
Motivation and challenges
Parametric analysis

Current implementation and results

Parametric Tiling with Inter-Tile Data Reuse

Alexandre Isoard Alain Darte

Compsys, LIP (Laboratoire de l’Informatique du Parallélisme), Lyon

IMPACT
4th International Workshop on

Polyhedral Compilation Techniques
January 20, 2014
Vienna, Austria

1 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Outline

1 Motivation and challenges
Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

2 Parametric analysis
Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

3 Current implementation and results
Current status
Script with iscc
Local memory allocation for PolyBench examples

2 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Kernel Offloading

Host

CPU

Global Memory

Accelerator

FPGA/GPU/MPPA/...

Local Memoryslow

fast

* Perform computations by blocks;
* Exploit data reuse;
* Use pipelining/prefetching;
* Reduce and coalesce communications (burst).

3 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.

4 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.

4 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.

4 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Rules and objectives

Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.

4 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Rules and objectives Parametric in terms of tile sizes?

Data reuse: on the full iteration domain
Rule 1: always use local data if already loaded or computed.

* Reduces communication volume, increases local memory.
* Enables full pipelining (load/compute/store sequence).

Blocking: thanks to tiling
Rule 2: tiles executed in sequence (but a tile can be parallelized).

* Increases temporal reuse, reduces local memory.
* Increases spatial reuse, enables burst communications.

Variants for reuse domain, i.e., where data reuse is performed
Iteration domain reduced thanks to hierarchical tiling.
Data reuse in a p-dimensional stripe, or at bounded distance.

Then: scheduling/pipelining & memory allocation
Rule 3: reuse analysis independently on scheduling.
Rule 4: load as late as possible, store as soon as possible.

* Overlaps transfer and computation (multi-buffering).
* Reduces live-ranges, and possibly local memory size.

4 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets
Load a data indexed by ~m just before a tile indexed by ~T if:

~m is live-in for ~T , i.e., read but not written earlier in ~T .
~m has not been loaded in a previous tile.
~m has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus “previous”
and “earlier”. � This schedule is not affine in terms of tile sizes.

Exact case
Reads/writes are functions of iteration points. Can we express the
relation “happens before” among iterations in a quasi-affine way?
* Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile
level? Approximated? * No information loss if approximations
are “pointwise”. More approximations needed otherwise.

5 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets
Load a data indexed by ~m just before a tile indexed by ~T if:

~m is live-in for ~T , i.e., read but not written earlier in ~T .
~m has not been loaded in a previous tile.
~m has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus “previous”
and “earlier”. � This schedule is not affine in terms of tile sizes.

Exact case
Reads/writes are functions of iteration points. Can we express the
relation “happens before” among iterations in a quasi-affine way?
* Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile
level? Approximated? * No information loss if approximations
are “pointwise”. More approximations needed otherwise.

5 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets
Load a data indexed by ~m just before a tile indexed by ~T if:

~m is live-in for ~T , i.e., read but not written earlier in ~T .
~m has not been loaded in a previous tile.
~m has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus “previous”
and “earlier”. � This schedule is not affine in terms of tile sizes.

Exact case
Reads/writes are functions of iteration points. Can we express the
relation “happens before” among iterations in a quasi-affine way?
* Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile
level? Approximated? * No information loss if approximations
are “pointwise”. More approximations needed otherwise.

5 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Challenges and contributions

General principle for Load sets
Load a data indexed by ~m just before a tile indexed by ~T if:

~m is live-in for ~T , i.e., read but not written earlier in ~T .
~m has not been loaded in a previous tile.
~m has not been defined earlier.

Tiling defines a schedule on tile+iteration indices, thus “previous”
and “earlier”. � This schedule is not affine in terms of tile sizes.

Exact case
Reads/writes are functions of iteration points. Can we express the
relation “happens before” among iterations in a quasi-affine way?
* Yes. Parametric tiling with exact inter-tile reuse is feasible.

Approximations
What if contributions of reads/writes are summarized at tile
level? Approximated? * No information loss if approximations
are “pointwise”. More approximations needed otherwise.

5 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Reads, writes, schedule

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Dependences

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Dependences

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Scheduling alternatives: loop reversal+interchange

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Scheduling alternatives: loop reversal+interchange+tiling

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Scheduling alternatives: loop skewing

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Scheduling alternatives: loop skewing+tiling

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.

