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Definition (Computation Graph)

A directed acyclic graph in which the nodes represent operations and
edges denote dependences between operations

Definition (Tiling)

Partitioning a computation graph into atomic units of execution
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Iteration spaces, Dependences and Hyperplanes

for (i = 0; i < N; i++){
for ( j = 0; j < N; j++) {
A[j]1 = A[j] + Blil; st
if (i == j)
B[i+1] = A[j]; s

Iteration spaces

D® = {/:

EeZ”,Ai}+bzo}
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Iteration spaces, Dependences and Hyperplanes

for (i = 0; i < N; i++){
for ( j = 0; j < N; j++) {
A[j1 = A[j1 + BILil; s
if (i == j)
B[i+1] = A[j]; s

Dependences

Pe = {(i0, %)

i.e D% i, e Dt,i::he(i_t’),e:s—>t}
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Iteration spaces, Dependences and Hyperplanes

for (i = 0; i < N; i++){
for ( j = 0; j < N; j++) {
A[j1 = A[j1 + BILil; s
if (i == j)
B[i+1] = A[j]; s

Hyperplanes

¢s(g) - H E - ho
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Iteration spaces, Dependences and Hyperplanes

|
| |

| ol ol @ 0| @ - | gt for (i = 0; i < N; i++){

%ﬁ"l;\§f)’ T for ( j =0; j <N; j++) {
”“‘d%' & 9 || A[j]1 = A[j]1 + B[il; s
| L N5 Al if (i == j)

N ? 2 BLi+1] = A[j1; =
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Hyperplanes
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Validity Conditions

Non-Negative Dependence Components

6:(it) — ¢s(is) > 0, (iz, i) € Pe,e: s — t (HD > 0)

@ lrigoin and Triolet, Lim and Lam, Griebl, Pluto
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Validity Conditions

Lexicographically Non-Negative Tile Dependences

|[HD] =0

o Xue

Ravi Teja M (11Sc) Tiling for Dynamic Scheduling January 20, 2014 6 /25



Table of Contents

© Limitations
@ Where do current approaches fail?

Ravi Teja M (11Sc) Tiling for Dynamic Scheduling January 20, 2014 7/25



Conservative Validity Conditions

|
| | | |
L el 0l @ 0| @ - - 1 for (i = 0; i < N; i++){
%&l;\§$)’ T¢ for ( j =0; j < N; j++) {
”“‘d'&h - T 0| A[3] = A[3] + B[il; st
| L N4 Al if (4 == j)
“"\d ® j"?" : B[i+1] = A[j]; s
N 28 e e ) }
= 40 50 >0 |-
——f oo o
+ + + + + + | .
L L L L L L L
— J
¢2

o Negative dependence components along ¢? but tiling is valid
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Conservative Validity Conditions
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——1*\4&}1—4?—‘ S

SIS —rzo——i

e e e e

= 40 50 >0 |-

——f I ‘——1‘r—|‘|——3
‘_\>‘ SN
2

o Negative dependence components along ¢? but tiling is valid
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Conservative Validity Conditions

(s a1
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@ Inter-tile dependences lexicographically negative
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Conservative Validity Conditions

i i
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@ Tile sizes effect validity
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Uniformly Tiling Iteration Spaces

i
s : : ) : : ) : : \ : 1 for (i = 0; i < N; i++){
- 90w > kﬂ*ﬂTqﬁ for (j =0; j <N; j++) {
e e Ny | if (§ > 1)
, ":E | AL = ALGY + ALED; s
-+ el e T 50 - if (§ < i)
i 7“€/ AN | . A[j] = A[3] + Ali]; s
\ |
L L&l |o =& --! }
I I
| T o a o e
oL | .
L L L L
— J
¢2

@ Tile dependence graph has cycles
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Uniformly Tiling Iteration Spaces

| | | | | | | for (i = 0; i < N; i++){
- 0« = = *ﬂ**\T¢1 for ( j = 0; j < N; j++) {
| e 6 8. TN if (j > i)
A[j] = A[3] + Alil; s
- OO 58 | ¥ 50 if (§ < i)

A[3]1 = A[G] + ALLD; =

22N
-

@ Tile dependence graph has cycles
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Uniformly Tiling Iteration Spaces

N \
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@ Splitting breaks cycles
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Dynamic Scheduling
(0.2)(1.2)2.2)

I (2.2}

(1,1)

i

@ Not easy to come up with a static schedule for the tiles

@ Dynamic task scheduler
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General Validity Condition

Definition (Valid Tiling)

A set of hyperplanes ¢!, ¢?, ..., ¢* with tile size 7; for ¢/, is a valid tiling
of an iteration space if the dependence graph of k-dimensional tiles formed
by the hyperplanes with their respective tile sizes is cycle-free.

