
CART: Constant Aspect Ratio Tiling∗

Guillaume Iooss
CNRS, CSU, ENS Lyon, Inria,

UCBL, Univ. Lyon
guillaume.iooss[at]ens-lyon.fr

Sanjay Rajopadhye
Colorado State University

sanjay.rajopadhye[at]colostate.edu

Christophe Alias
CNRS, ENS Lyon, Inria,

UCBL, Univ. Lyon
christophe.alias[at]ens-lyon.fr

Yun Zou
Colorado State University

yunzou.colostate[at]gmail.com

ABSTRACT
Parametric tiling is a well-known transformation which is
widely used to improve locality, parallelism and granularity.
However, parametric tiling is also a non-linear transforma-
tion and this prevents polyhedral analysis or further poly-
hedral transformation after parametric tiling. It is therefore
generally applied during the code generation phase.
In this paper, we present a method to remain polyhedral,

in a special case of parametric tiling, where all the dimen-
sions are tiled and all the tile sizes are constant multiples
of a single tile size parameter. We call this Constant Aspect
Ratio Tiling. We show how to mathematically transform
a polyhedron and an affine function into their tiled coun-
terpart, which are the two main operations needed in such
transformation.

1. INTRODUCTION
Tiling is a very important transformation with several

benefits, including locality improvement and parallelism with
a granularity which can be different from that in the origi-
nal, untiled program. Parametric tiling—when tile sizes are
symbolic parameters, unknown at compile time—is however,
not polyhedral: indeed, tiling a dimension i with a paramet-
ric tile size b ends up replacing i by two indices α and ii
satisfying i = αb + ii, and 0 ≤ ii < b, which is a quadratic
expression. Because of this, we can no longer apply poly-
hedral transformations (such as skewing) or do any further
polyhedral analysis after a parametric tiling transformation.
Thus, this transformation is usually managed during the
code generation step of a compiler. In addition to preventing
further polyhedral analyses and/or transformations a major
drawback of this is that many decisions which are, prop-
erly speaking, in the purview of the analysis-transformation
phase of compilation, are relegated to the code generator.
∗Supported in part by NSF grants CCF-0917319 and CNS-
1240991, and by AFOSR grant FA9550-13-1-0064

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

For example, the Dtile code generator in the AlpahZ sys-
tem hard wires the decision to execute a tiled program with
wavefront parallelism with wavefronts normal to the vector
~1. In order to change this decision, the code generator has
to be modified! Of course, it is also possible to use non-
parametric tiling, which is polyhedral but fixes the tile sizes
at compile-time, and comes with is own set of drawbacks.
In this paper, we focus on a special case of parametric

tiling, called Constant Aspect Ratio Tiling (CART), where
all the dimensions are tiled, and tile sizes are a constant
multiple of the same tile size parameter. We show that,
under these hypotheses, it is possible to apply parametric
tiling within the polyhedral world, but with a different set
of parameters.
More precisely, our contributions are the following:

• We show how to transform a polyhedron into a union
of tiled polyhedra along canonical directions. After
finding a first expression of this union, we improve it
to coalesce polyhedra, such that we have at most one
polyhedron per tile.

• We show how to transform an affine function into a
tiled piecewise affine function along canonical direc-
tions. We show that, in the general case, the conditions
of the tiled piecewise affine function are Z-polyhedral
and present a method to obtain this expression. We
also present a necessary and sufficient condition under
which the pieces are polyhedral.

• Finally, we show how to extend this theory: we first
show how to tile along any directions, and then we
present a sufficient condition to reuse the same rea-
soning in the case of several size parameters, and/or
when only a subset of dimensions are tiled.

The two transformations described above are fundamental
in order to apply the CART transformation on programs.
For example, in a loop nest, we will need to tile the iteration
domain and the access functions. In an Alpha program, we
will need to tile the expression domains and the dependence
functions.
In the rest of this paper, we will first study the case of

a polyhedron in Section 2, then of an affine function in
Section 3. The extensions of this theory are presented in
Section 4. In Section 5 we examine the literature, before
concluding in Section 6.

1

2. CART ON POLYHEDRAL SETS
In this section, we show how to transform a given poly-

hedron D into an equivalent tiled union of polyhedra ∆,
in the rectangular tiling case where the tile sizes of all the
dimensions are multiples of the same parameter.

2.1 A First Expression of ∆
Given a polyhedron D = {~i | Q.~i+Q(p).~p+~q ≥ ~0}, where

~p are the parameters, we introduce the following notation:

• Each tile size is a multiple of the same block size pa-
rameter b. Thus, we have: ~i = b.D.~α+ ~ii, where:

– D is called the scale, and is a diagonal matrix of
strictly positive integer constants.

– ~α are called the block number indices, ~ii are called
the local indices and we have ~0 ≤ ~ii < b.D.~1.

