
On the Variety of Static Control Parts in Real-World Programs:
from Affine via Multi-dimensional
to Polynomial and Just-in-Time

Andreas Simbürger
Department of Informatics and Mathematics

University of Passau
andreas.simbuerger@uni-passau.de

Armin Größlinger
Department of Informatics and Mathematics

University of Passau
armin.groesslinger@uni-passau.de

ABSTRACT
The polyhedron model has been used successfully for auto-
matic parallelization of code regions with loop nests satisfying
certain restrictions, so-called static control parts. A popular
implementation of this model is Polly (an extension of the
LLVM compiler), which is able to identify static control parts
in the intermediate representation of the compiler. We look
at static control parts found in 50 real-world programs from
different domains. We study whether these programs are
amenable to polyhedral optimization by Polly at compile
time or at run time. We report the number of static control
parts with uniform or affine dependences found and study ex-
tensions of the current implementation in Polly. We consider
extensions which handle multi-dimensional arrays with para-
metric sizes and arrays represented by “pointer-to-pointer”
constructs. In addition, we extend the modeling capabilities
of Polly to a model using semi-algebraic sets and real al-
gebra instead of polyhedra and linear algebra. We do not
only consider the number and size of the code regions found
but measure the share of the run time the studied programs
spend in the identified regions for each of the classes of static
control parts under study.

Categories and Subject Descriptors
D.2.8 [Metrics]: Performance Measures; D.3.4 [Processors]:
Optimization; F.1.2 [Modes of Computation]: Parallelism
and Concurrency

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Polyhedral Compilation, JIT, Loop Parallelisation, LLVM,
Polly

IMPACT 2014
Fourth International Workshop on Polyhedral Compilation Techniques
Jan 20, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://impact.gforge.inria.fr/impact2014

1. INTRODUCTION
In recent years, multi- and many-core processors have be-

come ubiquitous. The variety of parallel hardware architec-
tures in different CPUs, GPUs, specialized accelerators, etc.
has consequently given rise to a plethora of new programming
languages, programming paradigms and parallel libraries. Al-
though many of these approaches have been shown to be very
successful, the success often comes at the price of requiring
programmers to learn a new language, paradigm or library
for each new hardware (such as GPUs) and each problem
domain, e.g., linear algebra or stencil computations.

Among the new languages, paradigms and libraries there
exist both high-level and low-level approaches. Both have
their respective difficulties. As an example of a low-level
approach consider CUDA or OpenCL for general-purpose
programming on graphics cards. Here, the programming lan-
guage has been quite stable over several hardware generations
but programmers are required to rewrite their codes for newer
hardware generations that have different requirements on the
code to exhibit high performance. On the other hand, high-
level approaches specific to a certain domain do not require
modification of source codes across different hardware since
the knowledge of how to achieve high performance is em-
bedded in the code generator delivered with these systems;
instead, users are required to learn a different system with
its rules for syntax, semantics, etc. for each new domain.

Therefore, the success of these technologies does not make
the aim of achieving automatic parallelization of general-
purpose codes obsolete. Naturally, this is a difficult goal but
advances towards making automatic parallelization successful
for real-world codes, i.e., in production environments where
the parallelizing compiler cannot make optimistic assump-
tions about the code being transformed (such as the absence
of corner cases), have been made in recent years. The projects
Graphite [27] and Polly [16] have brought parallelization
based on the polyhedron model [10] to GCC [11] and LLVM
[21], respectively. Both systems work on the intermediate
representation level, i.e., they are independent of the source
language. This brings the advantage of providing polyhedral
optimizations to all the languages supported by the compiler
framework but, on the other hand, has the disadvantage that,
in general, less information to help the parallelization process
is available.

Over time, the polyhedron model has been extended, orig-
inally limited to uniform dependences, then affine depen-
dences and recently even beyond the restriction to polyhedra
as mathematical device. On the other side, working on the

1

intermediate representation instead of source code brings new
challenges for compilers based on polyhedral analysis. We
analyze real-world programs from different domains to find
out how much of the programs’ run times are spent in code
regions which are amenable to different variants of polyhedral
optimization (so-called static control parts).

This paper is organized as follows. We state our contribu-
tion in Section 1.1 and discuss related work in Section 1.2. In
Section 2, we briefly introduce the polyhedron model and an
extension based on polynomial expressions. Section 3 defines
several classes of code regions that fit different variants of the
model. Sections 4 presents the programs used in our study
and we report and discuss the results of our analysis before
we conclude in Section 5.

1.1 Contribution
We are interested in the question of how much potential

there is for automatic algebraic compilation frameworks in
real-world programs. As a measure for the potential we do
not use the number of lines in the source code or the number
of loops which can be considered for automatic parallelization;
instead, we want to determine the actual share of the run
time which a given program spends in code regions that are
amenable to optimization. A central unit of optimization
in the field of polyhedral compilation is the static control
part (SCoP, cf. Section 2). The number of SCoPs that can
be optimized depends on the choice of the mathematical
framework (usually polyhedral, but we consider extensions
thereof) and the time of the optimization (compile time or
run time).

In our own previous work [26], we have studied how much of
the run time of real-world programs is amenable to polyhedral
optimization (using Polly) at compile time compared to how
much is amenable to polyhedral optimization at run time,
e.g., using a just-in-time compiler. With the present work,
we contribute our analysis concerning

• how many of the SCoPs detected at compile time have
uniform dependences compared to affine dependences,

• whether it is possible to detect multi-dimensional ar-
rays represented by pointer-to-pointer constructs (in-
stead of using a contiguous memory block for the multi-
dimensional array),

• an algorithm to detect some multi-dimensional array ac-
cesses (not represented by pointer-to-pointer constructs)
from the linearized array representation used in LLVM,
and how many such multi-dimensional array accesses
can be reconstructed in the programs studied,

• the run-time share amenable to analysis based on semi-
algebraic sets (instead of polyhedral analysis).

In addition, we repeat some of the experiments from our
previous work [26] with the current versions of LLVM,Clang
(LLVM’s C language frontend) and Polly1 for comparison
with the other numbers in the present work.

1.2 Related Work
Not so many studies about the potential for automatic

parallelization over a variety of real-world programs have
been conducted so far. One such study has been done by

1Current on 2013-10-24.

Alnaeli et al. [1]. They studied the parallelizability of 11
open-source software systems and concluded that function
calls with side-effects inside loops are a major problem but
they did not analyze the fraction of the run time spent in
loops.

Doerfert et al. [9] already experimented with the applica-
tion of the polyhedron model at run time. In their work, they
implemented a subset of our class Dynamic, i.e., dealing with
non-affine parameters, and showed interesting speedups on
the Polybench benchmark suite.

Several approaches are viable to increase the run-time frac-
tion amenable to automatic optimization. One is to stretch
the modeling capabilities of the polyhedron model. Griebl [13]
presented an extension which models while loops as un-
bounded for loops and additional write accesses. Benab-
derrahmane et al. [2] model arbitrary, non-recursive, control
flow within a SCoP at compile at the cost of introducing
data dependences where control dependences may exist. The
data dependences introduced in these approaches reduce the
potential for parallelization. In contrast, we study the ap-
plicability of the polyhedron model at compile time and at
run time, and a more powerful compile time model based on
semi-algebraic sets.

