Introduction ●000	Polyhedron 00000	Affine function	Extensions	Conclusion

Constant Aspect-Ratio Tiling

Guillaume looss, Sanjay Rajopadhye, Christophe Alias, Yun Zou

Colorado State University - ENS Lyon

January 20, 2014

< □ > < @ > < ≧ > < ≧ > = うへで 1/15

Introduction 0000	Polyhedron 00000	Affine function	Extensions	Conclusion
Parametric ti	iling			

• **Tiling** is an important transformation:

- \rightarrow Locality improvement
- \rightarrow New level of granularity (can be exploited for parallelism)

If the tile sizes are constant, polyhedral $(i = 4.\alpha + ii, 0 \le ii < 4)$

Parametric tiling: tiling where the tile sizes are parameters

 Tile size can be selected during runtime (autotuning)

 Not a polyhedral transformation (*i* = *b*.α + *ii*, 0 ≤ *ii* < *b*)

• Parametric tiling is embedded in the code generation phase:

- Fourier-Motzkin symbolic elimination [Gösslinger, CPC2004]
- Tile the bounding box of the iteration domain [Lakshmi, PLDI2007]
- D-tiling [Kim, LCPC10] (outset, inset)
- *PrimeTile* [Hartono, ICS09], *DynTile* [Hartono, IDPDS10] and *PTile* [Baskaran, CGO10]
- Later transformations/analysis must be "hard-coded":
 - DynTile: find a wavefront schedule
 - Parametric GPU code generation [Athanasios, Kelly, LCPC13]
 - $\rightarrow \ {\sf Exploit wavefront/rectangular parallelism}$

Introduction 000●	Polyhedron 00000	Affine function	Extensions	Conclusion
Contribution				

Parametric tiling with *one tile size parameter* and fixed ratio for every dimensions \rightarrow obtain a polyhedral program representation.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 4/15

- *Example:* $b \times 2b$ and not $b \times c$
- \Rightarrow Constant Aspect-Ratio Tiling (CART)

Introduction 000●	Polyhedron 00000	Affine function	Extensions	Conclusion
Contribution				

Parametric tiling with *one tile size parameter* and fixed ratio for every dimensions \rightarrow obtain a polyhedral program representation.

- Example: $b \times 2b$ and not $b \times c$
- ⇒ Constant Aspect-Ratio Tiling (CART)

Rest of the talk: We focus on polyhedron and affine function
Polyhedron CART union of "tiled" polyhedra
→ Improvment to have only one polyhedron per tiles
Affine function CART piecewise affine function

In general, might admit modulo constraints
Under a condition, only admit polyhedral constraints

for $(i,j) \in \mathcal{D}$ A[i,j] = B[i+1,j-1] $A = \mathcal{D} : (i,j->i+1,j-1)@B$

Given a polyhedron $\mathcal{D}_{\vec{p}} = \{\vec{i} \mid \dots\}$:

- $\vec{i} = b.D.\vec{lpha} + \vec{i}$ where $\vec{0} \leq \vec{i} < b.D.\vec{1}$
 - All dimensions tiled along canonical axis
 - $\vec{\alpha}/\vec{ii}$: blocked/local indices
 - b: tile size parameter
 - D: ratio (diagonal matrix)

•
$$\vec{p} = b.\vec{\lambda} + p\vec{p}$$
 where $\vec{0} \le p\vec{p} < b.\vec{1}$
- $\vec{\lambda}/p\vec{p}$: blocked/local parameters

$$i_1 = 2.b.\alpha_1 + ii_1$$

$$i_2 = b.\alpha_2 + ii_2$$

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

<ロ><日><日><日><日><日><日><日><日><日><10</td>

 ii_2

 (α_1, α_2)

