
January 20, 2014 1 / 21

Schedule Trees

Sven Verdoolaege1 Serge Guelton2

Tobias Grosser3 Albert Cohen3

1INRIA, École Normale Supérieure and KU Leuven

2École Normale Supérieure and Télécom Bretagne

3INRIA and École Normale Supérieure

January 20, 2014



January 20, 2014 2 / 21

Outline

1 Introduction
Example
Single Statement
Multiple Statements
Schedule Trees

2 Advantages
Useful in several contexts
More natural
More convenient
More expressive
Extensible

3 Conclusion



Introduction January 20, 2014 3 / 21

Outline

1 Introduction
Example
Single Statement
Multiple Statements
Schedule Trees

2 Advantages
Useful in several contexts
More natural
More convenient
More expressive
Extensible

3 Conclusion



Introduction Example January 20, 2014 4 / 21

Introductory Example
for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {

a[i] = g(i);

b[N-i] = f(a[i]);

}

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

Dependences
{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

Execution Order
I Original Order

S[0], S[1], S[2], . . . , S[N − 1], S[N], T[0], T[1], T[2], . . . , T[N − 1], T[N]

I Alternative Order

S[0], T[N], S[1], T[N − 1], S[2], T[N − 2], . . . , S[N − 1], T[1], S[N], T[0]



Introduction Example January 20, 2014 4 / 21

Introductory Example
for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {

a[i] = g(i);

b[N-i] = f(a[i]);

}

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

Dependences
{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

Execution Order
I Original Order

S[0], S[1], S[2], . . . , S[N − 1], S[N], T[0], T[1], T[2], . . . , T[N − 1], T[N]

I Alternative Order

S[0], T[N], S[1], T[N − 1], S[2], T[N − 2], . . . , S[N − 1], T[1], S[N], T[0]



Introduction Example January 20, 2014 4 / 21

Introductory Example
for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {

a[i] = g(i);

b[N-i] = f(a[i]);

}

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

Dependences
{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

Execution Order
I Original Order

S[0], S[1], S[2], . . . , S[N − 1], S[N], T[0], T[1], T[2], . . . , T[N − 1], T[N]

I Alternative Order

S[0], T[N], S[1], T[N − 1], S[2], T[N − 2], . . . , S[N − 1], T[1], S[N], T[0]



Introduction Example January 20, 2014 4 / 21

Introductory Example
for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {

a[i] = g(i);

b[N-i] = f(a[i]);

}

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

Dependences
{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

Execution Order
I Original Order

S[0], S[1], S[2], . . . , S[N − 1], S[N], T[0], T[1], T[2], . . . , T[N − 1], T[N]

I Alternative Order

S[0], T[N], S[1], T[N − 1], S[2], T[N − 2], . . . , S[N − 1], T[1], S[N], T[0]



Introduction Single Statement January 20, 2014 5 / 21

Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches

1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function



Introduction Single Statement January 20, 2014 5 / 21

Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches
1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function



Introduction Single Statement January 20, 2014 5 / 21

Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches
1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function



Introduction Single Statement January 20, 2014 5 / 21

Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches
1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function



Introduction Single Statement January 20, 2014 5 / 21

Expressing Transformations (Single Statement)

for (i = 0; i <= N; ++i)

b[i] = f(a[N-i]);
⇒
for (i = 0; i <= N; ++i)

b[N-i] = f(a[i]);

Two approaches
1 Modify Iteration Domain

T[i]→ T′[N − i]

I iteration domains have implicit execution order (lexicographic order)
I AST generator takes modified iteration domain as input
I access relations and dependence relations are adjusted accordingly

2 Explicit Schedule

T[i]→ [N − i]

I iteration domains have no implicit execution order
I execution order is determined by schedule space (lexicographic order)
I AST generator takes iteration domain and schedule as input
I schedule is typically a piecewise quasi-affine function



Introduction Multiple Statements January 20, 2014 6 / 21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first S[i]

S[i]→ [i]

then T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first S[i] then T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees



Introduction Multiple Statements January 20, 2014 6 / 21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first S[i]

S[i]→ [i]

then T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first S[i] then T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