There are many well-known polyhedral optimizers/paral-
lelizers which work on source code, e.g., [14, 4, 25] and several
others. But these tools need additional information (apart
from the source code) because the correctness of the paral-
lelization depends on non-trivial properties of the code, e.g.,
the absence of pointer aliasing or the side-effect freeness of
functions called. Usually, these properties have to be asserted
by the user or the tool optimistically relies on their validity.
In contrast, we aim at characterizing the potential of the
approaches we compare on real-world codes; therefore, we
work on intermediate code and non-trivial properties (such
as the absence of pointer aliasing) must be proved by the
compiler’s program analyses before relying on them. There
are other compiler frameworks apart from LLVM which have
interfaces to polyhedral analysis and optimization on the in-
termediate representation level, e.g., GCC via Graphite [27],
Open64 via Wrap-IT [12], R-Stream [20] and the IBM XL
compiler [3].

Run-time polyhedral optimization is becoming a topic of
recent studies, such as by Jimborean [19] which merges poly-
hedral and speculative optimization techniques. In our own
previous work, we conducted a study focusing on the potential
of just-in-time polyhedral optimization [26].

Recognizing multi-dimensional array accesses in the inter-
mediate representation (where accesses are linearized) is, in
general, a hard problem. There has been some discussion [15]
and, very recently, first patches have been proposed [24] for
Polly to start dealing with this problem. This is indepen-
dent of our presented work as we use real algebra to estimate
how many such accesses can be discovered by the heuristic we
propose. Maslov [22] proposed an algorithm to “delinearize”
affine dependence equations by breaking them into several
equations. This algorithm works on the coefficients of the
loop iterators occurring in the dependence equations and uses
integer operations such as greatest common divisor on these
coefficients; therefore, it is not obvious whether the presented
technique can be applied to recognize multi-dimensional ar-
ray accesses with parametric array sizes. Maslov and Pugh
[23] also presented an algorithm to simplify certain poly-
nomial dependence constraints to affine constraints. This

2

technique and symbolic Bernstein expansion [7] may provide
alternatives to our use of quantifier elimination in the real
numbers to test our sufficient condition for delinearization
(cf. Section 3.5).

Wu et al. [29] presented an algorithm to perform instance-
wise alias analysis for arrays represented by pointer-to-pointer
constructs. Our results (cf. Section 4.3) show that such tech-
niques are needed to increase the applicability of polyhedral
compilation on real-world codes.

2. BACKGROUND

2.1 Polyhedron Model
The polyhedron model [10] tries to capture the essence

of a loop nest with n loops and statements inside the nest
by representing the iterations of the loops and the data de-
pendences between loop iterations as sets and relations over
an n-dimensional space. Each loop iteration corresponds to
a point ~i ∈ Zn where the components of ~i correspond to
the values of the loop iterators. The set of all iterations
for which a statement executes is called the domain of the
statement. For illustration, such a loop nest is shown in Fig-
ure 1. Here, the domains for the two statements S and T
are given by DT = {(i, j) : 1 ≤ i ≤ n ∧ i ≤ j ≤ n} and
DS = DT ∩ {(i, j) : i ≥ n− j}.

By transforming the domains, i.e., changing the shape of the
sets and the enumeration order of the points, optimizations
can be expressed. For example, parallelization means that,
after transformation, one or several dimensions are mapped
to a parallel loop instead of a sequential one. To guarantee the
correctness of the transformed code, the transformation must
not violate the data dependences of the original code, i.e., the
order of operations accessing the same memory cell (involving
at least one write access) must not be changed. This order is
expressed as a relation on the iteration domains which relates
dependent operations (the later access in the original code) to
its source. The power of the polyhedral model comes from the
fact that one can perform an optimizing search for the best
transformation maximizing a given objective function, e.g., to
maximize parallelism, under the constraint that dependences
are not violated.

Code regions which can be described in terms of domains
and dependence relations are called static control parts (SCoPs).
“Static control”refers to the fact that the control flow and data
dependences can be computed at compile time and described
by a finite set of (parametric) expressions. To compute the
domains and dependences, the mathematical formalism used
must be decidable, i.e., it must be possible to algorithmically
compute the dependences, solve the optimization problem
which describes the transformation one wants to perform,
and generate code from the transformed model.

The computability requirement is a hard constraint. The
polyhedron model derives its name from the fact that when
one uses affine expressions (linear expressions plus a constant)
in the loop bounds and one only allows arrays with affine
subscripts, then linear algebra and integer linear program-
ming can be used to compute dependences, find optimizing
transformations and generate code for the transformed model.
The restriction to affine expressions gives the model its name,
polyhedron model, as the domains and dependence relations
are, geometrically, (Z-)polyhedra.

In the example in Figure 1, determining the dependences
by pure polyhedral means is not possible. To determine the

1 for (int i=1; i<=n; ++i)
2 for (int j=i; j<=n; ++j) {
3 i f (i >= n-j)
4 S: A[i][i+n] = B[n*i];
5 T: B[i] = A[2*i+n+1][j];
6 }

Figure 1: A (non-affine) static control part (SCoP)

data dependences between statements S and T induced by
array B, one has to solve the equation n · i = i′ (considering
iteration (i, j) of S and (i′, j′) of T) w.r.t. the constraints
given by the domains of S and T . Due to the parametrization
with n in the term n · i, the equation cannot be solved by
affine methods and, hence, the problem is not polyhedral.
To come around this complication, different approaches are
possible:

• Polyhedral analysis can be performed at run time (in-
stead of compile time). Then, the value for the param-
eter n is known and the problem becomes affine.

• If the non-affine array subscript expression is equiv-
alent to a multi-dimensional subscript, then polyhe-
dral analysis can be performed (given that an equiv-
alent multi-dimensional expression can be computed).
In the example, the two accesses B[n*i] and B[i’]

can equivalently be modeled by two-dimensional ac-
cesses since i′ is in the range [1, n], i.e., the minimal
and maximal values for i′ differ by less than n. There-
fore, the accesses are equivalent to a two-dimensional
array with an inner dimension with n elements. But
since the range does not start at 0, the actual modeling
is not immediately obvious (e.g., it is not B[i][0] and
B[0][i’] as this implies i = i′ = 0 but that is not the
solution of the original problem which is i = 1, i′ = n).
Since constructing equivalent multi-dimensional arrays
accesses is non-trivial and, to be able to compute depen-
dences, not strictly necessary, we restrict our attention
to developing a sufficient condition which allows us to
delinearize the dependence equation (cf. Section 3.5).

• A more powerful mathematical framework is used. A
formalism able to deal with polynomials instead of affine
expressions and satisfying the computability criterion
can be used to handle such non-polyhedral problems.

We study all three approaches (with quantifier elimination in
the real numbers as a non-polyhedral formalism), cf. Section 3.
We now briefly introduce semi-algebraic sets and quantifier
elimination.