₹2.*b*

 $= \mathbf{b}.\alpha_2 + i\mathbf{b}_2$

<□> < @ > < ≧ > < ≧ > ≧ の Q · 5/15

*ii*1

11

Given a polyhedron
$$\mathcal{D}_{\vec{p}} = \{\vec{i} \mid \dots\}$$
:
• $\vec{i} = b.D.\vec{\alpha} + \vec{i}i$ where $\vec{0} \le \vec{i}i < b.D.\vec{1}$
- All dimensions tiled along canonical
axis
- $\vec{\alpha}/\vec{i}i$: blocked/local indices
- b : tile size parameter
- D : ratio (diagonal matrix)
• $\vec{p} = b.\vec{\lambda} + p\vec{p}$ where $\vec{0} \le p\vec{p} < b.\vec{1}$
- $\vec{\lambda}/\vec{p}p$: blocked/local parameters
 $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

(

 \Rightarrow Question: How to obtain $\Delta_{\vec{\lambda},\vec{pp}} = \{\vec{\alpha}, \vec{i}\vec{i} \mid \dots\}$?

- **Example:** $\mathcal{D} = \{i, j \mid i+j \leq N-1 \land j \leq M \land 0 \leq i, j\}$ with tiles of size $b \times b$.
- Let us focus on the first constraint:

$$N-i-j-1 \ge 0$$

< □ > < □ > < 壹 > < 壹 > < 壹 > 壹 < ⑦ へ ⊙ 6/15

- **Example:** $\mathcal{D} = \{i, j \mid i+j \leq N-1 \land j \leq M \land 0 \leq i, j\}$ with tiles of size $b \times b$.
- Let us focus on the first constraint:

$$N - i - j - 1 \ge 0$$

$$(N, i, j) = (N_{bl}, \alpha, \beta).b + (N_{loc}, ii, jj) (substitution)$$

$$(N_{bl} - \alpha - \beta).b + (N_{loc} - ii - jj - 1) \ge 0$$

$$0$$

$$D$$

$$(N - 1)$$

- **Example:** $\mathcal{D} = \{i, j \mid i+j \leq N-1 \land j \leq M \land 0 \leq i, j\}$ with tiles of size $b \times b$.
- Let us focus on the first constraint:

$$N - i - j - 1 \ge 0$$

$$(N, i, j) = (N_{bl}, \alpha, \beta).b + (N_{loc}, ii, jj) \qquad (substitution)$$

$$(N_{bl} - \alpha - \beta).b + (N_{loc} - ii - jj - 1) \ge 0$$

$$\downarrow b > 0$$

$$N_{bl} - \alpha - \beta + \boxed{\frac{N_{loc} - ii - jj - 1}{b}} \ge 0$$

- **Example:** $\mathcal{D} = \{i, j \mid i+j \leq N-1 \land j \leq M \land 0 \leq i, j\}$ with tiles of size $b \times b$.
- Let us focus on the first constraint:

$$N - i - j - 1 \ge 0$$

$$(N, i, j) = (N_{bl}, \alpha, \beta) \cdot b + (N_{loc}, ii, jj) (substitution)$$

$$(N_{bl} - \alpha - \beta) \cdot b + (N_{loc} - ii - jj - 1) \ge 0$$

$$(b \ge 0)$$

$$N_{bl} - \alpha - \beta + \underbrace{\frac{N_{loc} - ii - jj - 1}{b}}_{k} \ge 0$$

$$(N_{bl} - \alpha - \beta + \underbrace{\frac{N_{loc} - ii - jj - 1}{b}}_{k} \ge 0$$

Introduction 0000	Polyhedron oo●oo	Affine function	Extensions	Conclusion
Computing	k_{min} and k_{max}			