• We assume that all parameters ~p can be decomposed
in the same fashion: ~p = b.~λ+ ~pp where ~λ is the vector
of tiled parameters, ~pp the local parameters and ~0 ≤
~pp < b.~1.

i

j

ii

jj

(α, β)

2.b

b

Example of rectangular CART in the 2D case

We want to obtain ∆ = { ~α, ~ii | . . . } such that ∆ is sim-
ply an alternate representation of D, using the new indices
(~α, ~ii) and the new parameters, (~λ, ~pp). To obtain the new
constraints of ∆, let us start from the constraints of D:

Q.~i+ ~q +Q(p).~p ≥ ~0

We use the definitions of ~α, ~ii, ~λ, ~pp (namely, ~i = b.D.~α+ ~ii

and ~p = b.~λ+ ~pp) to get rid of ~i and ~p:

b.Q.D.~α+Q.~ii+ b.Q(p).~λ+Q(p). ~pp+ ~q ≥ ~0

These constraints are no longer polyhedral (b is a parameter
and ~α are indices). To get rid of the quadratic part, let us
divide both sides by the tile size parameter b (which is known
to be strictly positive):

Q.D.~α+Q(p).~λ+ Q.~ii+Q(p). ~pp+ ~q

b
≥ ~0

In general, the fraction is a rational vector. Thus, to come
back into the integer world, let us take the floor of the pre-
vious constraints (because a ≥ 0 ⇔ bac ≥ 0):

Q.D.~α+Q(p).~λ+
⌊
Q.~ii+Q(p). ~pp+ ~q

b

⌋
≥ ~0

Let ~k(~ii) =
⌊
Q.~ii+Q(p). ~pp+~q

b

⌋
. We will show that ~k(~ii) can

only take a constant number of different values (because

~0 ≤ ~ii < b.D.~1 and ~0 ≤ ~pp < b.~1). Formally, we do this
by bounding each dimension of ~k(~ii). Consider, for 0 ≤ l <

dim(~k(~ii)),

kl(~ii) =
⌊
Ql.~ii+Q

(p)
l . ~pp+ ql

b

⌋
Let us look at its maximum. Because we have an affine
function in the numerator, this maximum is reached when
all the coordinates of ~ii are set to either 0 (if the corre-
sponding coefficient of Ql is negative) or d.(b − 1) (if the
corresponding coefficient of Ql is strictly positive and where
d is the corresponding coefficient in D). Following the no-
tion of the outset, as introduced by Renganaryana et al. [7].,
let QD+

l be the vector of non-negative coefficients of Ql.D
and Q

(p)+
l the vector of non-negative coefficients of Q(p)

l .
Also, let ||~v||1 =

∑
i
|vi| denote the L1-norm of the vector

~v. Then, we can get an upper bound on kmax
l as follows.

kmax
l = max~ii

⌊
Ql.~ii+Q

(p)
l
. ~pp+ql

b

⌋
=

⌊
||QD+

l
||1.(b−1)+Q(p)

l
. ~pp+ql

b

⌋
= ||QD+

l ||1 +
⌊
Q

(p)
l
. ~pp−||QD+

l
||1+ql

b

⌋
≤ ||QD+

l ||1 +
⌊
||Q(p)+

l
||1.(b−1)−||QD+

l
||1+ql

b

⌋
≤ ||QD+

l ||1 + ||Q(p)+
l ||1 +

⌊
ql−||Q

(p)+
l

||1−||QD+
l
||1

b

⌋
We thus have a constant upper bound on all elements of

~k. We can prove a similar, constant lower bound on the
elements of ~k(~ii), and hence there are only a constant num-
ber of different values it can take, ~k(~ii) ∈ [|~kmin;~kmax|] =
{~k1, . . . ,~kA}.
Hence, we manage to express ∆ as a finite union of para-

metric polyhedra:

Proposition 2.1. The blocked version of a polyhedron
D = {~i | Q.~i+Q(p).~p+ ~q ≥ ~0} is:

∆ =
A⋃
a=1

~α, ~ii | Q.D.~α+Q(p).~λ+ ~ka ≥ ~0
b.~ka ≤ Q.~ii+Q(p). ~pp+ ~q < b.(~ka +~1)

~0 ≤ ~ii < b.D.~1

where ~ka is one value of

⌊
Q.~ii+Q(p). ~pp+~q

b

⌋
∈ [|~kmin;~kmax|].

Let us now study the values taken by ~kmax. In general, b
can take any non-negative value, including b = 1. Thus, if
the fraction is positive, the highest value of kmax

l is reached
at b = 1 and is kmax

l = ql. If the fraction is negative, the
highest value of kmaxl is reached for b “large enough” to make
the floor equal to −1 and is kmax

l = ||QD+
l ||1 +||Q(p)+

l ||1−1.
In practice, it is likely that the block size of a tile should

be large enough (to get the locality benefits). Thus, if we
assume that b is large enough, the floor is equal to either 0
or −1 (depending on the sign of the fraction), and we can
get a more precise value of b when the fraction is positive.
The same reasoning also applies to the computation of the
lower bound ~kmin.

2

2.2 Example
Let us consider the following parameterized triangle:

D = {i, j | N − 1− i− j ≥ 0 ∧ i ≥ 0 ∧ j ≥ 0}

Let us introduce
(
i
j

)
= b.