⇒ encode statement ordering in affine function

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees



Introduction Multiple Statements January 20, 2014 6 / 21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first S[i]

S[i]→ [i]

then T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first S[i] then T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

⇒ encode statement ordering in affine function

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees



Introduction Multiple Statements January 20, 2014 6 / 21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first

S[i]

S[i]→ [i]

then

T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first

S[i]

then

T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees



Introduction Multiple Statements January 20, 2014 6 / 21

Representing Schedules for Multiple Statements
for (i = 0; i <= N; ++i)

a[i] = g(i);

for (i = 0; i <= N; ++i)
b[i] = f(a[N-i]);

for (i = 0; i <= N; ++i) {
a[i] = g(i);

b[N-i] = f(a[i]);

}

schedule
tree

sequence

first

S[i]

S[i]→ [i]

then

T[i]

T[i]→ [i]

S[i]→ [i]; T[i]→ [N − i]

sequence

first

S[i]

then

T[i]

Kelly
S : { [i]→ [0, i] }

T : { [i]→ [1, i] }

S : { [i]→ [i, 0] }

T : { [i]→ [N − i, 1] }

union
map

{ S[i]→ [0, i]; T[i]→ [1, i] } { S[i]→ [i, 0]; T[i]→ [N − i, 1] }

Other representations:
“2d + 1”: special case of Kelly’s abstraction

band forest: precursor to schedule trees



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees

{ : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees { : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 7 / 21

Schedule Trees { : N mod 256 = 0 }

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N }

sequence

{ S[i] }

{ S[i]→ [i] }

{ T[i] }

{ T[i]→ [i] }

Core node types
I Band: multi-dimensional piecewise quasi-affine partial schedule
I Filter: selects statement instances that are executed by descendants
I Sequence: children executed in given order
I Set: children executed in arbitrary order

“External” node types
I Domain: set of statement instances to be scheduled
I Context: external constraints on symbolic constants

Convenience node types
I Mark: attach additional information to subtrees
I Leaf: for easy navigation



Introduction Schedule Trees January 20, 2014 8 / 21

Comparison

T1 :{[i] → [0, i ]}

T2 :{[i, j] → [1, j, 0, i ]}

T3 :{[i] → [1, i − 1, 1 ]}

{S1[i]→ [0, i, 0, 0];

S2[i, j]→ [1, j, 0, i];

S3[i]→ [1, i − 1, 1, 0] }

sequence

S1[i]

S1[i]→ [i]

S2[i, j];S3[i]

S2[i, j]→ [j];S3[i]→ [i − 1]

sequence

S2[i, j]

S2[i, j]→ [i]

S3[i]

Kelly’s abstraction
I schedule spread over statements
I relaxed lexicographic order

union maps
I single object
I strict lexicographic order
I schedule transformations can be composed

schedule trees
I single object
I relaxed lexicographic order



Advantages January 20, 2014 9 / 21

Outline

1 Introduction
Example
Single Statement
Multiple Statements
Schedule Trees

2 Advantages
Useful in several contexts
More natural
More convenient
More expressive
Extensible

3 Conclusion



Advantages Useful in several contexts January 20, 2014 10 / 21

Schedule Uses

dependence
analysis

dependences scheduling

extract
original order schedule

AST
generation

transformation

Representing the original execution order
I Input to dependence analysis (in isl)
I Basis for manual/incremental transformations

Scheduling
I Construction based on dependences
I Schedule modifications

AST generation
I Generate AST from schedule



Advantages Useful in several contexts January 20, 2014 10 / 21

Schedule Uses
dependence

analysis
dependences scheduling

extract
original order schedule

AST
generation

transformation

Representing the original execution order
I Input to dependence analysis (in isl)
I Basis for manual/incremental transformations

Scheduling
I Construction based on dependences
I Schedule modifications

AST generation
I Generate AST from schedule



Advantages Useful in several contexts January 20, 2014 11 / 21

Schedule Trees Everywhere
Old PPCG:

C code parse internal tree encode union map

decodeinternal treedependence analysisdependences

scheduler band forest tile band forest encode

union mapdecodeinternal treeAST generatorAST

New PPCG:

C code parse schedule tree dependence analysis

dependencesschedulerschedule treetile

schedule tree AST generator AST



Advantages Useful in several contexts January 20, 2014 11 / 21

Schedule Trees Everywhere
Old PPCG:

C code parse internal tree encode union map

decodeinternal treedependence analysisdependences

scheduler band forest tile band forest encode

union mapdecodeinternal treeAST generatorAST

New PPCG:

C code parse schedule tree dependence analysis

dependencesschedulerschedule treetile

schedule tree AST generator AST



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More natural January 20, 2014 12 / 21

Schedule Construction Example

for (i = 0; i <= N; ++i)

S: a[i] = g(i);

for (i = 0; i <= N; ++i)

T: b[i] = f(a[N-i]);

U:c = 0;

Iteration domain

{ S[i] : 0 ≤ i ≤ N; T[i] : 0 ≤ i ≤ N; U[] }

Dependences

{ S[i]→ T[N − i] : 0 ≤ i ≤ N }

set

U[]

⊥

S[i]; T[i]

S[i]→ [i]; T[i]→ [N − i]

sequence

S[i]

⊥

T[i]

⊥

⇒ natural representation of constructed schedule



Advantages More convenient January 20, 2014 13 / 21

Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)



Advantages More convenient January 20, 2014 13 / 21

Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)



Advantages More convenient January 20, 2014 13 / 21

Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)



Advantages More convenient January 20, 2014 13 / 21

Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)



Advantages More convenient January 20, 2014 13 / 21

Local Transformations
Typical scenario:

1 Construct tilable bands (e.g., using Pluto algorithm)
2 Individually tile (some) tilable bands

I Given a band D(i)→ f(i), insert a band D(i)→
⌊
f(i)/S

⌋
I First iterate over blocks of size S and then iterate within each block

Tiled individually:
I bands of different dimensionality
I different tile sizes S per band

set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)

S1[i, j]→ (bi/s0c , bj/s1c , 0);

S3[i, j, k ]→ (bi/s0c , bj/s1c , bk/s2c)

S1[i, j]→ (i, j, 0);

S3[i, j, k ]→ (i, j, k)



Advantages More convenient January 20, 2014 14 / 21

Local Transformations
Schedule Tree: set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);S3[i, j, k ]→ (i, j, k)

Kelly’s abstraction:

T1 : { [i, j]→ [1, i, j, 0] }

T2 : { [i, j, k ]→ [0, k , j, i] }

T3 : { [i, j, k ]→ [1, i, j, k ] }
How to identify node that needs to be tiled?

interval of dimensions

list of statements or values for set/sequence encodings

Union map representation additionally requires alignment of single
schedule space



Advantages More convenient January 20, 2014 14 / 21

Local Transformations
Schedule Tree: set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);S3[i, j, k ]→ (i, j, k)

Kelly’s abstraction:

T1 : { [i, j]→ [1, i, j, 0] }

T2 : { [i, j, k ]→ [0, k , j, i] }

T3 : { [i, j, k ]→ [1, i, j, k ] }
How to identify node that needs to be tiled?

interval of dimensions

list of statements or values for set/sequence encodings

Union map representation additionally requires alignment of single
schedule space



Advantages More convenient January 20, 2014 14 / 21

Local Transformations
Schedule Tree: set

S2[i, j, k ]

S2[i, j, k ]→ (k , j)

S2[i, j, k ]→ (i)

S1[i, j];S3[i, j, k ]

S1[i, j]→ (i, j, 0);S3[i, j, k ]→ (i, j, k)

Kelly’s abstraction:

T1 : { [i, j]→ [1, i, j, 0] }

T2 : { [i, j, k ]→ [0, k , j, i] }

T3 : { [i, j, k ]→ [1, i, j, k ] }
How to identify node that needs to be tiled?

interval of dimensions

list of statements or values for set/sequence encodings

Union map representation additionally requires alignment of single
schedule space



Advantages More expressive January 20, 2014 15 / 21

CARP Project
Design tools and techniques to aid
Correct and Efficient Accelerator Programming



Advantages More expressive January 20, 2014 16 / 21

Advanced Use: CUDA/OpenCL Code Generation

Schedule tree logically split into two parts
I Outer part mapped to host code
I Subtrees mapped to device code