•
$$k_1 = \left\lfloor \frac{N_{loc} - ii - jj - 1}{b} \right\rfloor$$
, where $0 \le ii, jj, N_{loc} < b$, is bounded.
• *Maximum of k*₁: reached for $N_{loc} = b - 1$, $ii = jj = 0$.
 $\rightarrow k_{1,max} = \left\lfloor \frac{(b-1)-1}{b} \right\rfloor = 0$
• *Minimum of k*₁: reached for $N_{loc} = 0$, $ii = jj = b - 1$
 $\rightarrow k_{1,min} = \left\lfloor \frac{0 - (b-1) - (b-1) - 1}{b} \right\rfloor = -2 + \left\lfloor \frac{1}{b} \right\rfloor = -2$
 $\Rightarrow k_1 \in \{-2, -1, 0\}$

Introduction 0000	Polyhedron oo●oo	Affine function	Extensions	Conclusion
Computing A	k_{min} and k_{max}			

•
$$k_1 = \left\lfloor \frac{N_{loc} - ii - jj - 1}{b} \right\rfloor$$
, where $0 \le ii, jj, N_{loc} < b$, is bounded.
• *Maximum of k*₁: reached for $N_{loc} = b - 1$, $ii = jj = 0$.
 $\rightarrow k_{1,max} = \left\lfloor \frac{(b-1)-1}{b} \right\rfloor = 0$
• *Minimum of k*₁: reached for $N_{loc} = 0$, $ii = jj = b - 1$
 $\rightarrow k_{1,min} = \left\lfloor \frac{0 - (b-1) - (b-1) - 1}{b} \right\rfloor = -2 + \left\lfloor \frac{1}{b} \right\rfloor = -2$
 $\Rightarrow k_1 \in \{-2, -1, 0\}$

- Other constraints: $k_2 = \left\lfloor \frac{M_{loc} jj}{b} \right\rfloor = -1 \text{ or } 0, \ k_3 = k_4 = 0.$
- We can derive the values of *ii*, *jj* corresponding to each *k_i*.

• Δ is the union of 6 polyhedra ($-2 \le k_1 \le 0$, $k_2 = -1$ or 0)

$$\Delta = \left\{ \begin{array}{c} N_{bl} - \alpha - \beta - 2 \ge 0\\ M_{bl} - \beta - 1 \ge 0\\ \alpha, \beta \ge 0\\ \alpha, \beta, ii, jj \mid -2.b \le N_{loc} - ii - jj - 1 < -b\\ -b \le M_{loc} - jj < 0\\ 0 \le ii, jj < b\\ (\text{for } k_1 = -2 \text{ and } k_2 = -1) \end{array} \right\} \cup \dots$$

Introduction 0000	Polyhedron 0000●	Affine function	Extensions	Conclusion
Merging tiles	5			

We can merge them to obtain one polyhedron per tiles:

<ロ> < 母> < 母> < 注> < 注> < 注 > のへで 9/15

Introduction Polyhedron Affine function Extensions Conclusion Notations and CART hypothesis

Given an affine function $f:(\vec{i}\mapsto\dots)$, we have 2 different tilings:

- Antecedent domain: $\vec{i} = b.D.\vec{\alpha} + \vec{i}i$ where $\vec{0} \le \vec{i}i < b.D.\vec{1}$
- Image domain: $\vec{i'} = b.D'.\vec{\alpha'} + \vec{ii'}$ where $\vec{0} \le \vec{ii'} < b.D'.\vec{1}$
- Parameters: $ec{p} = b.ec{\lambda} + pec{p}$ where $ec{0} \leq pec{p} < b.ec{1}$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E のQ @ 10/15

Introduction Polyhedron Affine function Extensions Conclusion Notations and CART hypothesis

Given an affine function $f:(\vec{i}\mapsto\dots)$, we have 2 different tilings:

- Antecedent domain: $\vec{i} = b.D.\vec{\alpha} + \vec{i}i$ where $\vec{0} \le \vec{i}i < b.D.\vec{1}$
- Image domain: $\vec{i'} = b.D'.\vec{\alpha'} + \vec{ii'}$ where $\vec{0} \le \vec{ii'} < b.D'.\vec{1}$
- Parameters: $ec{p} = b.ec{\lambda} + pec{p}$ where $ec{0} \leq pec{p} < b.ec{1}$

 \Rightarrow **Question:** How to obtain ϕ such that $\phi(\vec{\alpha}, \vec{i}i) = (\vec{\alpha}', \vec{i}i')$?