6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Scheduling alternatives: loop skewing+tiling

j

i

A

B
C

Product of two polynomials:
arguments in A and B;
result in C .

for(int k=0; k <2*n -1; k++) {
C[k] = 0; // S0

}

for(int i=0; i<n; i++) {
for(int j=0; j<n; j++) {

C[i+j] += A[i]*B[j]; // S1
}

}

+ possibility of intra-tile parallelism.
6 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

for(i=0; i<n; i++)
for(j=0; j<n; j++)

C[i+j] = C[i+j] + A[i]*B[j];

(i , j) 7→ (n − j − 1, i)
j

i

(i , j) 7→ (i + j, i)

i

j

In a tile, Load ' first read, Store ' last write.

Can actually be adapted to any parameterized reuse domain.

7 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

for(i=0; i<n; i++)
for(j=0; j<n; j++)

C[i+j] = C[i+j] + A[i]*B[j];

(i , j) 7→ (n − j − 1, i)
j

i

(i , j) 7→ (i + j, i)

i

j

In a tile strip, Load ' first read, Store ' last write.

Can actually be adapted to any parameterized reuse domain.

7 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Inter-tile data reuse in a tile strip

for(i=0; i<n; i++)
for(j=0; j<n; j++)

C[i+j] = C[i+j] + A[i]*B[j];

(i , j) 7→ (n − j − 1, i)
j

i

(i , j) 7→ (i + j, i)

i

j

In a reuse domain, Load ' first read, Store ' last write.
Can actually be adapted to any parameterized reuse domain.

7 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Objective: data transfers

and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets.

Local memory sizes with “double-buffering”.

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}

size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.

8 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Objective: data transfers

and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets.

Local memory sizes with “double-buffering”.

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}

size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.

8 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Objective: data transfers

and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets.

Local memory sizes with “double-buffering”.

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}

size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.

8 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Objective: data transfers

and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets.

Local memory sizes with “double-buffering”.

LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}

size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.

8 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Kernel offloading: rules of the game
Reminders: scheduling and tiling
Inter-tile data reuse: example

Objective: data transfers and local memory sizes

J

I

j

i

Bound n, tiles of size b × b.
Tiling with (i , j) 7→ (i ′, j ′) = (n − j − 1, i).
Access functions m = i + j = j ′ + n − i ′ − 1.
Tile origin (I, J).
Transfers LoadA, LoadB , LoadC , StoreC .

Load sets. Local memory sizes with “double-buffering”.
LoadA = {m | 0 ≤ m ≤ n − 1, J ≤ m ≤ J + b − 1}

size 2b, when n ≥ 2b + 1: at least 2 tiles available.
size n when n ≤ 2b: less than 2 tiles.

LoadB = {m | J = 0, 0 ≤ m ≤ n − 1, n − I − b ≤ m ≤ n − I − 1}
size b when n ≥ b: 1 full tile.
size n when n ≤ b − 1: 1 partial tile.

LoadC = {m | 0 ≤ m, n − I − b ≤ m ≤ n − 1− I, J = 0}
∪ {m | max(1, J) ≤ m + I − n + 1 ≤ min(n − 1, J + b − 1)}

size 3b − 1 = (2b − 1) + b si n ≥ 2b + 1: 2 full tiles.
size b + n − 1 = (2b − 1) + (n − b) si b ≤ n ≤ 2b: 1 full tile, 1 partial tile.
size 2n − 1 si n ≤ b − 1: 1 partial tile.

8 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Outline

1 Motivation and challenges

2 Parametric analysis
Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

3 Current implementation and results

9 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by ~s = (s1, . . . , sn))

~i ∈ Tile(~T)⇔

s1T1 ≤ i1 < s1(T1 + 1)

...
snTn ≤ in < sn(Tn + 1)

* Schedule on iteration points: ~i ′ <~i ⇔ (~T ′, ~i ′) <lex (~T ,~i).

With indices of tile origins

~i ∈ Tile(~I)⇔

I1 ≤ i1 < I1 + s1

...
In ≤ in < In + sn

with ~I, origin of Tile(~T),
i.e., ~I = (s1T1, . . . , snTn).

