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Introductory Example
for (i = 0; i <= N; ++1)

S: ali] = g(i);
for (i = 0; i <= N; ++1i)
T: b[i] = f(a[N-i]);
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Introductory Example
for (i = 0; i <= N; ++1)

S: ali] = g(i);
for (i = 0; i <= N; ++1i)
T: b[i] = f(a[N-i]);

@ lteration domain

{S[]:0<i<N;T[i]:0<i<N}
@ Dependences
{S[] > T[N-]:0<i<N}
@ Execution Order
» Original Order

s[o], s[1],s[2], ..., S[N — 1], S[N], T[0], T[1], T[2], ..., T[N — 1], T[N]

u]

o)
I

"
it



Introduction Example January 20, 2014 4/21

Introductory Example
for (i = 0; i <= N; ++1)
S: ali] = g(i);
for (i = 0; i <= N; ++1)
T: Dbli] = f(alN-iD);

@ lteration domain

{S[]:0<i<N;T[i]:0<i<N}
@ Dependences
{S[]>T[N-/]:0<i<N}

@ Execution Order
» Original Order

s[o], s[1],s[2], ..., S[N — 1], S[N], T[0], T[1], T[2], ..., T[N — 1], T[N]
» Alternative Order
S[O], T[N], S[1], T[N — 1], S[2], T[N - 2], ..., S[N — 1], T[1], S[N], T[O]
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Introductory Example
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for (i = 0; i <= N; ++1) for (i = 0; i <= N; ++1i) {

S: al[i] = g(i); ali]l = g(i);
for (i = 0; i <= N; ++i) b[N-i] = f(al[il);
T: b[i] = f(a[N-i]); }

@ lteration domain
{S[N:0<i<N;T[[]:0<i<N}
@ Dependences
{S[]>T[N-i]:0<i<N}

@ Execution Order
» Original Order

s[o], s[1], s[2], - - -, S[N — 1], S[N], T[0], T[1], T[2], ..., T[N - 1], T[N]
» Alternative Order
S[O], T[N], S[1], T[N — 1], S[2], T[N - 2], ..., S[N — 1], T[1], S[N], T[0]
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= 0; i <= N;
b[i]

++1)
= f(a[N-i1);
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R for (i = 0; i <= N;
b[N-1] =

++1)

fCalil);
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Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++1i) N for (i = 0; i <= N; ++1)
b[i] = f(a[N-i1); b[N-i] = f(al[il);
Two approaches
@ Modify Iteration Domain
T[i] = T'[N - i]
> iteration domains have implicit execution order (lexicographic order)

» AST generator takes modified iteration domain as input
> access relations and dependence relations are adjusted accordingly
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Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i) - for (i = 0; i <= N; ++i)
b[i] = f(a[N-i1); b[N-i] = f(a[il);

Two approaches
@ Modify Iteration Domain
T[i] = T'[N - i]

> iteration domains have implicit execution order (lexicographic order)

» AST generator takes modified iteration domain as input

> access relations and dependence relations are adjusted accordingly
@ Explicit Schedule

T[] = [N -]

v

iteration domains have no implicit execution order

> execution order is determined by schedule space (lexicographic order)
AST generator takes iteration domain and schedule as input

schedule is typically a piecewise quasi-affine function
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Representing Schedules for Multiple Statements

for (i = 0; i <= N; ++1i) for (i = 0; i <= N; ++1i) {
af[i]l = g(i); afil = g(i);

for (i = 0; i <= N; ++1i) b[N-i] = f(a[il);
b[i] = f(a[N-i]); }

Si] = [1; T[] = [N -1]
first S[i] then TJi]

S[i] = [i] T[i] — [i] first SJi] then T[]
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Representing Schedules for Multiple Statements

for (i = 0; i <= N; ++1i) for (i = 0; i <= N; ++1i) {
af[i]l = g(i); afil = g(i);

for (i = 0; i <= N; ++1i) b[N-i] = f(a[il);
b[i] = f(a[N-i]); }

S[i] = [i; T[] = [N =]

first S[i] then T[i]