@ Transitive closure of dependence relations

@ Precise computation might be infeasible
@ Expensive operation even for an approximation

@ Conservative cycle detection

January 20, 2014

Ravi Teja M (11Sc) Tiling for Dynamic Scheduling



Localizing Dependences

{@', ..., 0~} with tile size T; for ¢ is a valid tiling of an iteration space, if
{¢!, ..., 0"} is a valid tiling and ¢* is a valid one-dimensional tiling of
each k — 1 dimensional tile formed by {#', ..., ¢*71}.

¢1

—>
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Localizing Dependences

{@', ..., 0~} with tile size T; for ¢ is a valid tiling of an iteration space, if
{¢!, ..., 0"} is a valid tiling and ¢* is a valid one-dimensional tiling of
each k — 1 dimensional tile formed by {#', ..., ¢*71}.
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Localizing Dependences

Dependences in the transformed space

{<<T_3,...,Tj,i;>,<Tt1,...,Ttk,i;>>|</§,i§>ePe,e:s—H:,
1<I<kmxT/ <o) <m=(T!+1)-1,
T/*T!qui(i:)gﬂ*(ﬂ-l—l)—l}

v

Inter-Tile Dependences

P, denotes the inter-tile dependence polyhedron between k-dimensional
tiles formed by (¢, ..., ¢¥) due to the depedence edge e.
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Localizing Dependences

Dependences in the transformed space

—

(T2 TE AT TERD) 1 (5, 7) € Peyess > t,
1<I<kmxT! <o) <m=(T!+1)-1,
T/*T!qui(i:)gﬂ*(ﬂ-l—l)—l}

v

Inter-Tile Dependences

P, denotes the inter-tile dependence polyhedron between k-dimensional
tiles formed by (¢, ..., ¢¥) due to the depedence edge e.

@ Computed by projecting out dimensions inner to the tiling dimension
¢* (for both source and target statements)
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Localizing Dependences

Restricted Tile Dependence

QK is a subset of PX restricted to the same k — 1 dimensional tile defined
by the k — 1 tiling hyperplanes outer to ¢X.

=

(
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Localizing Dependences

Restricted Tile Dependence

QK is a subset of PX restricted to the same k — 1 dimensional tile defined
by the k — 1 tiling hyperplanes outer to ¢X.

@ QX thus captures dependences between only those k-dimensional tiles
which are in the same k — 1 dimensional tile formed by (%, ..., ¢¥71)

If e is from statement s to statement t, then:

Qi=pPin| N TI=T!
1<I<k—1
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Improved lterative Tiling

1 while 7, > 1 do

| // 1. Check validity of tiling at level k.
- for each e € E do
; | Compute QF for dependence e: s — t.
w // Cis the set of tiles that might be in a
| | cycle
1 : C = CycleCheck(Q¥ for each edge e € E)
| if C =0 then
- i | ‘ // Tiling is valid, move to next level
| =2 ! break
dhEReR SRR . // 2. Attempt to correct tiling
L L L L L L L
— J Tk = (/2]
¢2
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Improved lterative Tiling

e

- GN ¢ Ii/yi
- 0\ L 4 /'lel(yl
F T @ = 021

-® - -0 ¢

1 while 7, > 1 do

// 1. Check validity of tiling at level k.
for each e € E do
| Compute QF for dependence e: s — t.

// Cis the set of tiles that might be in a
cycle

C = CycleCheck(Q¥ for each edge e € E)

if C =0 then
// Tiling is valid, move to next level
break

// 2. Attempt to correct tiling

Tk = (/2]
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1 while 7, > 1 do

I 1. Check validity of tiling at level k.
(7 T T T T N |
| | 990« 8 —* * - Td)l for each e Ekdo
i —ics SN | Compute QX for dependence e: s — t.
B NN o // C is the set of tiles that might be in a
e e ¢ o >0 |- cycle
REED) s 4 C = CycleCheck(Q¥ for each edge e € E)
St J if C =0 then
SEEE =5 o >0 - // Tiling is valid, move to next level
- f "6 6 6 o break
- . . . ./, . // 2. Attempt to correct tiling
L L L L L L L —
— J 1 n=1n2)
¢2

Improved lterative Tiling
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Improved lterative Tiling

1 while 7, > 1 do
B 1. Check validity of tiling at level k.
(7 Y T T N |
| | 290 8 —* * - Td)l for each e Ekdo
i e SuR | Compute QX for dependence e: s — t.
\““dk “\ ’J | // Cis the set of tiles that might be in a
|
F+ o<l O | @ o 9 |- cycle
| :Y\‘:S | C = CycleCheck(Q¥ for each edge e € E)
— J if C =0 then
H+e- - & 56| - // Tiling is valid, move to next level
I f 6 0|6 o break
ol A A . // 2. Attempt to correct tiling
! ! ! ! ! ! ! J = \_Tk/2j
—
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Approximate Cycle Check

Dependences On a Line

Each hyperplane ¢* gives a one-dimensional coordinate for a tile which
can be used to map a tile to a point on a line.