(
α
β

)
+
(
ii
jj

)
and, to simplify

the result, let us assume that the parameter N is a multiple
of the block size parameter b: N = M.b. Then, the first
inequality becomes:

N − 1− i− j ≥ 0 ⇔ M.b− 1− b.α− ii− b.β − jj ≥ 0
⇔ M − α− β +

⌊
−ii−jj−1

b

⌋
≥ 0

Let us study the values of k1(ii, jj) =
⌊
−ii−jj−1

b

⌋
. Be-

cause of the sign of the numerator coefficients, the maximum
is −1 (ii = jj = 0) and the minimum is −2 (ii = jj = b−1).
After analyzing the two other inequalities, we obtain:

∆ =
⋃

−2 ≤ k1 ≤ −1
k2 = 0
k3 = 0

α, β, ii, jj |
M − α− β + k1 ≥ 0
b.k1 ≤ −ii− jj − 1

−ii− jj − 1 < b.(k1 + 1)
0 ≤ ii, jj < b
α + k2 ≥ 0
β + k3 ≥ 0

=

α, β, ii, jj |
M − α− β − 1 ≥ 0

α, β ≥ 0
0 ≤ ii, jj < b

−b ≤ −ii− jj − 1 < 0

∪

α, β, ii, jj |
M − α− β − 2 ≥ 0

α, β ≥ 0
0 ≤ ii, jj < b

−2b ≤ −ii− jj − 1 < −b

i

j

∆
=
First tiled polyhedron

(k1 = −1)∪
Second tiled polyhedron

(k1 = −2)

Obtained union of tiled polyhedra ∆

The tiling previously found is correct, but we notice that
most tiles are split in two triangles, corresponding to the
contribution of the two polyhedra to the tile. We can also
notice some regularity in this decomposition: if a block is
partially covered by a gray triangle, then the same block will
be completed by a blue triangle. By using this regularity, it
is possible to reorganize the union of polyhedra forming ∆
to distinguish between the diagonal triangular tiles and the
full tiles. We describe the method to fuse the tiles together
in the following subsection.

2.3 Fusing polyhedra for a better tiling
We managed to transform D into a union of tiled polyhe-

dra ∆. However, these polyhedra are mostly small triangles
or trapezoids, which can be combined together to form a

whole tile. To reduce the number of polyhedra (which will
allow simpler generated code), we want to reorganize these
polyhedra such that, for each tile ~α, there is at most one
polyhedron from the union ∆ contributing to this tile.
Let us focus on a constraint of D (Ql.~i+Q

(p)
l .~p+ ql ≥ 0).

For the lth constraint, we obtained in Proposition 2.1:

⋃
kmin

l
≤kl≤kmax

l

(Blockkl) : Ql.D.~α+Q

(p)
l .~λ+ kl ≥ 0

(Localkl) : b.kl ≤ Ql.~ii+Q
(p)
l . ~pp+ ql
< b.(kl + 1)

~0 ≤ ~ii < b.D.~1

We can notice some properties among these constraints:

• Each kl covers a different stripe of the tile (whose equa-
tions is given by (Localkl)). The union of all these
stripes, for kmin

l ≤ kl ≤ kmax
l covers the whole tile (by

definition of kmin
l and kmax

l).

• If a tile ~α satisfies the constraint (Blockkl) for a given
kl, then the same tile also satisfies (Blockk′

l
) for every

k′l > kl. In other words, if the klth stripe in a tile
is non-empty, the tile will have all the k′l stripes, for
every k′l > kl.

kmax
l

. . .

kmin
l + 1

kmin
l

implies

Stripe coverage inside a given tile

Thus, if a block ~α satisfies (Blockkmin
l

), the whole tile is
covered by ∆. Also, if a block satisfies exactly (Blockkl)
(i.e. if Ql.D.~α + Q

(p)
l .~λ + kl = 0), then we do not have the

stripes below kl and only the local indices ii which satisfy
(b.kl ≤ Ql.~ii + Q

(p)
l . ~pp + ql) are covered by ∆. Using these

observations, we can separate the tiles into two categories:
those which satisfy (Blockkmin

l
) (corresponding to a full tile),

and those which satisfy exactly a (Blockkl) where kmin
l < kl

(corresponding to a portion of the tile).
By using these observations, we can reorganize the poly-

hedra of ∆ in the following way:

∆ =
⋂
l

⋃

kmin
l

<kl≤kmax
l

~α, ~ii | Ql.D~α+Q
(p)
l .~λ+ kl = 0

b.kl ≤ Ql.~ii+Q
(p)
l . ~pp+ ql

~0 ≤ ~ii < b.D.~1

∪
{
~α, ~ii | Ql.D~α+Q

(p)
l .~λ+ kmin

l ≥ 0
~0 ≤ ~ii < b.D.~1

}

Example.
Let us go back to the example we have previously devel-

oped. With this new expression of ∆, we obtain the follow-

3

ing union of polyhedra:

∆ =

α, β, ii, jj |
M − α− β − 1 = 0

α, β ≥ 0
0 ≤ ii, jj < b

−b ≤ −ii− jj − 1

∪

{
α, β, ii, jj |

M − α− β − 2 ≥ 0
α, β ≥ 0

0 ≤ ii, jj < b

}
The first polyhedron covers the lower triangles of the diago-
nal tiles. The second polyhedron covers the full-tiles. Thus,
we only have a single polyhedron per tile (α, β).