* Schedule on iteration points, for a tiling specified by a given tile:

~i ′ <~I
~i ⇔ ~i ′ <~I′

~i ⇔ (~I ′, ~i ′) <lex (~I,~i) and ~I ′ ~s
≡~I

10 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, tiles, and schedules

With indices of tiles (tile sizes defined by ~s = (s1, . . . , sn))

~i ∈ Tile(~T)⇔

s1T1 ≤ i1 < s1(T1 + 1)

...
snTn ≤ in < sn(Tn + 1)

* Schedule on iteration points: ~i ′ <~i ⇔ (~T ′, ~i ′) <lex (~T ,~i).

With indices of tile origins

~i ∈ Tile(~I)⇔

I1 ≤ i1 < I1 + s1

...
In ≤ in < In + sn

with ~I, origin of Tile(~T),
i.e., ~I = (s1T1, . . . , snTn).

* Schedule on iteration points, for a tiling specified by a given tile:

~i ′ <~I
~i ⇔ ~i ′ <~I′

~i ⇔ (~I ′, ~i ′) <lex (~I,~i) and ~I ′ ~s
≡~I

10 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Intuitive expression of Load/Store sets

For Tile(~I) with data reuse in ReuseDomain:

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)

Store(~I) =
⋃

~i∈Tile(~I)

write(~i) \
⋃
~i ′>~i

~i ′∈ReuseDomain

write(~i ′)

where ~i ′ <~i means that i ′ is executed before i in the tiled schedule.

* Can we express ~i ′ <~i (“happens before”) in a parametric way?

11 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Intuitive expression of Load/Store sets

For Tile(~I) with data reuse in ReuseDomain:

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)

Store(~I) =
⋃

~i∈Tile(~I)

write(~i) \
⋃
~i ′>~i

~i ′∈ReuseDomain

write(~i ′)

where ~i ′ <~i means that i ′ is executed before i in the tiled schedule.
* Can we express ~i ′ <~i (“happens before”) in a parametric way?

11 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~i iff
~i ∈ Tile(~T) and ~i ′ ∈ Tile(~T ′)

(~T ′, ~i ′) <lex (~T ,~i)

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

(~I ′, ~i ′) <lex (~I,~i) and ~I ′ ~s
≡~I

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

~I ′ =~I ∧ ~i ′ <lex ~i
or

~I ′ <lex ~I ∧ ~I ′ ~s
≡~I ⇔~I @~s ~I ′

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

~I ′ =~I ∧ ~i ′ <lex ~i
or

~I ′ <lex ~I ∧ ~I ′ ~s
≡~I ⇔~I @~s ~I ′

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

~I ′ =~I ∧ ~i ′ <lex ~i
or

(i ′
1 < I1)∨ (i ′

1 < I1 + s1 ∧ i ′
2 < I2)

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

~I ′ =~I ∧ ~i ′ <lex ~i
or

(I ′
1 ≤ I1−s1)∨(I ′

1 ≤ I1∧I ′
2 ≤ I2−s2)

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Tiling, relation “happens before” and unaligned tiles

A

B
C

~i ′ <~I
~i iff
~i ∈ Tile(~I) and ~i ′ ∈ Tile(~I ′)

~I ′ =~I ∧ ~i ′ <lex ~i
or

~I ′ ≺~s ~I: partial order on tiles
(aligned and unaligned tiles)

12 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Load/Store computations with In/Out sets
Contribution of reads/writes summarized at tile level:

In(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃

~i ′∈Tile(~I), ~i ′<lex~i

write(~i ′)

Out(~I) =

⋃
~i∈Tile(~I)

write(~i)

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)

* Load(~I) = In(~I) \

 ⋃
~I′≺~s~I

In(~I ′) ∪Out(~I ′)

13 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Load/Store computations with In/Out sets
Contribution of reads/writes summarized at tile level:

In(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃

~i ′∈Tile(~I), ~i ′<lex~i

write(~i ′)

Out(~I) =

⋃
~i∈Tile(~I)

write(~i)

Load(~I) =
⋃

~i∈Tile(~I)

read(~i) \
⋃
~i ′<~i

~i ′∈ReuseDomain

read(~i ′) ∪ write(~i ′)

* Load(~I) = In(~I) \

 ⋃
~I′≺~s~I

In(~I ′) ∪Out(~I ′)

13 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Approximations: why?

Some operations may execute
if conditions that are not analyzable.

Some data may be accessed
access functions that are not fully analyzable.

Approximated In/Out sets for tiles * In, Out, Out.
due to the analysis (e.g., array regions);
by choice to represent simpler sets (e.g., hyper-rectangles);
to simplify the analysis (e.g., Fourier-Motzkin).