S[i] = [i] T[i] — [i] first SJi] then T[]
S:{[i]l = [0, 1]} S:{[i] - [i.0]}
Kelly T:{[]] - [1.1]} T:{[i] > [N-i1]}

= encode statement ordering in affine function
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Representing Schedules for Multiple Statements

for (i = 0; i <= N; ++1i) for (i = 0; i <= N; ++1i) {
af[i]l = g(i); afil = g(i);

for (i = 0; i <= N; ++1i) b[N-i] = f(a[il);
b[i] = f(a[N-i]); }

S[i] = [i; T[] = [N =]

first S[i] then T[i]

S[i] = [i] T[i] — [i] first SJi] then T[]
S:{[i] — [0,i]} S:{[i] = [i,0]}
Kelly T:([i] - [1,1) T ([ = [N-i1]}
“m”;g” (Sl — [0, 0; T[] = [} {S[] = [i,0]; T[] = [N i, 1]}

= encode statement ordering in affine function
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Representing Schedules for Multiple Statements

for (i = 0; i <= N; ++1i)

af[i]l = g(i);
for (i = 0; i <= N; ++1i)
b[i] = f(a[N-i]);
sequence
AN
SJi Tli
schedule I[ ] I[ ]
tree s[if =[] Th] - [i
S:{[i]—[0,i]}
Kelly T:{[i] - [1,1]}
union

map {S[i] = [0,i]; T[i] —= [1,1]}

for (i = 0; i <= N; ++1i) {
al[i]l = g(i);
b[N-i] = f(al[il);

}

S[i] = [i; T[] = [N =]
Sequlence
AN

S[i] T(1]

S:{[i] = [i,0]}
T:{[i] > [N-i1]}

{S[i] = [i,0}; T[] = [N =i, 1]}



Multiple Statements January 20, 2014 6/21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++1i) for (i = 0; i <= N; ++1i) {
ali] = g(i); ali] = g(i);
for (i = 0; i <= N; ++i) b[N-i] = f(a[il);
b[i] = f(a[N-i]); }
sequence S[i] = [I]; T[] = [N=1]
SN |
schedule S‘[’] T‘[I] s;quenie
tree il = [ T =[] S[] T[i]
Sl —[0.1} S A = [1.0]}
Kelly T:{[i]—[1,1]} T:{[]]— [N-i1]}
union . - . . AT ;
map {S[i] = [0,i]; T[i] = [1,1]} {S[i] = [i,0]; T[i] = [N —i,1]}

@ “2d 4+ 1”: special case of Kelly’s abstraction

Other representations:
@ band forest: precursor to schedule trees
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Schedule Trees

[
sequence

RN
{s[il} (T}

U Tl - 1)

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
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Schedule Trees

I
sequence

RN
{s[il} (T}

(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
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Schedule Trees

I
sequence

RN
{s[il} (T}

(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
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Schedule Trees

I
sequence

PN
{s[il} (T}

(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
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Schedule Trees

[
sequence

PN
{s[il oy

(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
@ “External”’ node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants

7/21
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Schedule Trees

[
{S[i]:0<i<N;T[i] :0<i<N}
\
sequence
~ ~

([ oy
(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
> Set: children executed in arbitrary order
@ “External”’ node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants
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Schedule Trees {: N mod 256 = 0}

[
{S[i]:0<i<N;T[i] :0<i<N}
\
sequence
~ ~

([ oy
(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
» Set: children executed in arbitrary order
@ “External”’ node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants
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Schedule Trees {: N'mod 256 = 0}