2.2 Semi-Algebraic Sets and Quantifier Elim-
ination

The restriction to affine expressions guarantees that mod-
eling, transformation and code generation are computable.
Instead of affine expressions, one can allow arbitrary poly-
nomials in the iterators and problem parameters, i.e., loop
bounds and array accesses such as n · i for an iterator i and
a parameter n are then admissible. The drawback of this
approach is that, in general, it is not possible to compute
the integral solutions of polynomial equality and inequality
systems because this would imply the solvability of Hilbert’s

3

10th problem (which is known to be unsolvable [8]). In previ-
ous work [17], we have shown that it is nevertheless possible
to model loops, transform them and generate target code for
the transformed loops.

The main tool in this generalization of the polyhedron
model is quantifier elimination in the real numbers. Quanti-
fier elimination means that for any formula ϕ with universal
and existential quantifiers and the usual logical connectives
(∧, ∨, →, ¬) over polynomial (in)equalities, there exists an
equivalent formula without quantifiers. For example, to deter-
mine whether dependences exist between the array accesses
to B in Figure 1 (with the access in S happening before the
access in T , i.e., i ≤ i′− 1), we can use the following formula:

∃i∃j∃i′∃j′
(
n · i = i′ ∧ (i, j) ∈ DS ∧ (i′, j′) ∈ DT ∧ i ≤ i′ − 1).

Applying quantifier elimination will give us an equivalent
formula without quantifiers, i.e., the only remaining indeter-
minate is n, so the result gives the conditions on n for the
existence of dependences (here: n ≥ 2). By using quantifier-
elimination with answer (i.e., solutions for the existentially
quantified variables are computed) we can also get a descrip-
tion of the dependences (here: i = 1, i′ = n); for details we
refer to the literature [17].

Quantifier elimination can be applied to arbitrary formulas
(as stated above) but is an expensive operation (doubly expo-
nential in the number of quantifiers in the worst case). We use
Qepcad [5] to perform quantifier elimination. When an elim-
ination problem happens to be affine, we call Verdoolaege’s
integer set library [28] to get the result faster (and profit
from its ability to compute in the integers instead of the real
numbers). In our experimental study, quantifier elimination
needed up to several seconds to solve the problems given to
it arising from our algorithm in Section 3.5.

2.3 Polly
We have chosen to use Polly to analyze the programs we

study as we are aiming for real-world programs and do not
want to make any optimistic assumptions about the code a
compiler does not have access to. Since Polly is based on
LLVM, it inherits some limitations from LLVM that influence
how many SCoPs can be detected:

• Polly uses LLVM’s scalar evolution analysis to com-
pute loop bounds and array subscripts. LLVM’s imple-
mentation of scalar evolution does not seem to handle
all cases of polynomial expressions.

• Array subscripts are linearized in the intermediate rep-
resentation, i.e., there are, a priori, no multi-dimensional
arrays with parametric sizes for the inner dimensions
in Polly. When the sizes of inner dimensions are fixed
numbers, a multi-dimensional array access can trivially
be represented by a single affine subscript (i.e., A[i][j]
is equivalent to A[100 · i+ j] when the inner dimension
of A is declared to have 100 elements) and Polly can
model these cases.

• Polly relies on LLVM’s alias analysis to check whether
two memory accesses (derived from different base point-
ers) can alias or not. The effectiveness of alias analysis
also depends on whether the language frontend passes
the information it has over to the intermediate repre-
sentation.

When presenting our classification of SCoPs (Section 3) we
refer to the respective limitation that is relevant for the given
class.

For multi-dimensional array accesses the question is how to
recognize them. In some cases, the sequence of instructions in
the intermediate representation reveals the multi-dimensional
nature of an access. For example, the C language frontend
Clang uses the following sequence to implement the ad-
dress computation for an array access A[i][j] (where A is
declared as f loat A[][n]):

1 %0 = mul nsw i32 %i, %n
2 %idx = getelementptr f loat* %A, i32 %0
3 %idx1 = getelementptr f loat* %idx, i32 %j

The two address computations for the row address A[i] (i.e.,
n*i+A in %idx) and for A[i][j] (in %idx1) make it quite
“obvious” that the access is two-dimensional. But turning on
optimizations (e.g., using the -O1 option of Clang) changes
the sequence into:

1 %0 = mul nsw i32 %i, %n
2 %idx.s = add i32 %0, %j
3 %idx1 = getelementptr f loat* %A, i32 %idx.s

Here, the expression n · i+ j is computed first and its value is
used as an index into the array A. Therefore, it is not obvious
anymore that this represents a multi-dimensional array access.
This second method to compute the access to the array ele-
ment is also found in code where multi-dimensional accesses
have been linearized by hand. Following this observation, we
do not try to recognize multi-dimensional array accesses in
the intermediate representation directly but keep Polly’s
use of scalar evolution analysis to find the address which
is accessed. In both cases for the above example, LLVM’s
scalar evolution analysis computes the address as n*i+j+A.
Working with these expressions has the additional benefit
that overflows in the inner dimensions of the access (e.g.,
A[0][n] aliases A[1][0]) are captured by them (n · 0 + n
equals 1 · n + 0) and we do not need to rely on (or try to
check) that no overflows occur.

3. CLASSIFICATION OF STATIC CONTROL
PARTS

The successful detection of SCoPs depends on two factors.
First, is the detection performed at compile time or at run
time? Second, which extensions are applied to the model to
overcome certain restrictions, e.g., to deal with non-affine
expressions. We introduce five classes of SCoPs which we
address and compare in our study. When we say that a class
A is smaller than a class B, we mean that the code regions
covered by B encompass the regions covered by A. Formally,
a class B encompasses class A if every SCoP a ∈ A is either
an element of B or there exists a SCoP b ∈ B such that b
encompasses the code region of SCoP a. This implies that
when class B encompasses class A the number of SCoPs in B
can be less than the number of SCoPs in A (because several
SCoPs of class A are covered by one SCoP in class B). In
order to be able to compare the sizes of the different classes in
our study, our implementation does not combine the SCoPs
that belong to class Static with other SCoPs when the SCoPs
of a bigger class are determined. Therefore, the SCoPs in all
classes apart from Static are not always maximal (as is usual
in the definition of SCoPs). This is irrelevant for our study.

4

When applying optimizations to SCoPs one would naturally
prefer SCoPs to be as big as possible.

3.1 Class Static
This class covers all SCoPs that are found by Polly (with-

out modifications) on the intermediate representation. All
arrays detected in SCoPs are one-dimensional, i.e., multi-
dimensional arrays are only found when the sizes of the inner
dimensions are compile-time constants. Arrays represented
by pointer-to-pointer constructs are not considered. In our
analysis, we also determine the SCoPs within this class which
have only uniform dependences (i.e., the distance between
source and target of a dependence is constant). SCoPs with
uniform dependences have stronger properties and require
less expensive algorithms to transform.