<□ ▶ < @ ▶ < \ > ▲ \ > \ \ = り \ ○ 10/15

• Example:
$$f: \begin{cases} (i,j) & \mapsto & (2.N+2.i+4.j-1) \\ b \times b & \rightsquigarrow & 2b \end{cases}$$

• Example:
$$f: \begin{cases} (i,j) \mapsto (2.N+2.i+4.j-1) \\ b \times b \rightsquigarrow 2b \end{cases}$$

Same computation than for polyhedron (with equalities)
 ⇒ We obtain (after derivation):

$$\alpha' = \left\lfloor \frac{2.N_{bl} + 2.\alpha + 4.\beta}{2} + \frac{2.N_{loc} + 2.ii + 4.jj - 1}{2b} \right\rfloor$$
$$= N_{bl} + \alpha + 2\beta + \left\lfloor \frac{2.N_{loc} + 2.ii + 4.jj - 1}{2b} \right\rfloor$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ Q ○ 11/15

• Example:
$$f: \begin{cases} (i,j) \mapsto (2.N+2.i+4.j-1) \\ b \times b \rightsquigarrow 2b \end{cases}$$

Same computation than for polyhedron (with equalities)
 ⇒ We obtain (after derivation):

$$\alpha' = \left\lfloor \frac{2.N_{bl}+2.\alpha+4.\beta}{2} + \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor$$
$$= N_{bl} + \alpha + 2\beta + \left\lfloor \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor$$

<□ > < @ > < E > < E > E の < C 11/15

•
$$k_1 = \left\lfloor \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor \in [|-1;3|]$$

• Example:
$$f: \begin{cases} (i,j) \mapsto (2.N+2.i+4.j-1) \\ b \times b \quad \rightsquigarrow \quad 2b \end{cases}$$

Same computation than for polyhedron (with equalities)
 ⇒ We obtain (after derivation):

$$\begin{aligned} \alpha' &= \left\lfloor \frac{2.N_{bl}+2.\alpha+4.\beta}{2} + \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor \\ &= N_{bl} + \alpha + 2\beta + \left\lfloor \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor \end{aligned}$$

•
$$k_1 = \left\lfloor \frac{2.N_{loc}+2.ii+4.jj-1}{2b} \right\rfloor \in [|-1;3|]$$

• Result:

$$\left(\alpha', ji'\right) = \begin{cases} \left(N_{bl} + \alpha + 2.\beta - 1, N_{loc} + ii + 2.jj + b\right) & \text{if} \quad 2.N_{loc} + 2.ii + 4.jj - 1 < 0\\ \left(N_{bl} + \alpha + 2.\beta, N_{loc} + ii + 2.jj\right) & \text{if} \quad 0 \le 2.N_{loc} + 2.ii + 4.jj - 1 < 2b\\ \left(N_{bl} + \alpha + 2.\beta + 1, N_{loc} + ii + 2.jj - b\right) & \text{if} \quad 2b \le 2.N_{loc} + 2.ii + 4.jj - 1 < 4b\\ \left(N_{bl} + \alpha + 2.\beta + 2, N_{loc} + ii + 2.jj - 2b\right) & \text{if} \quad 4b \le 2.N_{loc} + 2.ii + 4.jj - 1 < 6b\\ \left(N_{bl} + \alpha + 2.\beta + 3, N_{loc} + ii + 2.jj - 3b\right) & \text{if} \quad 6b \le 2.N_{loc} + 2.ii + 4.jj - 1 \end{cases}$$

• Example:
$$f: \begin{cases} (i) \mapsto (i+1) \\ b \rightsquigarrow 2b \end{cases}$$