Device part has additional symbolic constants
⇒ block and thread identifiers
⇒ internal context nodes

Each thread executes only part of iteration domain
⇒ selected using filter nodes

Old PPCG used nested AST generation

⇒ difficult to understand and debug



Advantages More expressive January 20, 2014 16 / 21

Advanced Use: CUDA/OpenCL Code Generation

Schedule tree logically split into two parts
I Outer part mapped to host code
I Subtrees mapped to device code

Device part has additional symbolic constants
⇒ block and thread identifiers
⇒ internal context nodes

Each thread executes only part of iteration domain
⇒ selected using filter nodes

Old PPCG used nested AST generation

⇒ difficult to understand and debug



Advantages More expressive January 20, 2014 17 / 21

Advanced Use: CUDA/OpenCL Code Generation
for (t = 0; t < T; t++) {
for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < N - 1; j++)
A[j] = B[j];

} S[t , i]→ [t]; t[t , j]→ [t]

S[t , i]→ [0]; t[t , j]→ [1]

set

T[t , j]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

T[t , j] : b = bj/32c mod 32768

T[t , j]→ bj/32c

T[t , j] : t = j mod 32

T[t , j]→ j mod 32

S[t , i]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

S[t , i] : b = bi/32c mod 32768

S[t , i]→ bi/32c

S[t , i] : t = i mod 32

S[t , i]→ i mod 32

subtree mapped to deviceintroduce identifiersfilter on identifiers



Advantages More expressive January 20, 2014 17 / 21

Advanced Use: CUDA/OpenCL Code Generation
for (t = 0; t < T; t++) {
for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < N - 1; j++)
A[j] = B[j];

} S[t , i]→ [t]; t[t , j]→ [t]

S[t , i]→ [0]; t[t , j]→ [1]

set

T[t , j]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

T[t , j] : b = bj/32c mod 32768

T[t , j]→ bj/32c

T[t , j] : t = j mod 32

T[t , j]→ j mod 32

S[t , i]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

S[t , i] : b = bi/32c mod 32768

S[t , i]→ bi/32c

S[t , i] : t = i mod 32

S[t , i]→ i mod 32

subtree mapped to device

introduce identifiersfilter on identifiers



Advantages More expressive January 20, 2014 17 / 21

Advanced Use: CUDA/OpenCL Code Generation
for (t = 0; t < T; t++) {
for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < N - 1; j++)
A[j] = B[j];

} S[t , i]→ [t]; t[t , j]→ [t]

S[t , i]→ [0]; t[t , j]→ [1]

set

T[t , j]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

T[t , j] : b = bj/32c mod 32768

T[t , j]→ bj/32c

T[t , j] : t = j mod 32

T[t , j]→ j mod 32

S[t , i]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

S[t , i] : b = bi/32c mod 32768

S[t , i]→ bi/32c

S[t , i] : t = i mod 32

S[t , i]→ i mod 32

subtree mapped to device

introduce identifiers

filter on identifiers



Advantages More expressive January 20, 2014 17 / 21

Advanced Use: CUDA/OpenCL Code Generation
for (t = 0; t < T; t++) {
for (i = 1; i < N - 1; i++)
B[i] = 0.33333 * (A[i-1] + A[i] + A[i + 1]);

for (j = 1; j < N - 1; j++)
A[j] = B[j];

} S[t , i]→ [t]; t[t , j]→ [t]

S[t , i]→ [0]; t[t , j]→ [1]

set

T[t , j]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

T[t , j] : b = bj/32c mod 32768

T[t , j]→ bj/32c

T[t , j] : t = j mod 32

T[t , j]→ j mod 32

S[t , i]

mark: kernel

0 ≤ b < 32768 ∧ 0 ≤ t < 32

S[t , i] : b = bi/32c mod 32768

S[t , i]→ bi/32c

S[t , i] : t = i mod 32

S[t , i]→ i mod 32

subtree mapped to deviceintroduce identifiers

filter on identifiers



Advantages Extensible January 20, 2014 18 / 21

Extension

In final stages of scheduling, additional statements may need to be added

Copy code

Synchronization

. . .