3.2 Pointer-to-Pointer Arrays (Class Ptr)
This class is an extension of class Static which allows

pointer-to-pointer constructs for multi-dimensional arrays.
On the implementation side, this only requires a few changes
in Polly. The main restriction for valid modeling is the
absence of aliasing between the pointers in outer array di-
mensions. Consider a pointer to pointer A and a statement
using this pointer:

1 f loat **A;
2 A[i][j] = A[i-1][j-1];

A can only be modeled as a two-dimensional array when it
is known that the inner arrays do not alias, i.e., the arrays
pointed to by A[i] for different i do not overlap each other.
In addition, the outer dimension of A should not alias with
other pointers/arrays. In the C language, this can be ex-
pressed by using the restrict keyword,2 i.e., by declaring
the pointer as

1 f loat *restrict *restrict A;

Unfortunately, the current version of LLVM’s C frontend
(Clang) does not seem to take advantage of the restrict

keyword except for function arguments and, for function argu-
ments, only for the outermost dimension. Therefore, LLVM’s
alias analysis does not currently profit from the presence
of restrict annotations in pointer-to-pointer constructs.
This makes it unlikely to find actual instances of pointer-to-
pointer arrays that can be modeled. For our study, we also
determined an optimistic number for the pointer to pointer
arrays by disabling Polly’s check for aliasing.

3.3 Class Dynamic
To increase the number of SCoPs that can be handled, one

can think of optimization at run time. Some code regions
which cannot be proved at compile time to be SCoPs may
turn out to be SCoPs at run time. This is due to the fact
that at run time more information is available. In particular,
three pieces of information can be exploited at run time:

1. Values of parameters. This allows to handle, e.g., ex-
pressions of the form n·i, which are not affine at compile
time but become affine as soon as the value for n is
known.

2. Aliasing. The values for pointers are known at run time,
i.e., it can be determined whether two arrays alias or

2The precise semantics of restrict is more complex but
the details are not relevant here.

not. In case of aliasing, both arrays can be modeled as
a single array (with different, constant offsets into the
single array).

3. Control flow and side effects. Control flow may depend
on run-time values (other than parameters), and func-
tions called inside a SCoP candidate may have side
effects. In some cases, the control flow becomes static
(in the sense of a SCoP) and the side effects of func-
tions called can be modeled by polyhedral means when
modeling is done at run time.

For a more elaborate discussion of class Dynamic, we refer
the reader to our previous work [26]. In class Dynamic, we
allow all code regions for which we can determine at compile
time that they become SCoPs when reached at run time.
Clearly, class Dynamic is bigger than class Static.

3.4 Class Algebraic
In this class, we permit all code regions that satisfy the

same requirements as needed for class Static, with the ex-
ception that arbitrary polynomials in the loop iterators and
parameters are allowed. This enables, for example, n · i in
array subscripts and loop bounds. The name of this class
comes from the fact that subsets of Rn defined by polyno-
mial (in)equalities are called semi-algebraic.

To extract loop bounds and array subscripts we rely on the
scalar evolution analysis present in LLVM (as does Polly).
Due to limitations in the implementation, LLVM cannot cur-
rently detect products between iterators in the general case,
i.e., i2 is not supported. We consider this a minor limitation
for class Algebraic as we assume that products between it-
erators rarely occur in practice. With this limitation, class
Algebraic is expected to lie between classes Static and Dy-
namic.

3.5 Multi-dimensional Array Accesses
A major improvement of Polly would be to support multi-

dimensional arrays (with contiguous layout, i.e., not repre-
sented by pointer to pointer constructs). Multi-dimensional ar-
ray accesses are linearized in the intermediate representation,
e.g., A[i][j] is represented as A[n*i+j] with n being the
size of the inner dimension. Reconstructing multi-dimensional
accesses from their linearization is non-trivial. For example,
A[n*i+i+j] could be A[i][i+j] with the inner dimension
having a size of n or A[i+1][j] with the inner dimension
having size n+1 (because n*i+i+j equals (n+1)*i+j). The
delinearization performed must be consistent across all the
accesses concerned, i.e., the sizes of the inner dimensions must
be the same, and must take care of overflows in the inner
dimensions’ indices.

We do not give a solution for the general delinearization
problem. Instead, we propose sufficient conditions for reduc-
ing the dependence analysis problem to affine conditions. For
dependence analysis, it is sufficient to deal with two array
accesses at a time. Consider two accesses to the same array
with linearized subscripts a and a′, both polynomials (with

integer coefficients) in the iterators~i and ~i′, respectively, and
the parameters. To compute the dependences, one has to
solve the equation a = a′ (under the additional constraint

that the iterators lie in their respective domains, i.e., ~i ∈ D

5

and ~i′ ∈ D′). Our proposed heuristic tries to rewrite a− a′
as a sum of products

a− a′ =

k∑
x=1

πxγx (1)

where the πx are polynomials in the parameters and the
γx are affine expressions in the iterators, both with integer
coefficients, and the summands πxγx obey the following total
ordering condition:

∀~i ∈ D, ~i′ ∈ D′ : |πxγx| ≤ |πx+1| − 1 for 1 ≤ x < k (2)

When (1) and (2) hold, a− a′ = 0 is equivalent to

γ1 = 0 ∧ · · · ∧ γk = 0

because the πx and γx are integer-valued expressions. Since
the γx are affine expressions, this system can be solved using
polyhedral methods.

The obvious prerequisite is that a − a′ does not contain
products between iterators (which are unlikely). To derive
the πx and γx, we apply a three step heuristic:

1. Split the polynomial a− a′ into its terms, i.e., a− a′ =∑l
x=1 tx where each tx is a product of iterators and

parameters (and a constant).
2. Group terms by their parameters (as much as possible),

i.e., a − a′ =
∑m

x=1 ρxγx where each ρx is a product
of parameters (or a constant) and each γx is an affine
expression in the iterators. The GCD of the coefficients
in γx should be 1 (i.e., a common constant factor of the
coefficients is moved to ρx).

3. Factor out common γx (as much as possible), i.e., a−
a′ =

∑k
x=1 πxγx where πx are polynomials in the pa-

rameters.

After deriving the πx and γx, the total ordering required by
(2) has to be checked. Since the expressions πx · γx are not
affine (when a− a′ is not affine) we cannot use integer linear
programming to check these conditions in general. But it is
possible to use quantifier elimination in the real numbers to
do so (Bernstein expansion [7] or the technique of [23] may
be used alternatively but we have not tried these approaches).
We give the quantifier elimination the decision problem

∀~i, ~i′, ~p (~i ∈ D ∧ ~i′ ∈ D′ → |πxγx| ≤ |πy| − 1)

to check if πxγx precedes πyγy in the final order. By asking
several such questions we check that a total ordering of the
πxγx as required by (2) exists. Using quantifier elimination
in the real numbers ignores the integrality of the variables
but as we check inequalities this is a minor loss of precision.
Our heuristic works well at least for simpler cases, e.g., it
correctly delinearizes the dependence equations for matrix-
matrix multiply with parametric array sizes.