3. CART ON AFFINE FUNCTIONS
In this section, we show how to transform a given affine

function f into an equivalent tiled piecewise affine function
φ, in the rectangular tiling case where the tile size of all the
dimensions are multiples of the same parameter.

3.1 Piecewise affine function with polyhedral
conditions

Given an affine function f : (~i 7→ Q.~i + Q(p).~p + ~q), we
introduce the following notation:

• Each tile size is a multiple of the same block size pa-
rameter b. Thus, we have, for the input indices: ~i =
b.D.~α+ ~ii, where:

– ~α are called the block number indices, ~ii are called
the local indices and we have ~0 ≤ ~ii < b.D.~1.

– D is called the scale, and is a diagonal matrix of
strictly positive integer coefficients.

• Likewise, for the output indices: ~i′ = b.D′.~α′+ ~ii
′ with

similar assumptions.

• We assume that all parameters ~p can be decomposed
in the same fashion: ~p = b.~λ+ ~pp where ~λ is called the
tiled parameters, ~pp the local parameters and ~0 ≤ ~pp <
b.~1.

We want to transform the affine function f into a function
φ : (~α, ~ii 7→ . . . , . . .) which operates on the tiled space and
such that f(~i) = ~i′ ⇔ φ(~α, ~ii) = (~α′, ~ii′). To obtain the
expressions of ~α′ as a function of ~α and ~ii, we start from the
definition of f :

~i′ = Q.~i+Q(p).~p+ ~q

By substituting ~i and ~i′ by their tiled counterparts, respec-
tively, ~α, ~ii and ~β, ~jj, we obtain:

b.D′.~α′ + ~ii
′ = Q.(b.D.~α+ ~ii) +Q(p).(b.~λ+ ~pp) + ~q

After dividing by b, we obtain:

D′.~α′ +
~ii
′

b
= Q.D.~α+Q(p).~λ+ Q.~ii+Q(p). ~pp+ ~q

b

Then, we multiply both sides by D′−1:

~α′ + D′−1.~ii
′

b
=

D′−1.Q.D.~α+D′−1.Q(p).~λ

+D′−1.(Q.~ii+Q(p). ~pp+~q)
b

Because ~0 ≤ ~ii′ < b.D′.~1, we can eliminate ~ii′ by taking the
floor:

~α′ =
⌊
D′−1.Q.D.~α+D′−1.Q(p).~λ+D′−1.(Q.~ii+Q(p). ~pp+ ~q)

b

⌋
However, we have no guaranty that in general, (D′−1.Q.D.~α)

and (D′−1.Q(p).~λ) are integral vectors. To allow us to draw
these terms outside the floor operator, we will assume that
(D′−1.Q.D) and (D′−1.Q(p)) are integer matrices. We will
show later that these two hypotheses form a necessary and
sufficient condition to have only polyhedral conditions in the
piecewise affine function φ. We obtain:

~α′ = D′−1.Q.D.~α+D′−1.Q(p).~λ+
⌊
D′−1.(Q.~ii+Q(p). ~pp+ ~q)

b

⌋
By defining ~k(~ii) =

⌊
D′−1.(Q.~ii+Q(p). ~pp+~q)

b

⌋
and by con-

ducting the same kind of analysis as in Section 2, we manage
to bound ~k(~ii) between ~kmin and ~kmax. Finally, we obtain a
piecewise expression of ~α′, in which each branch corresponds
to a value of ~k(~ii), and which is:

~α′ = D′−1.Q.D.~α+D′−1.Q(p).~λ+ ~ka
if b.~ka ≤ D′−1.Q.~ii+D′−1.Q(p). ~pp+D′−1.~q < b.(~ka +~1)

for each ~ka ∈ [|~kmin;~kmax|] = {~k1, . . . ,~kA}.
We can easily compute ~ii′ for each obtained branch by

using the definition of ~α′. Finally, we obtain the following
expression of φ as a piecewise affine function:

Proposition 3.1. The blocked version of an affine func-
tion f(~i) = Q.~i + Q(p).~p + ~q is a piecewise affine function,
whose branches are:

φ(~α, ~ii) =
(
D′−1.Q.D.~α+D′−1.Q(p).~λ+ ~ka
Q.~ii+Q(p). ~pp+ ~q − b.D′.~ka

)
if b.~ka ≤ D′−1.Q.~ii+D′−1.Q(p). ~pp+D′−1.~q < b.(~ka +~1)

for each ~ka ∈ [|~kmin;~kmax|].

3.2 Example
Let us consider the following affine function:

f : (i, j 7→ 2i,N − j − 1, i+ j)

Let us introduce i = 2.α.b + ii, j = 2.β.b + jj and let
us assume that N = b.M to reduce the number of branches
of the piecewise affine function φ. Moreover, if f(i, j) =
(i′, j′, k′), let us introduce i′ = α′.b+ ii′, j′ = β′.b+ jj′ and
k′ = 2.γ′.b + kk′. The conditions to have only polyhedral
conditions in φ are satisfied:

D′−1.Q.D =

[1 0 0
0 1 0
0 0 2

]−1

.

(2 0
0 −1
1 1

)
.

[
2 0
0 2

]

=

(4 0
0 −2
1 1

)
which is integral.