[
{S[i]:0<i<N;T[i] :0<i<N}
\
sequence
~ ~

([ oy
(S — [y {7l — [}

@ Core node types
» Band: multi-dimensional piecewise quasi-affine partial schedule
» Filter: selects statement instances that are executed by descendants
» Sequence: children executed in given order
» Set: children executed in arbitrary order
@ “External” node types
» Domain: set of statement instances to be scheduled
» Context: external constraints on symbolic constants
@ Convenience node types
» Mark: attach additional information to subtrees
> Leaf: for easy navigation

7/21
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Comparison

sequence
Tl =0 I o ~
T[] = [ 0.i Sill Seliv l; Sl

T3 {[I] N [1’1'_ 1’ 1 ]} S1 [’] - [I] SZ[I’I] — U]: SS[I] - [i_ 1]

sequence
{S1[i]—>[0,i,0,0]; . / AN '
Solif] = [1.1.0.1) Selll sl
Ss[i] = [1,i—1,1,0]} Sa[i.j] = [i]

@ Kelly’s abstraction

» schedule spread over statements

> relaxed lexicographic order
@ union maps

» single object

» strict lexicographic order

» schedule transformations can be composed
@ schedule trees

» single object

» relaxed lexicographic order
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Outline

e Advantages
@ Useful in several contexts
More natural
More convenient
More expressive

°
°
°
@ Extensible
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Schedule Uses

@ Representing the original execution order

» Input to dependence analysis (in is1)

» Basis for manual/incremental transformations
@ Scheduling

» Construction based on dependences

» Schedule modifications
@ AST generation

» Generate AST from schedule
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Schedule Uses

— depende.nce —— dependences ———— scheduling
analysis
extract hedul AST
original order schedule generation

transformation

@ Representing the original execution order
» Input to dependence analysis (in is1)
» Basis for manual/incremental transformations

@ Scheduling

» Construction based on dependences
» Schedule modifications

@ AST generation
» Generate AST from schedule
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Schedule Trees Everywhere

Old PPCG:
C code internal tree union map
|
dependences «—E[dependence analysis}— internal tree }

band forestband forest

AST < AST generator <— internal tree union map
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Schedule Trees Everywhere

ol pree: C code = internal tree union map

dependences «—E[dependence analysis}— internal tree J
band forest —> band forest
AST internal tree <—{decode J+— union map

New PPCG:

C code schedule tree —{dependence analysisj
|

schedule tree dependences
schedule tree —{ AST generator — AST
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i);

for (i = 0; i <= N; ++1)
T: b[i] = f(a[N-1]1);
U:c = 0;

@ [teration domain
{S[i]:0<i<N;T[i]:0<i<N;U[]}
@ Dependences

{S[]>T[N-]:0<i<N}
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Schedule Construction Example
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Schedule Construction Example
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Schedule Construction Example

for (i = 0; i <= N; ++1)
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i);
for (i = 0; i <= N; ++1) Set\
T: b[i] = f(a[N-i]); U“ SM;TM
U:c = 0; | |
e lteration domain L |S[i] = [ Tl] — [N =]

{S[]:0<i<N;T[i]:0<i<N;U[]}
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i); set

for (i = 0; i <= N; ++1) "
T: b[i] = f(a[N-1]1); ull S[i]: T[]
U:c = 0;

| |
@ lteration domain L Sl = [i; T[] — [N =]
|

{S[(]:0<i<N;T[]:0<i<N;U[]} sequence
PN

@ Dependences S|i] T[/]

{S[]>T[N-]:0<i<N}
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i); set

for (i = 0; i <= N; ++1) "
T: b[i] = f(a[N-1]1); ull S[i]: T[]
U:c = 0;

| |
@ lteration domain L Sl = [i; T[] — [N =]
|
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i); set

for (i = 0; i <= N; ++1) "
T: b[i] = f(a[N-1]1); ull S[i]: T[]
U:c = 0;

| I
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Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i); set
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U:c = 0;

| I
e lteration domain L S[i] = [Tl — [N =]
I
{S[:0<i<N;T[]:0<i<N;U[]} sequence
e
@ Dependences S|i] TJi]