Example: Consider the two accesses A[(n+2+m)*i] and
A[i’+2*m+2*n] . Here, a− a′ is ni+ 2i+mi− i′ − 2m− 2n
and the terms in Step 1 are ni, 2i, mi, −i′, −2m, −2n. Step 2
(factoring out parameters) yields a−a′ = n(i−2)+m(i−2)+
1(2i− i′). Step 3 (factoring out common expressions in the
iterators, here: i−2) yields a−a′ = (n+m)(i−2)+1(2i− i′).
Finally, we check if the loop bounds imply that |1(2i− i′)| ≤
|n+m| − 1 (formally, we would also check the (unlikely) case
that |(n+m)(i− 2)| ≤ |1| − 1 holds). If so, then a− a′ = 0
is equivalent to i− 2 = 0 ∧ 2i− i′ = 0, i.e., i = 2 and i′ = 4.

In our implementation, we find SCoPs belonging to class
Multi by checking for SCoPs in class Algebraic if the iteration
domains are affine and our heuristic finds that the differences
between array subscripts required for dependence analysis
satisfy the conditions of (1) and (2). Therefore, class Multi
lies between classes Static and Algebraic.

4. STUDY

4.1 Measurement Methodology
We are interested in how much run time the programs

we study spend in SCoPs of the different classes we have
introduced. To estimate the potential for optimization in
each class, we measure the fraction of the run time spent in
SCoPs. We call this number (given in %) the execution SCoP
coverage (ExecCov) (see also [26]).

Our experiments measure the execution SCoP coverage of
each program in the classes Static (ExecCovStat), Algebraic
(ExecCovAlg), and Dynamic (ExecCovDyn) using instrumen-
tation. We have chosen instrumentation based on the Per-
formance Application Programming Interface (PAPI) [6]. It
allows us to retrieve timing information precisely at each en-
try and each exit edge of a SCoP with high-precision timers.
Among the different clock variants offered by PAPI, we have
chosen virtual time for our measurements. Virtual time con-
sists of a process’s actual execution time in user mode (user
time) and time spent in privileged mode (system time). There-
fore, using virtual timers we measure the time a process ac-
tually spends executing, both for the total run time and for
the time spent in SCoPs. We have calibrated the overhead
of our instrumentation and subtracted the overhead before
computing the ratio between the time spent in SCoPs and
the absolute run time of a program. Due to fluctuations in
run times between different runs and the slight influence of
the instrumentation on the run times (after subtracting the
instrumentation overhead) it is possible that, for a particular
program, an ExecCov number for a bigger class is reported
to be slightly lower than that of a smaller class.

In addition to the execution SCoP coverage, we also report
the number of SCoPs detected in each class and, for class
Static, the number of SCoPs with no dependences at all,
with uniform dependences only and with arbitrary affine
dependences.

4.2 Programs Studied
The programs under study were selected from an unbiased

selection of open-source programs. We considered programs
of seven domains, of which not all are typical targets of poly-
hedral optimization (Compilation, Compression, Database,
Verification).

The programs have been run with the test inputs supplied
with the program package. In case of more than one input
for a particular program, the measurements have been ag-
gregated over the different runs. The absolute run times of
the programs range from 105 microseconds to 700 seconds.
Due to the use of high-precision timers with nanosecond res-
olution we can assume that, even for the shorter program
runs, measurements are meaningful. All measurements were
performed on an AMD Phenom II X4 965 CPU and 8GB
RAM under Linux with the measured process running in
schedule class SCHED_FIFO to minimize the influence of other
processes on the system.

6

4.3 Results
The aggregated results can be found in Table 1. The ab-

breviated column names show the number of SCoPs and
dependences as well as the execution SCoP coverages found
in our experiments.

The numbers for classes Static and Dynamic differ from
the numbers given in our previous study [26] and not all
programs are present. This is due partly to changes in Polly
and LLVM that affect the number of SCoPs detected and
whether we can run the programs with our infrastructure
correctly. The detection of SCoPs is very sensitive to the
selection and ordering of preparational phases run before the
actual SCoP detection. For example, the current version of
Polly does not rely on SCoPs to be in single-entry single-
exit regions anymore but the lifting of this restriction can
make the construction of canonical induction variables more
difficult, leading to changes in the number of SCoPs detected.

The first group of columns shows the number of SCoPs
found in the different classes:

Sst: No. of SCoPs found in class Static.
Spp: No. of SCoPs with pointer-to-pointer array accesses (i.e.,

the increment of Ptr over Static).
Sppa: As Spp, but without aliasing checks.
Smd: No. of SCoPs containing multi-dimensional arrays (i.e.,

the increment of class Multi over Static).
Sna: No. of non-affine SCoPs (i.e., the increment of class

Algebraic over Static).
Sjit: No. of SCoPs belonging to class Dynamic but not to

class Static.

Note that Spp, Sppa, Smd, Sna and Sjit give the number of
additional SCoPs compared to Static.

The second group of columns shows detailed information
about the dependences found in class Static:

Snd: No. of SCoPs without dependences in class Static.
Su: No. of SCoPs with uniform dependences only in class

Static.
Sa: No. of SCoPs with affine dependences in class Static.
du: No. of uniform dependences in class Static.
da: No. of (non-uniform) affine dependences in class Static.

Furthermore, the third and fourth group of columns shows
the ExecCov of uniform (tu) and affine (ta) SCoPs in class
Static, as well as the ExecCov of all experiments in the three
classes Static, Algebraic, and Dynamic:

tu: ExecCov of uniform SCoPs.
ta: ExecCov of (non-uniform) affine SCoPs.
Stat: ExecCov of class Static.
Alg: ExecCov of class Algebraic.
Dyn: ExecCov of class Dynamic.

When comparing the numbers of SCoPs found in the code
against the values for ExecCov , one has to keep in mind that it
is not guaranteed in our experiments that all SCoPs detected
are executed at run time. Which SCoPs are executed depends
on the program input and we decided to use the testinput(s)
provided by the developers of the respective projects.

Figure 2 shows that the number of additional SCoPs de-
tected in class Algebraic (compared to Static) is very low.
This is against our expectation that expressions of the form
A[n*i] are used at least occasionally in real-world code. Only

in 10 out of 50 experiments a small number of non-affine ex-
pressions (between 2 and 37) was detected. Interestingly, the
few SCoPs in class Algebraic for povray cover 41% of the
run time. Only the lapack programs (xeig∗ and xlin∗ in
Table 1) and two codes in class Encryption exhibit a number
of algebraic SCoPs comparable to the number of SCoPs in
class Static but, unfortunately, these SCoPs do not seem to
contribute to the execution coverage significantly. The subset
Multi (which contains SCoPs with multi-dimensional array
accesses according to our definition in Section 3.5) of Alge-
braic is even smaller. Only in 2 out of 50 experiments could
we find Multi to be bigger than Static (by 1 and 3 SCoPs, re-
spectively). Considering this, the increase of ExecCov in class
Dynamic is possible because of sufficient information about
the existence of aliasing and side-effects of function calls.