D′−1.Q(p) =

[1 0 0
0 1 0
0 0 2

]−1

.

(0
1
0

)
=

(0
1
0

)
which is integer.

4

φ

α
β
ii
jj

 =

(4α,M − 2β − 1, α + β, 2ii, b− jj − 1, ii + jj)T if 0 ≤ ii < b ∧ 0 ≤ jj < b ∧ 0 ≤ ii + jj < 2b
(4α + 1,M − 2β − 1, α + β, 2ii− b, b− jj − 1, ii + jj)T if b ≤ ii < 2b ∧ 0 ≤ jj < b ∧ 0 ≤ ii + jj < 2b
(4α,M − 2β − 2, α + β, 2ii, 2b− jj − 1, ii + jj)T if 0 ≤ ii < b ∧ b ≤ jj < 2b ∧ 0 ≤ ii + jj < 2b
(4α,M − 2β − 2, α + β + 1, 2ii, 2b− jj − 1, ii + jj − 2bb)T if 0 ≤ ii < b ∧ b ≤ jj < 2b ∧ 2b ≤ ii + jj < 4b
(4α + 1,M − 2β − 1, α + β + 1, 2ii− b, b− jj − 1, ii + jj − 2bb)T if b ≤ ii < 2b ∧ 0 ≤ jj < b ∧ 2b ≤ ii + jj < 4b
(4α + 1,M − 2β − 2, α + β + 1, 2ii− b, 2b− jj − 1, ii + jj − 2bb)T if b ≤ ii < 2b ∧ b ≤ jj < 2b ∧ 2b ≤ ii + jj < 4b

Figure 1: Value of the tiled affine function in the example of Section 3.2

Therefore, after doing the operations described in the pre-
vious subsection, we obtain an expression of ~α′:[

α′

β′

γ′

]
=

(4 0
0 −2
1 1

)[
α
β

]
+

(0
1
0

)
.
[
M
]

+

[
k1
k2
k3

]

where k1 =
⌊

2ii
b

⌋
, k2 =

⌊
−jj−1
b

⌋
and k3 =

⌊
ii+jj

2b

⌋
. Thus,

0 ≤ k1 ≤ 1, −2 ≤ k2 ≤ −1 and 0 ≤ k3 ≤ 1.
Two out of the resulting eight branches have unsatisfiable

conditions. Therefore, after pruning them out, we obtain
the expression of φ described in Figure 1. The domains of
each branch inside a given tile are described in the following
figure:

ii

jj

First dimension constraint
Second dimension constraint
Third dimension constraint

k1 = 0 k1 = 1

k2 = −2
k2 = −1

k3 = 0

k3 = 1

Domains of each branch in Example 3.2

3.3 General case: piecewise affine function with
Z-polyhedral conditions

In Section 3.1, we presented a condition to have only poly-
hedral constraints in the tiled piecewise affine function φ.
We will now study the general case, and show that the con-
straints of φ are Z-polyhedral in general. We obtained the
following equality:

~α′ =
⌊
D′−1.Q.D.~α+D′−1.Q(p).~λ+D′−1.(Q.~ii+Q(p). ~pp+ ~q)

b

⌋
Let us consider a given dimension 0 ≤ l < |~α′|:

α′l =
⌊
Ql.D.~α

D′l,l
+
Q

(p)
l .~λ

D′l,l
+
Ql.~ii+Q

(p)
l . ~pp+ ql

D′l,l.b

⌋
The vector Ql.D

D′
l,l

can have rational coordinates. This means

that the block indices ~α and parameters ~λ may contribute to
the expression of the local indices. To quantify this contri-
bution, we introduce ~α = ~µl.D′l,l+ ~ααl and ~λ = ~θl.D′l,l+ ~λλ

l

where ~0 ≤ ~ααl < D′l,l.~1 and ~0 ≤ ~λλ
l
< D′l,l.~1.

The previous equality becomes:

α′l = Ql.D.~µ
l +Q

(p)
l .~θl+⌊

Ql.D. ~αα
l+Q(p)

l
. ~λλ

l

D′
l,l

+ Ql.~ii+Q
(p)
l
. ~pp+ql

D′
l,l
.b

⌋
If we observe the floor term, we notice that its right part

corresponds to the expression of ~k we have obtained in Sec-
tion 3.1. Thus, if we are able to fix its left part by assuming
that ~ααl and ~λλ

l
are constants, we can conduct exactly the

same analysis seen before. This can be done by enumerat-
ing all the possible values of ~ααl af ~λλ

l
and by creating one

branch per value. Because ~0 ≤ ~ααl < D′l,l.~1 (resp. ~λλ
l
), we

have only a constant number of such values. Therefore, if we
enumerate all the values of ~ααl (i.e., if we create one branch
of φ per value of ~ααl), we can compute the expression of φ
as seen in the previous subsection.
Because ~ααl = ~α mod Dl,l (by definition), a condition

on the value of ~ααl is a condition on the congruency of ~α.
Thus, we obtain two kinds of conditions in the branches
of φ: the congruency conditions on ~α and the polyhedral
conditions (coming from the analysis of ~k). Therefore, a
given branch of the piecewise affine function will be selected
if ~α belongs to an affine lattice (corresponding to the con-
gruency conditions) and if (~α, ~ii) belongs to a polyhedron.
Because a Z-polyhedron is the intersection of an affine lat-
tice and a polyhedron, we conclude that the conditions are
Z-polyhedral.
Let us estimate the number of branches of the tiled affine