Approximated Load/Store sets * Store, Load.
to simplify code generation;
to perform communications by blocks;
to simplify memory allocation;
. . .

14 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′)

?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles

Load(~I) = (In ∪Out)(~I) \ (In ∪Out)(~I ′ @~s ~I)

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′)

?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles

Load(~I) = (In ∪Out)(~I) \
⋃

~I′@~s~I

(In ∪Out)(~I ′)

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′)

?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′)

?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles or all tiles?

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′) ?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Equality of unions

“Exact approximated” load formula

Load(~I) = Ra~I ∩ ((In′ ∪Out)(~I) \ (In′ ∪Out)(~I ′ @~s ~I))

Simplified “exact” load formula, with aligned tiles or all tiles?

Load(~I) = F (~I) \
⋃

~I′@~s~I

F (~I ′) ?
= F (~I) \

⋃
~I′≺~s~I

F (~I ′)

Definition (Function stable for unions)

F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃
X∈C′ X =

⋃
X∈C′′ X ⇒

⋃
X∈C′ F (X) =

⋃
X∈C′′ F (X).⋃

~I′@~s~I
Tile(~I ′) = ⋃

~I′≺~s~I
Tile(~I ′) ?⇒

⋃
~I′@~s~I

F (~I ′) =
⋃

~I′≺~s~I
F (~I ′)

15 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Pointwise functions

Definition (Function stable for unions)
F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃

X∈C′ X =
⋃

X∈C′′ X ⇒
⋃

X∈C′ F (X) =
⋃

X∈C′′ F (X).

equivalent to

Definition (Pointwise function)
A, B two sets, C ⊆ P(A). F : C → P(B) is pointwise iff there
exists f : A → P(B) such that ∀X ∈ C, F (X) =

⋃
x∈X f (x).

Ex: F (~I) = (In ∪Out)(~I) =
⋃

~i∈T (~I)(read ∪ write)(~i).

Point-wise approximations
Largest pointwise under-approximation: f (x) =

⋂
Y∈C, x∈Y

F (Y).

Pointwise over-approximations schemes are possible.

16 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Tile index vs tile origin index
Exact inter-tile reuse
Approximated inter-tile reuse

Pointwise functions

Definition (Function stable for unions)
F : C ⊆ P(A)→ P(B) is stable for unions iff ∀C′, C′′ ⊆ C,⋃

X∈C′ X =
⋃

X∈C′′ X ⇒
⋃

X∈C′ F (X) =
⋃

X∈C′′ F (X).

equivalent to

Definition (Pointwise function)
A, B two sets, C ⊆ P(A). F : C → P(B) is pointwise iff there
exists f : A → P(B) such that ∀X ∈ C, F (X) =

⋃
x∈X f (x).

Ex: F (~I) = (In ∪Out)(~I) =
⋃

~i∈T (~I)(read ∪ write)(~i).
Point-wise approximations

Largest pointwise under-approximation: f (x) =
⋂

Y∈C, x∈Y
F (Y).

Pointwise over-approximations schemes are possible.
16 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Outline

1 Motivation and challenges

2 Parametric analysis

3 Current implementation and results
Current status
Script with iscc
Local memory allocation for PolyBench examples

17 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Current implementation and future work

In progress: development of an automated tool
iscc script (see demo) ⇒ complete tool based on ISL.
Implement approximation schemes: due to code and/or by
choice (complexity issues). Integrate with PIPS?
Improve memory size computation: complexity issues,
schedules (parallelism), piecewise lattice-based allocation.

To do: experiments with blocking (see also DATE’13)
FPGA? Workstation? GPU? Kalray MPPA?
Cost model for hierarchical tiling.
Other schemes of reuse (partial storage).

Pointwise functions
Useful for other approximations?