In contrast to this, 22 experiments out of 50 include more
SCoPs, if support for multi-dimensional arrays based on pointer-
to-pointer accesses is added (Class Ptr). The number of
SCoPs detected is (optimistically) increased further when
aliasing is ignored by Polly.

The reasons for not detecting more polynomial expressions
and multi-dimensional array accesses are not completely clear
at the moment. We have done a preliminary investigation
which suggests that the construction of canonical induction
variables in Polly is very sensitive to the optimization flags
and preparational phases run before Polly’s SCoP detection.
Making induction variable construction and the whole pro-
cess of SCoP detection more robust is an aim for our further
research. In addition, some codes (e.g., some lapack routines)
take separate parameters for the size of the iteration domain
and the array sizes. Here, we cannot statically prove that the
accesses do not overflow and, hence, cannot consider the ar-
ray accesses to be multi-dimensional. It would be possible to
compute the conditions on the parameters required to make
the accesses multi-dimensional using quantifier elimination
but we have not studied this. Finally, improving alias analy-
sis in LLVM to enhance the support for pointer-to-pointer
constructs, e.g., by implementing the technique presented in
[29], is also a topic for further study.

For two programs, we could not determine run times: lev-
eldb uses threads extensively and this is currently not sup-
ported by our framework; lammps could not be run due to
technical complications when linking the final executable.
blowfish did not contain any SCoPs we could detect, so
ExecCov is zero for all classes. The ExecCov numbers deter-
mined show that in several cases the share of the run time
amenable to polyhedral optimizations can be increased sig-
nificantly when SCoPs are detected at run time instead of
compile time.

5. CONCLUSIONS
We have studied 50 programs from different domains and

reported on how many static control parts (SCoPs) can be
found with different techniques and how much of their run
times the programs spend in SCoPs. We have based our
work on LLVM and Polly. We confirm our previous finding
that performing polyhedral analysis at run time instead of
at compile time can significantly increase the potential for
polyhedral optimizations for some programs. For the com-
pile time approach we have counted the number of SCoPs
with no dependences, only uniform dependences and arbi-
trary affine dependences. As Polly is currently limited to
one-dimensional array accesses (with an affine subscript),

7

● ●●● ●●

●

●
●

● ●

●

● ●●

●
●●

● ●

●

● ●●

● ●●

● ●
●

● ●●

●

●

●

●
●

●

●
●

●

● ●

●

● ●●

● ●
●

●
●

●

● ●●
● ●

●

● ●

●

●
●

●

● ●●

● ●

●

● ●●●

●

●

● ●

●

● ●●

● ●

●

●

●

●

● ●●

● ●

●

●

●
●

● ●

●

●
●

●

● ●●

●
●

●

● ●●● ●

●

● ●

●

● ●

●

● ●

●

● ●●

● ●●

● ●

●

●
●

●

● ●

●

●

●

●

● ●●0

20

40

60

80

 Static Dynamic Algebraic
Class

E
xe

cC
ov

 [%
]

Figure 2: Distributions of ExecCov for Static, Dynamic, and
Algebraic as violin plots [18] (combination of box plots and
kernel density plots). The low end of the box represents the
lower quartile (25 percentile), the top end the upper quartile
(75 percentile). The bottom/top whiskers mark the lowest/
highest datum in the 1.5 interquartile range of the lower/
upper quartile. The band inside the box denotes the median.
The violin shape around the box describes the estimated
probability density of the data at different points. The grey
violin shapes for Static, Dynamic, and Algebraic cover the
same area.

we explored whether one can target a bigger share of the
run time by allowing three extensions: multi-dimensional
arrays represented by pointer-to-pointer constructs, multi-
dimensional arrays with linearized subscripts and SCoPs with
arbitrary polynomials (instead of affine expressions) for the
loop bounds and array subscripts. The numbers we observed
in our measurements suggest that further research is neces-
sary. We found that allowing pointer-to-pointer constructs
may significantly increase the applicability of polyhedral op-
timization. Unfortunately, LLVM is currently not able to
prove the absence of aliasing between the pointers to inner
array dimensions; therefore, a significant number of pointer-
to-pointer constructs is only detected when aliasing checks
are turned off. We find that allowing polynomials instead
of affine expressions does currenetly not give a significant
increase (with a few exceptions) in the potential for opti-
mization; this is surprising as one could expect linearized
multi-dimensional arrays with parametric sizes to occur in
practice. Our preliminary analysis of this situation suggests
that the success of Polly’s SCoP detection, especially for
SCoPs with polynomial expressions, is very sensitive to the
selection and ordering of preparational passes run. As a next
step, we plan to research the detailed cases for not detecting
polynomial expressions and multi-dimensional arrays to make
more code amenable to polyhedral optimization in Polly.

Acknowledgments
The authors would like to thank Florian Sattler for imple-
menting the uniform/affine SCoP classification. This work
has been supported by German Research Foundation (DFG)
grants LE 912/14-1 and GR 4253/1-1 (project “PolyJIT”).

6. REFERENCES

[1] S. M. Alnaeli, A. Alali, and J. I. Maletic. Empirically
examining the parallelizability of open source software
systems. In Proc. Int’l Conf. Working Conference
Reverse Engineering (WCRE), pages 377–386. IEEE
CS, 2012.

[2] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In Proc. Int’l Conf.
Compiler Construction (CC), volume 6011 of LNCS,
pages 283–303. Springer, 2010.

[3] U. Bondhugula, O. Gunluk, S. Dash, and
L. Renganarayanan. A model for fusion and code
motion in an automatic parallelizing compiler. In Proc.
Int’l Conf. Parallel Architecture and Compilation
Techniques (PACT), pages 343–352. ACM, 2010.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In Proc. Int’l Conf.
Programming Language Design and Implementation
(PLDI), pages 101–113. ACM, 2008.

[5] C. W. Brown. QEPCAD B: a program for computing
with semi-algebraic sets using CADs. SIGSAM Bull.,
37(4):97–108, 2003.

[6] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. Int’l J.
High Performance Computing Applications,
14(3):189–204, 2000.

[7] P. Clauss and I. Tchoupaeva. A symbolic approach to
bernstein expansion for program analysis and
optimization. In E. Duesterwald, editor, Compiler
Construction, volume 2985 of Lecture Notes in
Computer Science, pages 120–133. Springer Berlin
Heidelberg, 2004.

[8] M. Davis. Hilbert’s tenth problem is unsolvable.
American Mathematical Monthly, 80:233–269, 1973.

[9] J. Doerfert, C. Hammacher, K. Streit, and S. Hack.
SPolly: Speculative Optimizations in the Polyhedral
Model. In Proc. Int’l Workshop Polyhedral Compilation
Techniques (IMPACT), pages 55–61, 2013.

[10] P. Feautrier and C. Lengauer. Polyhedron model. In
Encyclopedia of Parallel Computing, pages 1581–1592.
Springer, 2011.

[11] GNU Compiler Collection. http://gcc.gnu.org/.

[12] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. Int’l J. Parallel
Programming, 34:261–317, 2006.