function we can obtain in the worst case. For the lth dimen-
sion, the range of values ~k can take is only slightly shifted
compared to each other (the shift being the fractional part of
Ql.D.~α
D′

l,l
). Thus, we have almost the same number Card(~k)l

of ~k for any ~ααl. Moreover, we have one branch per values

of (~k, ~ααl, ~λλ
l
), if Ql.D.~α

D′
l,l

and Q
(p)
l
.~λ

D′
l,l

are both not integer.
Thus, in the worst case where none of these fractions are in-
teger for every dimension l (in short, nothing divides nicely
anything), the number of branches of the resulting blocked
affine function is about:∏

l

(
Card(~k)l × Card{ ~ααl, λλl}

)
=
∏
l

O(ql + ||(Q.D)l||1 + ||Q(p)
l ||1)×D

′dim(~α+~λ)
l,l

Example.
Let us consider f : (i, j 7→ i, j) where the input indices

are tiled as
(
i
j

)
=
(
α
β

)
.b +

(
ii
jj

)
and the output indices

are tiled as
(
i′

j′

)
=
(

2α′
3β′
)
.b+

(
ii′

jj′

)
. Let us consider the

5

φ :

αβii
jj

 7→

(α/2, β/3, ii, jj)T if α ≡ 0 mod 2 ∧ β ≡ 0 mod 3
(α/2, (β − 1)/3, ii, jj + b)T if α ≡ 0 mod 2 ∧ β ≡ 1 mod 3
(α/2, (β − 2)/3, ii, jj + 2b)T if α ≡ 0 mod 2 ∧ β ≡ 2 mod 3
((α− 1)/2, β/3, ii+ b, jj)T if α ≡ 1 mod 2 ∧ β ≡ 0 mod 3
((α− 1)/2, (β − 1)/3, ii+ b, jj + b)T if α ≡ 1 mod 2 ∧ β ≡ 1 mod 3
((α− 1)/2, (β − 2)/3, ii+ b, jj + 2b)T if α ≡ 1 mod 2 ∧ β ≡ 2 mod 3

Figure 2: Value of the tiled affine function in the example of Section 3.3

first output dimension:

i′ = i ⇔ 2.α′.b+ ii′ = α.b+ ii

⇒ α′ =
⌊
α
2 + ii

2b

⌋
= µ(1) +

⌊
αα(1)

2 + ii
2b

⌋
where α = 2.µ(1) + αα(1) and 0 ≤ αα(1) ≤ 1. Likewise, we
have:

β′ = ν(2) +
⌊
ββ(2)

3 + jj

3b

⌋
where β = 3.ν(2) +ββ(2) and 0 ≤ ββ(2) ≤ 2. Finally, we can
build the pieces of φ by enumerating all the possible values
of αα(1) and ββ(2). For example, for αα(1) = ββ(2) = 0:

~k(ii, jj) =
(
ii
2b

jj
3b

)T
We only have one possible value for k1(ii, jj) and k2(ii, jj)
(which is 0 in both cases), thus we will only have one branch
in φ corresponding to these values. The full obtained expres-
sion of φ is given in Figure 2.

3.4 Condition to have polyhedral conditions
In Section 3.1, we introduced a condition such that the

resulting piecewise affine function φ admits only polyhedral
constraints. Let us show informally that this condition is
necessary (we already showed in Section 3.1 that it is suffi-
cient).
We obtained the following equation in Section 3.1:

~α′ + D′−1.~ii
′

b
=

D′−1.Q.D.~α+D′−1.Q(p).~λ

+D′−1.(Q.~ii+Q(p). ~pp+~q)
b

Let us assume that D′−1.Q.D is not integer, and let us
show that φ admits congruency conditions. In the previous
equation, because ~α′ is integer, if we look at the fractional
part, the value of ~α has an impact on D′−1.~ii

′
/b, thus on ~ii′.

However, as we saw in the Section 3.3, for a given branch of
φ, the value of the piecewise affine function corresponding
to ~ii′ is independent of ~α. Thus, the only impact ~α could
have on ~ii

′ is through the conditions of the branches of φ.
Because the only conditions using α′ are congruency con-
ditions, φ must have such conditions. Therefore, φ admits
non-polyhedral conditions.
Likewise, we can prove that if D′−1.Q(p) is not integer, φ

also admits some non-polyhedral conditions (by looking at
the influence of ~λ on ~ii′). Therefore, we conclude:

Proposition 3.2. The function φ has only polyhedral con-
ditions if and only if D′−1.Q.D and D′−1.Q(p) are integral.

4. EXTENSIONS
In the previous sections, we presented a way to parametri-

cally tile a polyhedron and an affine function, under several

hypothesis. These hypothesis were the following: (i) all the
dimensions must be tiled (ii) these dimensions must be the
canonical dimensions and (iii) all the tile sizes must be in-
teger multiples of the same tile size parameter b. In this
section, we will first present a way to get rid of hypothesis
(ii), then we will show how to weaken hypothesis (i) and
(iii), in particular to manage several tile size parameters.