1

u]

o)
I
"

it



Advantages More natural January 20, 2014 12/21

Schedule Construction Example

for (i = 0; i <= N; ++1)
S: afi] = g(i); set

for (i = 0; i <= N; ++1) "
T: b[i] = f(a[N-1]1); ull S[i]: T[]
U:c = 0;

| I
e lteration domain L S[i] = [Tl — [N =]
I
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Schedule Construction Example

for (i = 0; i <= N; ++1i)
S: ali] = g(i); set

for (i = 0; i <= N; ++i) PN
T b[i] = f(a[N-i]); ul] S[i]; T[i]
U:c = 0;

| |
@ lteration domain L Sl = [i; T[] — [N =]
|

sequence
N
s[i] T]i]
| |

L 1

{S[]:0<i<N;T[i]:0<i<N;U[]}

@ Dependences

= natural representation of constructed schedule

12/21
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Local Transformations
Typical scenario:

@ Construct tilable bands (e.g., using Pluto algorithm)
@ Individually tile (some) tilable bands
» Given a band D(i) — f(i), insert a band D(i) — [f(i)/S]
>~ First iterate over blocks of size S and then iterate within each block
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» First iterate over blocks of size S and then iterate within each block
Tiled individually:
» bands of different dimensionality
» different tile sizes S per band
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Local Transformations
Typical scenario:
@ Construct tilable bands (e.g., using Pluto algorithm)
@ Individually tile (some) tilable bands
» Given a band D(i) — f(i), insert a band D(i) — [f(i)/S]
» First iterate over blocks of size S and then iterate within each block
Tiled individually:
» bands of different dimensionality
» different tile sizes S per band

set

\
Sali.j. k] S1li,J]; Salis . k]
|
.. . 81 [I’]] - (Li/SOJ9U/s1J’O);
Selifik] = (k-1) Sali.j k] = (Li/sol . Li/st). Lk/s2))
|

Si[i.j] = (1,4, 0);

Sai, j, k] — (i) Ssli,j, k] = (i.j, k)
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Local Transformations
Schedule Tree: set \
Sali, j k] Sili.j]; Sali. j. k]
Sali, j, k]I - (k.j) Si[i.j] = (i,], 0); lss[i,j, k] — (i,], k)
Sali. Il] - (i)
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Local Transformations

Schedule Tree: set

\
Sa[i, j, K] Sili, J; Sali.j, k]
| 1
Sali,j, k] = (k. j) Si[i.j] = (i,4,0); Ssli, j, k] = (i), k)

|
Sali, j, k] = (i)

Ty A{[i.j] = [1,1,4,0]}
Kelly’s abstraction: Ty : {[i,j, k] — [0, k,j, 1]}
Ts: {[i.j.k] = [1.0.). K]}
How to identify node that needs to be tiled?
@ interval of dimensions
@ list of statements or values for set/sequence encodings
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Local Transformations

Schedule Tree: set

\
Sa[i, j, K] Sili, J; Sali.j, k]
| 1
Soli,j, k] = (k. j) Si[i.j] = (i,4,0); Ssli, j, k] = (i), k)

|
Sali, j, k] = (i)

Ty A{[i.j] = [1,1,4,0]}
Kelly’s abstraction: Ty : {[i,j, k] — [0, k,j, 1]}
Ts: {[i.j.k] = [1.0.). K]}
How to identify node that needs to be tiled?
@ interval of dimensions
@ list of statements or values for set/sequence encodings

Union map representation additionally requires alignment of single
schedule space
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Advantages More expressive

CARP Project

Design tools and techniques to aid
Correct and Efficient Accelerator Programming

CAR P [ Domain Specific Languages ]

accelerators

Approach DSL -> PENCIL compilers
y
T 4 PENCIL — Platform Neutral Compute Performance
3 Intermediate Language metadata
Q
s < Polyhedral compilation| <
= \ Auto tuning
g Direct Ope.nCL OpencL Widely supported
S programming industry standard
-~
/|
NVIDIA AMD ARM Other
GPUs GPUs GPUs |
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Advanced Use: CUDA/OpenCL Code Generation