• Example:
$$f: \begin{cases} (i) \mapsto (i+1) \\ b \rightsquigarrow 2b \end{cases}$$

• Likewise, we obtain:

$$\alpha' = \left\lfloor \frac{\alpha}{2} + \frac{ii+1}{2b} \right\rfloor$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 12/15

• Example:
$$f: \begin{cases} (i) \mapsto (i+1) \\ b \rightsquigarrow 2b \end{cases}$$

• Likewise, we obtain:

$$\alpha' = \left\lfloor \frac{\alpha}{2} + \frac{ii+1}{2b} \right\rfloor$$

• Let us introduce $\alpha = 2.\mu + \alpha \alpha$, where $0 \le \alpha \alpha < 2$:

$$\alpha' = \mu + \left\lfloor \frac{\alpha \alpha}{2} + \frac{ii+1}{2b} \right\rfloor$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 12/15

• If
$$\alpha \alpha = 0$$
, then $k_1 = \left\lfloor \frac{ii+1}{2b} \right\rfloor = 0$.
If $\alpha \alpha = 1$, then $k_1 = \left\lfloor \frac{b+ii+1}{2b} \right\rfloor = 0$ or 1.

• Example:
$$f: \begin{cases} (i) \mapsto (i+1) \\ b \rightsquigarrow 2b \end{cases}$$

• Likewise, we obtain:

$$\alpha' = \left\lfloor \frac{\alpha}{2} + \frac{ii+1}{2b} \right\rfloor$$

• Let us introduce $\alpha = 2.\mu + \alpha \alpha$, where $0 \le \alpha \alpha < 2$:

$$\alpha' = \mu + \left\lfloor \frac{\alpha \alpha}{2} + \frac{ii+1}{2b} \right\rfloor$$

• If
$$\alpha \alpha = 0$$
, then $k_1 = \left\lfloor \frac{ii+1}{2b} \right\rfloor = 0$.
If $\alpha \alpha = 1$, then $k_1 = \left\lfloor \frac{b+ii+1}{2b} \right\rfloor = 0$ or 1.

• Result:

$$\left(\alpha', ii'\right) = \begin{cases} \left(\frac{\alpha}{2}, ii+1\right) & \text{if } \alpha \mod 2 = 0\\ \left(\frac{\alpha-1}{2}, b+ii+1\right) & \text{if } \alpha \mod 2 = 1 \land b+ii+1 < 2b\\ \left(\frac{\alpha-1}{2}+1, ii+1-b\right) & \text{if } \alpha \mod 2 = 1 \land 2b \leq b+ii+1\\ \alpha \mod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+ii+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land 2b \in b+i+1\\ \alpha \pmod 2 = 1 \land$$

Introduction 0000	Polyhedron 00000	Affine function	Extensions	Conclusion
Extensions of	f CART			

• CART along non-canonic axis:

- Several tile size parameters:
 - Works if the tile size parameters do not interfere.
 - $\rightarrow~$ Ex: matrix multiply with 3 tile size parameters.
 - Else, $\left\lfloor \frac{b}{b'} \right\rfloor$: not manageable with the same kind of technique.

Introduction 0000	Polyhedron 00000	Affine function	Extensions	Conclusion
Conclusion	and future	works		

- Code still polyhedral after the CART transformation
 - \Rightarrow Allow polyhedral optimization/analysis after parametric tiling
 - $\Rightarrow~$ Pluggable in the compilation flow for free
- Library standalone implementation available in Java/C++ \rightarrow http://compsys-tools.ens-lyon.fr/
- Implementation of the full CART transformation in the *AlphaZ framework* in progress
- Use CART as the first step of semantic tiling transformation
 - Extract a program piece which uses a specific tile of data
 - ightarrow Recognize this piece as an higher-order operator

Introduction 0000	Polyhedron 00000	Affine function	Extensions	Conclusion
Thank you fo	or listening			

Do you have any questions?