4.1 CART along non-canonic axis
In the previous sections, we forced the tiling to be along

the canonical axis (because of the definition of the block and
local indices: ~i = b.D.~α + ~ii). This restriction can be lifted
by using an appropriately chosen Change of Basis (CoB)
transformation. If we want to tile along some arbitrary hy-
perplanes, we do a preprocessing unimodular transforma-
tion, f , to render the normal vectors of these hyperplanes
as unit vectors. Then, we apply the Constant Aspect Ratio
Tiling to obtain a tiled polyhedron. To return to the origi-
nal tile space, we need to reverse the initial CoB, which can
be done by another CoB of bijection (f−1, f−1).

D f(D)

Tiled f(D)∆

CoB

f

CART

CoB

(f−1, f−1)

4.2 Managing several tile size parameters
In the previous sections, we assumed that all the dimen-

sions were tiled and that all the tile sizes are multiples of a
single tile size parameter b. Let us see how far we can go by
relaxing these hypotheses while still being able to apply the
same mathematical method.
To explain the intuition, let us first remove the latter hy-

potheses: we assume that all the dimensions admit a differ-
ent tile size parameter b1, . . . , bn. Thus, ~i = B.~α+ ~ii where
B = diag(b1, . . . , bn). Given a polyhedron D = {~i | Q.~i +
Q(p).~p + ~q ≥ ~0 }, if we apply the method we presented, we
obtain:

Q.(B.~α+ ~ii) +Q(p).~p+ ~q ≥ 0
⇔ (Q.B).~α+Q.~ii+ ~q +Qp.~p ≥ 0

We want to divide each row of these inequalities by a tile
size parameter bi to get rid of the quadratic form Q.B.α.
However, if several tile sizes appear in the same line, we will

6

end up with fractions of tile size parameters bi
bj
. We can-

not manage these fraction simply statically. So, to prevent
such fractions, we restrict ourselves to tilings where only
a single tile size parameter can appear in any considered
affine expression (constraint from a polyhedron or value of
an affine function). Intuitively, we can see this restriction
as a cartesian product between tilings with different tile size
parameters.
We observe the same kind of phenomenon if we try to

remove the first hypotheses: if a non-tiled index appears in
the same equation as a tiled index, then we cannot divide the
equation by a tile size parameter to get rid of the quadratic
form.
In the case of multiple tile size parameters, this relaxed

hypotheses means that we have a partition of the indices, ac-
cording to their tile size parameter. Moreover, if two indices
appear in the same affine expression, then these two indices
must have the same tile size parameter. Thus, if we consider
the matrix Q, modulo a permutation over its columns (to
group the indices according to their tile size parameter) it
must be a diagonal block matrix (each diagonal block cor-
responds to one of a set of tile size parameters). For the
parameters, we can introduce a new blocked (resp. local)
parameter λi,j (resp. ppi,j) such that ~pj = bi.λi,j + ppi,j , if
the parameter ~pj appears in an affine expression being di-
vided by the tile size parameter bi. Such a polyhedron is a
cartesian product of single-parameter polyhedra as studied
in the previous sections.

5. RELATED WORK
Several techniques exist in the polyhedral model commu-

nity to generate parametric tiled code. The earliest ones are
based on a symbolic version of Fourier-Motzkin elimination
(cf. Appendix B of the work of Renganaryana et al. [7]), or
tile the bounding box of the iteration domain [9] to obtain
a rectangular (and simpler) problem.
Lakshminarayanan et al. [7, 6] describe an improvement

of the bounding box technique which avoids iterating over
empty tiles. The main idea is to compute the set of non-
empty tile coordinates (called outset) and the set of full tile
coordinates (called inset) to improve the efficiency of code
generation. Kim and Rajopadhye [5] extended this to imper-
fectly nested loops and developed the DTile tool. However,
in these methods, the associated sets are non-polyhedral,
and the generated code has quadratic expressions. In our
(restricted) case, we can easily obtain these two sets from
the expression of the tiled union of polyhedra (for any tile
form, we can even get the set of tiles which admit this form).
Tavarageri et al. [8] present a study of three recent para-

metric tiling code generation techniques: PrimeTile [3], Dyn-
Tile [4] and PTile [1]. PrimeTile decomposes the iteration
domain into stripes, and places inside these stripes as many
full-tile as possible, while taking care of the extra part not
fitting inside a full tile through a prelude and a postlude.
However, because the tile origins are not guaranteed to form
a lattice, it is not trivial to parallelize across tiles. DynTile
is an improvement of this method where the tile origins are
constrained to be on a lattice, and were we can exploit par-
allelism across tiles according to a predetermined wavefront
pattern. However, this method is also based on a dynamic
schedule, given by an inspector which determines the set of
tiles belonging to a given wavefront. Finally, Ptile is similar

to the Dtile approach: the equation of the outset is com-
puted by relaxing the constraints of the considered polyhe-
dron. This set is also non-polyhedral, and they also have
quadratic expressions inside their generated code.
As opposed to parametric tiling, the non-parametric tiling

transformation is a polyhedral transformation. Thus, to
generate tiled code, we can use any polyhedral code gener-
ator (based on tools such as CLooG [2]). Likewise, because
we obtain a (disjoint) union of polyhedra at the end of the
CART transformation, we can use such a code generator.