@ Schedule tree logically split into two parts

» Quter part mapped to host code
» Subtrees mapped to device code

@ Device part has additional symbolic constants

= block and thread identifiers
= internal context nodes

@ Each thread executes only part of iteration domain
= selected using filter nodes
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Advanced Use: CUDA/OpenCL Code Generation

@ Schedule tree logically split into two parts

» Quter part mapped to host code
» Subtrees mapped to device code

@ Device part has additional symbolic constants

= block and thread identifiers
= internal context nodes

@ Each thread executes only part of iteration domain
= selected using filter nodes

Old PPCG used nested AST generation
= difficult to understand and debug
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Advanced Use: CUDA/OpenCL Code Generation

for (t = 0; t < T; t++) {

for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);
for (J = 1;-_'1' < N - 1; j++)
, Mo ROE S[t.1 - [ t[t.]] - [
S[t.1] — (0] tlt.J] — [1]
set
T[t,)] — T s[t. ]
mark: ‘kernel mark: ‘kernel
OSb<3276‘8/\0St<32 0Sb<3276‘8/\03t<32
T[t,j] : b = U/éz | mod 32768 S[t,i]: b = Li/éz | mod 32768
Tit.]] - /32] S[t, 1] — 1i/32)
T[t.)] ;j mod 32 S[t, 1] : t; i mod 32
‘ ‘

T[t,j] — j mod 32 S[t,i] — i mod 32
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Advanced Use: CUDA/OpenCL Code Generation

for (t = 0; t < T; t++) {

for (i = 1; i < N - 1; i++)

B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);
for (j = 1; j <N - 1; j++)

A[j]1 = B[jl;

} S{t, /] — [t]; t[t. ] — [1]

subtree mapped to device S[t. ] — [0];‘t[t’1] —[1]

set \

T[t, ]] S|t, i]
0<b<32768N0<t<32 0<b<32768A0<1t<32
T[t,j] : b = U/éz | mod 32768 S[t.i]: b = Li/éz | mod 32768
T[t. ] 5 Lj/32] S[t, ] 5 Li/32]

T[t.)] ;j mod 32 S[t, 1] : t; i mod 32

T[t,j] — j mod 32 S[t,i] — i mod 32
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Advanced Use: CUDA/OpenCL Code Generation

for (t = 0; t < T; t++) {

for (i = 1; i < N - 1; i++)

B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);
for (j = 1; j <N - 1; j++)

A[j]1 = B[jl;

S[t, ] — [t]; t[t. ] — [1]

introduce identifiers S[t. 1] - [0];‘t[t’1] — [

set \

T[t, j] St 1]
mark: ‘kernel mark: ‘kernel
]osb<327séAost<32\ ]03b<3276§/\0$t<32\
T[t,j] : b = U/éz | mod 32768 S[t.i]: b = Li/CL»2 | mod 32768
Tit.]] - /32] S[t, 1] — 1i/32)
T[t.)] ;j mod 32 S[t, 1] : t; i mod 32

T[t,j] — j mod 32 S[t,i] — i mod 32
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Advanced Use: CUDA/OpenCL Code Generation

for (t = 0; t < T; t++) {

for (i = 1; i < N - 1; i++)

B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 11);
for (j = 1; j <N - 1; j++)

A[j]1 = B[jl;

S[t,i] — [t]; t[t. )] — [t]
S[t,i] — [0]; t[t,j] — [1]
|

\

S[t, ]
|
mark: kernel

filter on identifiers
set

ark: kernel
0<b<3 6éAost<32 <3276‘8/\0St<32
T[t.]: b :\U/éz | mod 32768 |
T[t.J —L 1j/32] \%‘i] - [i/32]

Tt.]) ;jmodsz\ ]s[t,i]:téimodsz\

|
s[t, 1] : b = 1i/32] mod 32768 |

T[t,j] — j mod 32 S[t,i] — i mod 32
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Extension

In final stages of scheduling, additional statements may need to be added
@ Copy code
@ Synchronization
o ...