These additional statements depend on ancestors

the statements should only be executed in a given part of the
schedule tree

iteration domains depend on outer schedule (e.g., data to be copied)

⇒ new “extension” node type

⇒ maps outer schedule dimensions to extra iteration domain



Advantages Extensible January 20, 2014 19 / 21

Extension
0 ≤ b0, b1 < 128 ∧ 0 ≤ t0 < 32 ∧ 0 ≤ t1 < 16

S0[i, j] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128;

S1[i, j, k ] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128

[]→ write C[u, v] : 0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ b1 = bv/32c

sequence

S0[i, j];S1[i, j, k ]

S0[i, j]→ [bi/32c , bj/32c];

S1[i, j.k ]→ [bi/32c , bj/32c]

S0[i, j]→ [0];S1[i, j.k ]→ [bk/32c]

[i0, i1, i2]→ sync[];
[i0, i1, i2]→ read A[u, v] :

0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ i2 = bv/32c ;

[i0, i1, i2]→ read B[u, v] : . . .

. . .

write C[u, v]

write C[32b0 + t0, v] : t1 = v mod 16

write C[u, v]→ [u, v]



Advantages Extensible January 20, 2014 19 / 21

Extension
0 ≤ b0, b1 < 128 ∧ 0 ≤ t0 < 32 ∧ 0 ≤ t1 < 16

S0[i, j] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128;

S1[i, j, k ] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128

[]→ write C[u, v] : 0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ b1 = bv/32c

sequence

S0[i, j];S1[i, j, k ]

S0[i, j]→ [bi/32c , bj/32c];

S1[i, j.k ]→ [bi/32c , bj/32c]

S0[i, j]→ [0];S1[i, j.k ]→ [bk/32c]

[i0, i1, i2]→ sync[];
[i0, i1, i2]→ read A[u, v] :

0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ i2 = bv/32c ;

[i0, i1, i2]→ read B[u, v] : . . .

. . .

write C[u, v]

write C[32b0 + t0, v] : t1 = v mod 16

write C[u, v]→ [u, v]



Advantages Extensible January 20, 2014 19 / 21

Extension
0 ≤ b0, b1 < 128 ∧ 0 ≤ t0 < 32 ∧ 0 ≤ t1 < 16

S0[i, j] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128;

S1[i, j, k ] : b0 = bi/32c mod 128 ∧ b1 = bj/32c mod 128

[]→ write C[u, v] : 0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ b1 = bv/32c

sequence

S0[i, j];S1[i, j, k ]

S0[i, j]→ [bi/32c , bj/32c];

S1[i, j.k ]→ [bi/32c , bj/32c]

S0[i, j]→ [0];S1[i, j.k ]→ [bk/32c]

[i0, i1, i2]→ sync[];
[i0, i1, i2]→ read A[u, v] :

0 ≤ u, v ≤ 4095 ∧ b0 = bu/32c ∧ i2 = bv/32c ;

[i0, i1, i2]→ read B[u, v] : . . .

. . .

write C[u, v]

write C[32b0 + t0, v] : t1 = v mod 16

write C[u, v]→ [u, v]



Conclusion January 20, 2014 20 / 21

Outline

1 Introduction
Example
Single Statement
Multiple Statements
Schedule Trees

2 Advantages
Useful in several contexts
More natural
More convenient
More expressive
Extensible

3 Conclusion



Conclusion January 20, 2014 21 / 21

Conclusion
Conclusion:

Exploit the tree nature of a schedule rather than
encoding it in a flat representation

Schedule trees are
useful in several contexts
more natural
more convenient
more expressive
extensible

Future work
apply separation on schedule tree
additional node types

I parametric tiling
I clustering
I . . .



Conclusion January 20, 2014 21 / 21

Conclusion
Conclusion:

Exploit the tree nature of a schedule rather than
encoding it in a flat representation

Schedule trees are
useful in several contexts
more natural
more convenient
more expressive
extensible

Future work
apply separation on schedule tree
additional node types

I parametric tiling
I clustering
I . . .


	Introduction
	Example
	Single Statement
	Multiple Statements
	Schedule Trees

	Advantages
	Useful in several contexts
	More natural
	More convenient
	More expressive
	Extensible

	Conclusion