6. CONCLUSION
We have proposed a method to tile polyhedra and affine

functions, in the case where we tile all the dimensions and
we have only one tile size parameter. In the case of a poly-
hedron, we have shown how to obtain a mathematical ex-
pression for the union of polyhedra corresponding to the
blocked polyhedron. Then, we have reorganized this union
to coalesce the tiled union of polyhedra such that we have
only one contributing polyhedron per tile. In the case of an
affine functions, we have shown that a tiled affine function
is a piece-wise affine function admitting, in the general case,
Z-polyhedral conditions on its branches. Then, we have pre-
sented a necessary and sufficient condition to have only poly-
hedral constraints. Finally, we have presented some exten-
sions of this work, to tile along any given directions and to
manage, under some restricted conditions, several tile size
parameters.
We have partially implemented our algorithms in Java.1

In the case of a polyhedron, we have implemented the ex-
pression of ∆ described in Section 2.3, and in the case of an
affine function, we have implemented the polyhedral case
(Section 3.1). In all methods, we assumed that the block
size parameter is "large enough", such that we can compute
precisely ~kmin and ~kmax (Section 2.2).
Polyhedral domains and affine functions are the two fun-

damental mathematical objects which support polyhedral
programs. Thus, it should be possible to apply the CART
transformation on loop nests to obtain a polyhedral loop
nest at the end of the transformation (modulo a parametric
part to link the old parameters with the new tiled parame-
ters). In our compiler, AlphaZ [10], polyhedral domains and
affine functions appear explicitly, thus the CART transfor-
mation can be easily applied.
To get a full parametric tiling transformation, we need, of

course, to ensure the legality of tiling. Moreover, in the case
of the Alpha language, we also have to infer the scale D for
intermediate sets of indices appearing inside an expression
(between two affine functions). It might be interesting to
find out which scale leads to the best performance after code
generation.
In the future, we plan to use this transformation as the

first step of the semantic tiling transformation. In short, this
is a tiling which transform a program reasoning on scalars
into a program reasoning on blocks of data, by using alge-
braic properties (such as associativity and commutativity)
to change the computation itself (and to modify some de-
pendences). In our current approach to formalize such a
transformation, we are planning to isolate the computation
1In the Gecos repository (svn://scm.gforge.inria.fr/
svnroot/gecos/trunk), the Java class is org.polymodel.
polyhedralIR.transformation.ParametricTiling.java

7

touching a given block of data (through a parametric tiling),
then to compare each computation block with a blocked op-
eration candidate (using an equivalence algorithm, modulo
associativity and commutativity).

7. REFERENCES
[1] M. M. Baskaran, A. Hartono, S. Tavarageri,

T. Henretty, J. Ramanujam, and P. Sadayappan.
Parameterized tiling revisited. In Proceedings of the
8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’10, pages
200–209, New York, NY, USA, 2010. ACM.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In International Conference
on Parallel Architecture and Compilation Techniques,
pages 7–16, Juan-les-Pins, France, September 2004.

[3] A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen,
S. Krishnamoorthy, B. Norris, J. Ramanujam, and
P. Sadayappan. Parametric multi-level tiling of
imperfectly nested loops. In Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09,
pages 147–157, New York, NY, USA, 2009. ACM.

[4] A. Hartono, M. M. Baskaran, J. Ramanujam, and
P. Sadayappan. Dyntile: Parametric tiled loop
generation for parallel execution on multicore
processors. In IEEE International Symposium on
Parallel and Distributed Processing, IDPDS’10, 2010.

[5] D. Kim and S. Rajopadhye. Efficient Tiled Loop
Generation: D-Tiling. In G. Gao, L. Pollock,

J. Cavazos, and X. Li, editors, Languages and
Compilers for Parallel Computing, volume 5898 of
Lecture Notes in Computer Science, pages 293–307.
Springer Berlin Heidelberg, 2010.

[6] L. Renganarayanan, D. Kim, S. Rajopadhye, and
M. M. Strout. Parameterized tiled loops for free. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’07, pages 405–414, New York, NY, USA, 2007.
ACM.

[7] L. Renganarayanan, D. Kim, M. M. Strout, and
S. Rajopadhye. Parameterized loop tiling. ACM Trans.
Program. Lang. Syst., 34(1):3:1–3:41, May 2012.

[8] S. Tavarageri, A. Hartono, M. Baskaran, L.-N.
Pouchet, J. Ramanujam, and P. Sadayappan.
Parametric tiling of affine loop nests. In 15th
Workshop on Compilers for Parallel Computing
(CPC’10), Vienna, Austria, July 2010.

[9] J. Xue. Loop tiling for parallelism. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[10] T. Yuki, G. Gupta, D. Kim, T. Pathan, and
S. Rajopadhye. AlphaZ: A System for Design Space
Exploration in the Polyhedral Model. In Proceedings
of the 25th International Workshop on Languages and
Compilers for Parallel Computing, 2012. For more
detail, see http://www.cs.colostate.edu/TechReports/
Reports/2012/tr12-101.pdf.

8

