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Introductory Example
for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {

a[i] = g(i);

b[N-i] = f(a[i]);

}

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

Dependences
{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

Execution Order
I Original Order

S[0], S[1], S[2], . . . , S[N − 1], S[N], T[0], T[1], T[2], . . . , T[N − 1], T[N]

I Alternative Order

S[0], T[N], S[1], T[N − 1], S[2], T[N − 2], . . . , S[N − 1], T[1], S[N], T[0]
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Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches

1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function
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Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first S[i]

S[i]→ [i]

then T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first S[i] then T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees
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Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation
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Comparison

T1 :{[i] → [0, i ]}

T2 :{[i, j] → [1, j, 0, i ]}

T3 :{[i] → [1, i − 1, 1 ]}

{S1[i]→ [0, i, 0, 0];

S2[i, j]→ [1, j, 0, i];

S3[i]→ [1, i − 1, 1, 0] }

sequence

S1[i]

S1[i]→ [i]

S2[i, j];S3[i]

S2[i, j]→ [j];S3[i]→ [i − 1]

sequence

S2[i, j]

S2[i, j]→ [i]

S3[i]

Kelly’s abstraction
I schedule spread over statements
I relaxed lexicographic order

union maps
I single object
I strict lexicographic order
I schedule transformations can be composed

schedule trees
I single object
I relaxed lexicographic order
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Schedule Uses

dependence
analysis

dependences scheduling

extract
original order schedule

AST
generation

transformation

Representing the original execution order
I Input to dependence analysis (in isl)
I Basis for manual/incremental transformations

Scheduling
I Construction based on dependences
I Schedule modifications

AST generation
I Generate AST from schedule
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Schedule Trees Everywhere
Old PPCG:

C code parse internal tree encode union map

decodeinternal treedependence analysisdependences

scheduler band forest tile band forest encode

union mapdecodeinternal treeAST generatorAST

New PPCG:

C code parse schedule tree dependence analysis

dependencesschedulerschedule treetile

schedule tree AST generator AST
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Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

⇒ natural representation of constructed schedule
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Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)
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Local Transformations
Schedule Tree: set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);S3[i, j, k ]→ (i, j, k)

Kelly’s abstraction:

T1 : { [i, j]→ [1, i, j, 0] }

T2 : { [i, j, k ]→ [0, k , j, i] }

T3 : { [i, j, k ]→ [1, i, j, k ] }
How to identify node that needs to be tiled?

interval of dimensions

list of statements or values for set/sequence encodings

Union map representation additionally requires alignment of single
schedule space
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CARP Project
Design tools and techniques to aid
Correct and Efficient Accelerator Programming
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Advanced Use: CUDA/OpenCL Code Generation

Schedule tree logically split into two parts
I Outer part mapped to host code
I Subtrees mapped to device code

Device part has additional symbolic constants
⇒ block and thread identifiers
⇒ internal context nodes

Each thread executes only part of iteration domain
⇒ selected using filter nodes

Old PPCG used nested AST generation

⇒ difficult to understand and debug
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Advanced Use: CUDA/OpenCL Code Generation
for (t = 0; t < T; t++) {
for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < N - 1; j++)
A[j] = B[j];

} S[t , i]→ [t]; t[t , j]→ [t]

S[t , i]→ [0]; t[t , j]→ [1]

set

T[t , j]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

T[t , j] : b = bj/32c mod 32768

T[t , j]→ bj/32c

T[t , j] : t = j mod 32

T[t , j]→ j mod 32

S[t , i]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

S[t , i] : b = bi/32c mod 32768

S[t , i]→ bi/32c

S[t , i] : t = i mod 32

S[t , i]→ i mod 32

subtree mapped to deviceintroduce identifiersfilter on identifiers
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Extension

In final stages of scheduling, additional statements may need to be added

Copy code

Synchronization

. . .

These additional statements depend on ancestors

the statements should only be executed in a given part of the
schedule tree

iteration domains depend on outer schedule (e.g., data to be copied)

⇒ new “extension” node type

⇒ maps outer schedule dimensions to extra iteration domain
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Extension
0 ≤ b0, b1 < 128 ∧ 0 ≤ t0 < 32 ∧ 0 ≤ t1 < 16

S0[i, j] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128;

S1[i, j, k ] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128

[]→ write C[u, v] : 0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ b1 = bv/32c

sequence

S0[i, j];S1[i, j, k ]

S0[i, j]→ [bi/32c , bj/32c];

S1[i, j.k ]→ [bi/32c , bj/32c]

S0[i, j]→ [0];S1[i, j.k ]→ [bk/32c]

[i0, i1, i2]→ sync[];
[i0, i1, i2]→ read A[u, v] :

0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ i2 = bv/32c ;

[i0, i1, i2]→ read B[u, v] : . . .

. . .

write C[u, v]

write C[32b0 + t0, v] : t1 = v mod 16

write C[u, v]→ [u, v]
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Conclusion
Conclusion:

Exploit the tree nature of a schedule rather than
encoding it in a flat representation

Schedule trees are
useful in several contexts
more natural
more convenient
more expressive
extensible

Future work
apply separation on schedule tree
additional node types

I parametric tiling
I clustering
I . . .
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