[13] M. Griebl and C. Lengauer. On the space-time
mapping of while-loops. Parallel Processing Letters,
4(3):221–232, 1994.

[14] M. Griebl and C. Lengauer. The loop parallelizer
LooPo—Announcement. In Proc. Int’l Workshop
Languages and Compilers for Parallel Computing
(LCPC), volume 1239 of LNCS, pages 603–604.
Springer, 1997.

[15] T. Grosser et al. Polly development mailing list.
https://groups.google.com/d/msg/polly-dev/
20eI9Xd8Nl0/V6_s2KbOQo4J, 2012-09-12.

8

[16] T. Grosser, A. Größlinger, and C. Lengauer. Polly –
performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing Letters,
22(4), 2012. 28 pp.

[17] A. Größlinger. The Challenges of Non-linear
Parameters and Variables in Automatic Loop
Parallelisation. Doctoral thesis, Department of
Informatics and Mathematics, University of Passau,
2009.

[18] J. L. Hintze and R. D. Nelson. Violin plots: A box
plot-density trace synergism. The American
Statistician, 52(2):181–184, 1998.

[19] A. Jimborean. Adapting the Polytope Model for
Dynamic and Speculative Parallelization. Doctoral
thesis, Image Sciences, Computer Sciences and Remote
Sensing Laboratory, University of Strasbourg, 2012.

[20] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H.
Ahn, P. Mattson, and J. D. Owens. Programmable
stream processors. Computer, 36(8):54–62, Aug. 2003.

[21] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proc. Int’l Symp. Code Generation
and Optimization (CGO), pages 75–86. IEEE CS, 2004.

[22] V. Maslov. Delinearization: an efficient way to break
multiloop dependence equations. In In Proc. the
SIGPLAN’92 Conference on Programming Language
Design and Implementation, pages 152–161, 1992.

[23] V. Maslov and W. Pugh. Simplifying polynomial
constraints over integers to make dependence analysis
more precise. Parallel Processing: CONPAR 94—VAPP
VI, pages 737–748, 1994.

[24] S. Pop et al. LLVM commits mailing list. http:
//lists.cs.uiuc.edu/pipermail/llvm-commits/
Week-of-Mon-20131007/190703.html, 2013-10-10.

[25] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, and P. Sadayappan. Combined iterative
and model-driven optimization in an automatic
parallelization framework. In Proc. Int’l Conf. High
Performance Computing Networking, Storage and
Analysis (SC), pages 1–11. IEEE CS, 2010.

[26] A. Simbürger, S. Apel, A. Größlinger, and C. Lengauer.
The Potential of Polyhedral Optimization: An
Empirical Study. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, Nov.
2013.

[27] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li,
T. Grosser, H. Jagasia, R. Ladelsky, S. Pop, J. Sjödin,
and R. Upadrasta. GRAPHITE two years after: First
lessons learned from real-world polyhedral compilation.
In Proc. Int’l Workshop GCC Research Opportunities
(GROW), pages 1–13, 2010.
http://ctuning.org/workshop-grow10.

[28] S. Verdoolaege. ISL: An integer set library for the
polyhedral model. In ICMS, pages 299–302.
Springer-Verlag, 2010.

[29] P. Wu, P. Feautrier, D. Padua, and Z. Sura.
Instance-wise points-to analysis for loop-based
dependence testing. In Proc. Int’l Conf.
Supercomputing (SC), pages 262–273. ACM, 2002.

9

T
a
b
le

1
:

A
g
g
reg

a
ted

resu
lts

o
f

a
ll

ex
p

erim
en

ts
co

n
d
u
cted

.
T

h
e

fi
rst

tw
o

g
ro

u
p
s

o
f

co
lu

m
n
s

sh
ow

sta
tic

in
fo

rm
a
tio

n
a
b

o
u
t

th
e

S
C

o
P

s
fo

u
n
d
.

T
h
e

th
ird

g
ro

u
p

sh
ow

s
th

e
ru

n
tim

e
(in

%
)

sp
en

t
in

sid
e

u
n
ifo

rm
(t

u
)

a
n
d

a
ffi

n
e

S
C

o
P

s
(t

a)
o
f

cla
ss

S
ta
tic

.
T

h
e

fo
u
rth

g
ro

u
p

sh
ow

s
ru

n
-tim

e
in

fo
rm

a
tio

n
fo

r
th

e
th

ree
cla

sses
S
ta
tic

,
A
lgebra

ic
,

a
n
d

D
yn

a
m
ic

(in
%

).
T

h
e

la
st

co
lu

m
n

sh
ow

s
th

e
lin

es
o
f
L
L
V
M

-IR
co

d
e

b
efo

re
a
n
y

o
p
tim

iza
tio

n
s.

A
d
eta

illed
d
escrip

tio
n

o
f

a
ll

co
lu

m
n
s

ca
n

b
e

fo
u
n
d

in
S
ectio

n
4
.3

.

