [I_1, I_2] -> [I_1, I_2'] \};
Prev := \{ \# Lexicographic order

TiledPrev := [s_1, s_2] -> \{ \# Special ''lexicographic') order
[I_1, I_2] -> [I_1', I_2'] : I_1' <= I_1 - s_1 or

$$
\left.\left(I_{-} 1^{\prime}<=I_{-} 1 \text { and } I_{-} 2 \prime<=I_{-} 2-s_{-} 2\right)\right\} * \text { Strip; }
$$

TiledNext := TiledPrev^-1;
TiledRead := Tiling.(Theta^-1).Read;
TiledWrite := Tiling. (Theta^-1). Write;

$$
\begin{aligned}
& \text { [[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1', i_2', k']] : } \\
& i_{-}^{\prime}{ }^{\prime}<=i_{-} 1-1 \text { or (i_1' <= i_1 and i_2' }<=i_{-} 2-1 \text {) } \\
& \text { or (i_1' <= i_1 and i_2' <= i_2 and k' <= k - 1) \}; }
\end{aligned}
$$

Script ISCC 3/3

\# Set/relation computations
In := Coalesce.(TiledRead - (Prev.TiledWrite));
Out := Coalesce.TiledWrite;
Load := In - ((TiledPrev.In) + (TiledPrev.Out));
Store := Out - (TiledNext.Out);
print coalesce (Load \% Params);
print coalesce (Store \% Params);

Pipelined schedule

Sizes of arrays in local memory

Transformation for tiling

Sequential memory size

jacobi-1d-imper

$$
\begin{array}{l|l}
\hline S_{0}(t, i) \mapsto(t, 2 t+i, 0) & \mathrm{A}\left[2 s_{1}+s_{2}\right] \\
S_{1}(t, j) \mapsto(\underline{t, 2 t+j+1,1)} & \mathrm{B}\left[2 s_{1}+s_{2}-1\right] \\
\hline
\end{array}
$$

jacobi-2d-imper

$$
\begin{array}{l|l}
\hline S_{0}(t, i, j) \mapsto(t, 2 t+i, 2 t+i+j, 0) & \mathrm{A}\left[2 s_{1}+s_{2}, \min \left(2 s_{1}, s_{2}+1\right)+s_{3}\right] \\
S_{1}(t, i, j) \mapsto(t, 2 t+i+1,2 t+i+j+1,1) & \mathrm{B}\left[2 s_{1}+s_{2}-1, \min \left(2 s_{1}, s_{2}\right)+s_{3}-1\right] \\
\hline \hline
\end{array}
$$

seidel-2d

$$
\begin{array}{l|l}
\hline S_{0}(t, i, j) \mapsto(\underline{t, t+i, 2 t+i+j)} & \mathrm{A}\left[\begin{array}{l}
s_{1}+s_{2}+1, \\
\min \left(2 s_{1}+2, s_{1}+s_{2}, 2 s_{2}+2\right)+s_{3}
\end{array}\right]
\end{array}
$$

floyd-warshall

$$
\begin{array}{l|l}
\hline S_{0}(k, i, j) \mapsto(k, \underline{i, j}) & \operatorname{path}\left[\begin{array}{l}
\max (k+1, n-k), \\
\max (k+1, n-k)
\end{array}\right] \\
\hline
\end{array}
$$

Sizes of arrays in local memory

Transformation for tiling

Pipelined memory size

jacobi-1d-imper

$$
\begin{array}{l|l}
S_{0}(t, i) \mapsto(t, 2 t+i, 0) & \mathrm{A}\left[2 s_{1}+2 s_{2}\right] \\
S_{1}(t, j) \mapsto(\overline{t, 2 t+j}+1,1) & \mathrm{B}\left[2 s_{1}+2 s_{2}-2\right] \\
\hline
\end{array}
$$

jacobi-2d-imper

$$
\begin{array}{l|l}
S_{0}(t, i, j) \mapsto(t, 2 t+i, 2 t+i+j, 0) & \mathrm{A}\left[2 s_{1}+s_{2}, \min \left(2 s_{1}, s_{2}+1\right)+2 s_{3}\right] \\
S_{1}(t, i, j) \mapsto(t, 2 t+i+1,2 t+i+j+1,1) & \mathrm{B}\left[2 s_{1}+s_{2}-1, \min \left(2 s_{1}, s_{2}+1\right)+2 s_{3}-2\right] \\
\hline \hline
\end{array}
$$

seidel-2d

$$
S_{0}(t, i, j) \mapsto(\underline{t, t+i, 2 t+i+j})
$$

$$
\mathrm{A}\left[\begin{array}{l}
s_{1}+s_{2}+1, \\
\min \left(2 s_{1}+2, s_{1}+s_{2}, 2 s_{2}+2\right)+2 s_{3}
\end{array}\right]
$$

floyd-warshall

$$
S_{0}(k, i, j) \mapsto(k, \underline{i, j})
$$

$$
\operatorname{path}\left[\begin{array}{l}
\max (k+1, n-k), \\
\max \left(k+1, n-k, 2 s_{2}\right)
\end{array}\right]
$$

Merci

Questions?