18 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Script iscc 1/3

Inputs
Params := [N, s_1, s_2] -> { : s_1 >= 0 and s_2 >= 0 };
Domain := [N] -> { # Iteration domains

S_1[k] : 0 <= k < 2N-1;
S_2[i, j] : 0 <= i,j < N;

} * Params;
Read := [N] -> { # Read access functions

S_2[i, j] -> A[i];
S_2[i, j] -> B[j];
S_2[i, j] -> C[i+j]; } * Domain;

Write := [N] -> { # Write access functions
S_1[k] -> C[k];
S_2[i, j] -> C[i+j]; } * Domain;

Theta := [N] -> { # Preliminary mapping
S_1[k] -> [k, 0, 0];
S_2[i, j] -> [i+j, i, 1]; };

19 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Script iscc 2/3

Tools for set manipulations
Tiling := [s_1, s_2] -> { # Two dimensional tiling

[[I_1, I_2] -> [i_1, i_2, k]] -> [i_1, i_2, k] :
I_1 <= i_1 < I_1 + s_1 and I_2 <= i_2 < I_2 + s_2 };

Coalesce := { [I_1, I_2] -> [[I_1, I_2] -> [i_1, i_2, k]] };
Strip := { [I_1, I_2] -> [I_1, I_2’] };
Prev := { # Lexicographic order

[[I_1, I_2] -> [i_1, i_2, k]] -> [[I_1, I_2] -> [i_1’, i_2’, k’]] :
i_1’ <= i_1 - 1 or (i_1’ <= i_1 and i_2’ <= i_2 - 1)
or (i_1’ <= i_1 and i_2’ <= i_2 and k’ <= k - 1) };

TiledPrev := [s_1, s_2] -> { # Special ‘‘lexicographic’’ order
[I_1, I_2] -> [I_1’, I_2’] : I_1’ <= I_1 - s_1 or

(I_1’ <= I_1 and I_2’ <= I_2 - s_2) } * Strip;
TiledNext := TiledPrev^-1;
TiledRead := Tiling.(Theta^-1).Read;
TiledWrite := Tiling.(Theta^-1).Write;

20 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Script iscc 3/3

Set/relation computations
In := Coalesce.(TiledRead - (Prev.TiledWrite));
Out := Coalesce.TiledWrite;
Load := In - ((TiledPrev.In) + (TiledPrev.Out));
Store := Out - (TiledNext.Out);
print coalesce (Load % Params);
print coalesce (Store % Params);

21 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Pipelined schedule

Compute(0) Store(0)

Store(−1)

Load(1) Compute(1) Store(1)

Load(2) Compute(2) Store(2)

Load(3)

Load(0)

22 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Sizes of arrays in local memory

Transformation for tiling Sequential memory size
jacobi-1d-imper

S0(t, i)7→(t, 2t + i , 0)
S1(t, j) 7→(t, 2t + j + 1, 1)

A[2s1 + s2]
B[2s1 + s2 − 1]

jacobi-2d-imper
S0(t, i , j) 7→(t, 2t + i , 2t + i + j, 0)
S1(t, i , j) 7→(t, 2t + i + 1, 2t + i + j + 1, 1)

A[2s1 + s2,min(2s1, s2 + 1) + s3]
B[2s1 + s2 − 1,min(2s1, s2) + s3 − 1]

seidel-2d

S0(t, i , j) 7→(t, t + i , 2t + i + j) A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + s3

]
floyd-warshall

S0(k, i , j)7→(k, i , j) path
[
max(k + 1, n − k),
max(k + 1, n − k)

]

23 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Sizes of arrays in local memory

Transformation for tiling Pipelined memory size
jacobi-1d-imper

S0(t, i)7→(t, 2t + i , 0)
S1(t, j) 7→(t, 2t + j + 1, 1)

A[2s1 + 2s2]
B[2s1 + 2s2 − 2]

jacobi-2d-imper
S0(t, i , j) 7→(t, 2t + i , 2t + i + j, 0)
S1(t, i , j) 7→(t, 2t + i + 1, 2t + i + j + 1, 1)

A[2s1 + s2,min(2s1, s2 + 1) + 2s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + 2s3 − 2]

seidel-2d

S0(t, i , j) 7→(t, t + i , 2t + i + j) A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + 2s3

]
floyd-warshall

S0(k, i , j)7→(k, i , j) path
[
max(k + 1, n − k),
max(k + 1, n − k, 2s2)

]

24 / 25

Motivation and challenges
Parametric analysis

Current implementation and results

Current status
Script with iscc
Local memory allocation for PolyBench examples

Merci

Questions ?

25 / 25

	Motivation and challenges
	Kernel offloading: rules of the game
	Reminders: scheduling and tiling
	Inter-tile data reuse: example

	Parametric analysis
	Tile index vs tile origin index
	Exact inter-tile reuse
	Approximated inter-tile reuse

	Current implementation and results
	Current status
	Script with iscc
	Local memory allocation for PolyBench examples