Forward face

Backward face

@ Forward Dependences
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Approximate Cycle Check

Dependences On a Line

Each hyperplane ¢* gives a one-dimensional coordinate for a tile which
can be used to map a tile to a point on a line.

°.

Forward face

Backward face

@ Backward Dependences
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Approximate Cycle Check

Dependences On a Line

Each hyperplane ¢* gives a one-dimensional coordinate for a tile which
can be used to map a tile to a point on a line.

°.

Forward face

Backward face

@ When are there no cycles?
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Approximate Cycle Check

Backward face

Forward face

Backward Violation

TY . . Tk 3713t 3T, (Tk> TF+1) A

TE<TE—1) Mk (Ty =T A

(Ts
(Ts
(TL,..., T (TE, ...,
(TS, ..., T (TS, ...,

S}

TE) € QS e:s—t

TkY e Qe : s — t’}

Ravi Teja M (11Sc)

Tiling for Dynamic Scheduling

January 20, 2014

18 / 25



Approximate Cycle Check

Backward face

Forward face

Forward Violation

Fée/={<T1, IO 3T 3TL AT (TR < TF - 1) A
(TE > Th+1) M<i<k (T = TH A
UTY, TR (T THY e QX eis—t
<<Tsl’7 7Ts’>><T >> Qe/, s — tl}
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Approximate Cycle Check

Input : Tile dependence polyhedra at level k QX for all e € E the set of edges in
the GDG.
Output: Set of tiles that might be part of a cycle
// B set of tiles that satisfy B at level k.
/] F¥ set of tiles that satisfy F at level k.
Bk=0,Fk=10
for each pair (QX, Q) e,e’ € E // e can be equal to €'
do
Compute Bf,,, FX., using QF and QF
Bk = BE, U B
Fk = Fk, UF*
return BX U Fk
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O Applications
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Floyd-Warshall All Pairs Shortest Paths

@ Using additional arrays R and C to remove false dependences in the
All-Pairs Shortest-Paths kernel
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Floyd-Warshall All Pairs Shortest Paths

k
N
I 4"‘4‘&*‘ : ; ‘!”: T(bl
B30
B s<2T 2an- 5 3N
**0€/ - > D**:
|
Réabdiiidudns N
L L L L I
—
¢2

@ All-Pairs Shortest-Paths kernel after removing spurious writes
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Zuker's RNA Secondary Structure Prediction

for (i = N-1; i >= 0; i--) {
for (j = i+1; j < N; j++) {
for (k = 0; k < j-i; k++) {
SCil 03] = MAX(S[il[k+il + S[k+i+1][j], S[il[jD);
}
S[i1[j1 = MAX(sS[il[j], S[i+1]1[j-1] +
can_pair(RNA[i] ,RNA[j1));

@ Complex dynamic programming recurrence
@ 3-d tiling the O(n3) loop nest
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Zuker's RNA Secondary Structure Prediction

for (i = 0; 1 < N; i++){
for ( j = 0; j < i+1l; j++) {
A[i]l = A[i] + A[i-j); s1
} -

T ot

@ Merging tiles

@ Use commutative properties
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Experimental Evalutation

Speedup over seq

18
70 | CnC 2d tiled - GTfold
- CnC 3d tiled s 16 - < CnC 3d tiled
60 . :_:: 14
H %, 12
‘» 10
¢ 8
o
2 6
® a4
2
n 2
] i i i j 0 i i i i j
1 2 4 8 16 32 1 2 4 8 16 32
Number of threads Number of threads
(a) floyd — seq time is 231s (b) zuker — single thread time is 253s

@ Experimental setup is a four socket machine with an AMD Opteron
6136 (2.4 GHz, 128 KB L1, 512 KB L2, 6 MB L3 cache) in each
socket.

Ravi Teja M (11Sc) Tiling for Dynamic Scheduling January 20, 2014 23 /25



Conclusions and Future Work

@ Using improved validity constraints for hyperplane search
@ Integrating splitting techniques
@ More accurate cycle detection
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Thank You!
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