N
a
m

e
S
s
t

S
p
p

S
p
p
a

S
m

d
S
n
a

S
jit

S
n
d

S
u

S
a

d
u

d
a

t
u

t
a

S
t
a
t

A
lg

D
y
n

S
ta

t
|

A
lg

|
D
y
n

L
o
C

C
o
m

p
ila

t
io

n
js

1
2
0

3
6

9
5

0
0

1
5
0

4
3

0
7
7

1
7
8

0
.0
1
9

0
0
.4
5

0
.4
7

2
.6

9
1
0
0
0
0

p
y
t
h
o
n

8
4

6
3
3

0
0

9
7

3
1

0
5
3

0
8
7

0
5
.3

6
.5

6
.5

1
1

7
3
0
0
0
0

r
u
b
y

1
0
0

1
9

4
0

0
2

7
8

4
4

1
5
6

3
6
4

0
.0
0
1
4

0
2
8

2
8

3
1

8
8
0
0
0
0

t
c
c

1
8

0
0

0
0

1
3

1
3

2
3

2
4

0
2
.4

2
.5

2
.6

2
.6

1
2
0
0
0
0

C
o
m

p
r
e
s
s
io

n
7
z
a

1
0
0

9
2
4

1
4

6
5

3
9

1
4

5
1

2
6

6
5

0
0

1
3

1
4

1
3

4
2
0
0
0
0

b
z
ip
2

3
0

0
0

0
0

5
1
8

6
6

8
9

1
.8

0
.4
4

5
.2

5
.2

1
2

2
9
0
0
0

g
z
ip

2
3

0
0

0
0

1
1
5

4
4

4
4

0
0

0
.2
5

0
.2
6

0
.4
9

1
7
0
0
0

x
z

2
3

1
1

0
0

0
1
9

1
3

2
1
0

4
0

0
0
.0
3
6

0
.0
3
8

0
.0
3
9

7
7
0
0
0

D
a
t
a
b
a
s
e

l
e
v
e
l
d
b

5
0

0
0

0
2

4
0

1
0

2
0

0
0

0
0

7
3
0
0
0

p
o
st

g
r
e
s

7
8

1
3

0
0

5
8
4

3
5

4
4
9

6
6
4

0
0

8
.5

8
.5

8
.5

1
1
0
0
0
0
0

sq
l
it
e
3

5
0

0
0

0
0

4
0

1
0

2
0

0
2
.0

2
.0

2
.0

7
1
0
0
0

E
n
c
r
y
p
t
io

n
b
l
o
w
f
ish

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
5
0
0

b
n

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
2
2

2
2

2
3

3
6

2
2
0
0
0
0

c
a
st

2
0

0
0

0
0

2
0

0
0

0
0

0
2
5

2
4

2
4

3
7
0
0

c
c
r
y
p
t

3
0

0
0

0
2

1
0

2
0

1
0

0
1
.2

1
.2

1
.9

1
4
0
0
0

d
e
s

9
0

7
0

0
1
4

0
0

9
0

1
1

0
0

0
0

0
4
7
0
0
0

d
sa

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
2
5

2
5

2
5

3
0

2
2
0
0
0
0

e
c
d
sa

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
0
.6
0

0
.6
8

0
.6
8

3
0

2
2
0
0
0
0

h
m
a
c

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
7
.5

7
.8

8
.4

1
4

2
2
0
0
0
0

m
c
r
y
p
t
-a
e
s

3
8

0
0

0
3
5

3
3

2
8

5
4

7
4

0
0

0
.7
2

0
.7
4

1
.8

5
9
0
0
0

m
c
r
y
p
t
-c
ip

3
9

0
0

0
3
7

3
3

3
0

5
4

7
4

0
0

0
.4
4

0
.4
4

9
.9

6
1
0
0
0

m
d
5

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
0

3
.9

3
.7

9
.0

2
2
0
0
0
0

o
p
e
n
ssl

6
7

1
1
8

0
0

7
2

2
3

5
4
1

6
4
9

0
.1
3

0
0
.1
3

0
.1
5

0
.4
0

5
2
0
0
0
0

r
c
4

1
0

0
0

0
0

1
0

0
0

0
0

0
0
.2
7

0
.2
7

0
.2
7

3
3
0
0

r
sa

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
2
2

2
3

2
3

4
5

2
2
0
0
0
0

sh
a
1

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
0
.0
5
3

0
.0
5
4

0
.0
5
9

0
.1
2

2
2
0
0
0
0

sh
a
2
5
6

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
0
.0
1
7

0
.0
2
5

0
.0
2
8

0
.0
5
3

2
2
0
0
0
0

sh
a
5
1
2

2
4

1
1
0

0
0

3
8

8
0

1
6

0
2
6

0
0
.0
5
3

0
.0
5
2

0
.0
5
3

0
.1
0
0

2
2
0
0
0
0

ssl
3
2

1
1
2

0
0

0
1
0

2
2
0

2
2
9

0
0
.1
5

1
.4

1
.4

1
.4

3
2
0
0
0
0

M
u
lt

im
e
d
ia

a
v
c
o
n
v

9
5
0

1
1

3
1
0

0
9
4
0

1
4
0
0

0
0

0
0

0
0

0
1
8

1
7

4
5

1
6
0
0
0
0
0

p
o
v
r
a
y

1
1
0

3
7
1

0
6

5
3

4
9

4
5
3

1
7

7
5

1
.1

0
8
.5

4
1

4
2

3
0
0
0
0
0

x
2
6
4

5
5

1
4

4
4

0
5

1
4
0

1
7

5
3
3

9
3
5

1
.3

1
7

2
2

2
5

7
9

2
1
0
0
0
0

S
c
ie

n
t
ifi

c
l
in
pa

c
k

9
0

0
0

0
3

2
2

5
8

5
0

4
5

5
3

5
3

5
3

1
4
0
0

x
e
ig
t
st

c
6
3
0

5
5

0
8
8
0

4
3
0

0
0

0
0

0
0

0
4
2

4
4

5
6

3
3
0
0
0
0

x
e
ig
t
st

d
6
1
0

0
0

0
8
6
0

3
8
0

0
0

0
0

0
0

0
4
0

4
0

5
0

3
4
0
0
0
0

x
e
ig
t
st

s
6
1
0

0
0

0
8
6
0

3
8
0

0
0

0
0

0
0

0
4
1

4
1

5
3

3
4
0
0
0
0

x
l
in
t
st

d
6
9
0

0
0

0
1
0
0
0

6
3
0

3
4
0

2
3
8
0

2
5
3
0

0
4
5

4
5

4
6

5
2

3
6
0
0
0
0

x
l
in
t
st

d
s

1
6
0

0
0

0
2
1
0

1
2
0

8
2

0
7
4

0
7
6

0
5
0

5
1

5
2

5
8

5
2
0
0
0

x
l
in
t
st

r
f
c

1
7
0

0
0

0
2
9
0

2
1
0

7
2

0
1
1
0

0
1
2
0

0
2
3

4
5

4
4

5
4

8
3
0
0
0

x
l
in
t
st

r
f
d

1
5
0

0
0

0
2
3
0

1
5
0

6
7

0
7
9

0
8
1

0
4
1

4
3

4
4

5
4

6
4
0
0
0

x
l
in
t
st

r
f
s

1
5
0

0
0

0
2
3
0

1
5
0

6
7

0
7
9

0
8
1

0
4
1

4
3

4
3

5
3

6
4
0
0
0

x
l
in
t
st

r
f
z

1
7
0

0
0

0
2
9
0

2
1
0

7
3

0
1
0
0

0
1
1
0

0
1
8

3
7

3
7

4
7

8
2
0
0
0

x
l
in
t
st

s
5
3
0

0
0

0
6
9
0

3
5
0

2
5
0

1
2
8
0

1
3
9
0

0
4
1

4
5

4
4

5
1

2
6
0
0
0
0

x
l
in
t
st

z
c

1
9
0

0
0

0
2
7
0

1
8
0

9
0

0
1
0
0

0
1
3
0

0
5
1

5
3

5
4

5
8

6
8
0
0
0

S
im

u
la

t
io

n
c
r
a
f
t
y

5
7

0
9

0
0

2
3
2

5
2
0

1
7

3
5

0
0

4
.0

4
.6

8
.1

2
5
0
0
0
0

l
a
m
m
p
s

3
3
0

4
5

4
7
0

3
6

5
8
0

1
9
0

2
1
4
0

1
1

1
5
0

0
0

0
0

0
9
0
0
0
0
0

l
u
l
e
sh

-o
m
p

1
6

0
0

0
2

1
8

1
6

0
0

0
0

0
0

2
2

2
2

2
3

1
2
0
0
0

l
u
l
e
sh

1
4

0
0

0
2

1
7

1
4

0
0

0
0

0
0

2
3

2
3

2
3

1
1
0
0
0

V
e
r
ifi

c
a
t
io

n
c
r
o
c
o
pa

t
1

0
0

0
0

0
1

0
0

0
0

0
0

3
.2

3
.2

3
.2

8
9
0
0
0

m
in
isa

t
4

0
3

0
0

0
3

0
6

0
6

0
0

1
7

1
7

1
6

2
2
0
0
0

10