These additional statements depend on ancestors

@ the statements should only be executed in a given part of the
schedule tree

@ iteration domains depend on outer schedule (e.g., data to be copied)

= new “extension” node type
= maps outer schedule dimensions to extra iteration domain
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Extension
0<bg,by <128A0<1trh<32A0<t <16
|

Soli.j] : bo = Li/32) mod 128 A by = |j/32] mod 128;
Si[i,j. k] : bo = Li/32] mod 128 A by = |j/32] mod 128

[| > write_C[u, V] : 0 < u,v < 4095 A by = [u/32] A by = |v/32]

|
sequence
/ \
Soli, jl: S1[i.J, k] write_C[u, V]
|

Soli, j] — [Li/32],j/32]]; . | L
Si[i.jk] — [Li/32], Lj/32]] write_C[32bg + fp, v] : ty = v mod 16

Soli,j] — [0]; S [‘i,j.k] — [Lk/32]] write_C[u, v] — [u, V]
|

[io, i1, 2] — sync][];
[io, i1 s Ig] - readA[u, V] :
0<uv<4095A by =|u/32| ANip =|Vv/32];

[io, i1 R Ig] Ed read_B[u, V] e
|
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0<bg,by <128A0<1trh<32A0<t <16
|

Soli.j] : bo = Li/32) mod 128 A by = |j/32] mod 128;
Si[i,j. k] : bo = Li/32] mod 128 A by = |j/32] mod 128

] > write Clu,v] : 0 < u,v < 4095 A by — Lu/32) A by — Lv/32] |
I

sequence
/

\
Soli, jl: S1[i.J, k] write_C[u, V]

Soli, j] — [Li/32],j/32]]; . | L
Si[i.jk] — [Li/32], Lj/32]] write_C[32bg + fp, v] : ty = v mod 16

Soli,j] — [0]; S [‘i,j.k] — [Lk/32]] write_Clu, v] — [u, V]
1

[io, i1, 2] — sync][];
[io, i1 s Ig] - readA[u, V] :
0<uv<4095A by =|u/32| ANip =|Vv/32];

[io, i1 R Ig] Ed read_B[u, V] e
T
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Extension
0<bg,by <128A0<1trh<32A0<t <16
|

Soli.j] : bo = Li/32) mod 128 A by = |j/32] mod 128;
Si[i,j. k] : bo = Li/32] mod 128 A by = |j/32] mod 128

[| > write_C[u, V] : 0 < u,v < 4095 A by = [u/32] A by = |v/32]

|
sequence
/ \
Soli, jl: S1[i.J, k] write_C[u, V]
|

Soli, j] — [Li/32],j/32]]; . | L
Si[i.jk] — [Li/32], Lj/32]] write_C[32bg + fp, v] : ty = v mod 16

Soli,j] — [0]; S [‘i,j.k] — [Lk/32]] write_C[u, v] — [u, V]
|

0, i1, 2] — sync[[;
[io, i1 s Ig] — readA[u, V] :
0<uv<4095A by =|u/32| ANip =|Vv/32];

[io, i1 R Ig] Ed read_B[u, V] e
|
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Conclusion
Conclusion:

Exploit the tree nature of a schedule rather than
encoding it in a flat representation

Schedule trees are
@ useful in several contexts
@ more natural
@ more convenient
@ more expressive
@ extensible
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Conclusion
Conclusion:

Exploit the tree nature of a schedule rather than
encoding it in a flat representation

Schedule trees are
@ useful in several contexts
@ more natural
@ more convenient
@ more expressive
@ extensible

Future work

@ apply separation on schedule tree
@ additional node types

» parametric tiling

> clustering

>...
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