
Energy Auto-Tuning using the Polyhedral Approach

Wei Wang1 John Cavazos1 Allan Porterfield2

1Dept. of Computer & Information Sciences
University of Delaware

2RENaissance Computing Institute (RENCI)
University of North Carolina-Chapel Hill

January 20, 2014

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Introduction

Application Energy Consumption
Optimizing for lower energy has become critical when we
approach Exascale Computing.

Tuning for faster execution vs. tuning for lower Energy?
Knowledge of the relationship between the two will guide
auto-tuning process.

Energy Impact of Polyhedral Optimizations
Not well understood.
Polyhedral optimizations barely studied on non-trivial/realistic
applications.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Auto-tuning Framework

Program Characterization
Control Flow Graph(CFG)
Source Code, Performance
Counters, ...

Optimization Sequences
Src-to-Src Compiler

Energy Profiling
Energy Related Counters

Machine Learning Algorithms
SVM
Linear Regression,...

Auto-tuning for time is very effective,
especially using CFG as program feature.
(Refs: Park et al. CGO’11, CGO’12, IJPP’13)

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Measurement using RCRTool

MSRs/Energy File:
Instantaneous Energy
RCRTool Energy Blackboard:
Accumulated Energy
RCRTool API calls: Records
energy consumption of
executed application codes

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Measurement using RCRTool

Architecture Tested
Sandy Bridge, Ivy Bridge
Shared memory stores MSR counters.
Update frequency: > 1000/s.
Supported Language: OpenMP, MPI.
MIC
Shared memory stores energy obtained from PAPI and Intel
MICAccessSDK.
Update frequency: about 20/s.
Host version and MIC-native version.
Supported Language: OpenMP (offload and native), OpenCL
(host).

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

RCRTool Exposed APIs

energyDaemonInit()
energyDaemonEnter(): Start/Resume measurement when
entering a region.
energyDaemonExit(file, line_no): Stop/Pause measurement
upon exiting the region
energyDaemonTerm()
energyDaemonTEStart(): Start measuring Time and Energy
energyDaemonTEStop(): Stop measuring Time and Energy

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Exposed APIs-Example
Original OpenMP program Added with energy profiling call

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Polyhedral Compilers

Generate code variants of a program containing Static Control Parts
(SCoP) using PoCC (Polyhedral Compiler Collection).

Loop Transformations
Auto Parallelization (PLUTO)
Tested Applications
Existing: Polybench
New: 2D Cardiac Wave Propagation Simulation, LULESH
(C/C++)

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Profiling of Different Program Optimizations

Workflow of energy-aware polyhedral framework

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Experiments Setup

Hardware
Intel Xeon E5-2680 (dual socket 8-core processor with 20MB
cache)
Xeon Phi coprocessor (61 cores, 1.09GHz, 512KB cache each)

Software
Polyhedral Compilers: PoCC v1.2 and Polyopt v0.2.1
Application: Polybench v3.2 and LULESH v1.0 (OpenMP)
Back-end Compilers: GCC v4.4.6 and ICC v14.0.0

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Consumption and Execution Time Correlation
(Polybench)

Covariance Polybench

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 1000 2000 3000 4000 5000
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

E
n

er
g

y
(j

o
u

le
s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

2mm Polybench

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000 5000
 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

E
n

er
g

y
(j

o
u

le
s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

Loop fusion (maxfuse) reduce execution time but increases energy
consumption (spikes and the tail in Covariance benchmark). Bad
tiling configuration increases energy consumption (spikes in 2mm
benchmark). Best optimizations for time are best for energy savings
for these two polybench application.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Consumption and Execution Time Correlation
(Polybench Stencil Seidel2D Program)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 1000 2000 3000 4000 5000
 0

 5

 10

 15

 20

 25

 30

 35
E

n
er

g
y

(j
o

u
le

s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

For the stencil program, the correlation between the execution time
and the energy consumption is also observed. Jumps in energy
usage (and decreased execution time) are results of turning
parallelization on.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Consumption and Execution Time Correlation
(LULESH)

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 0 20 40 60 80 100 120 140 160 180 200
 12

 14

 16

 18

 20

 22

 24
E

n
er

g
y

(j
o

u
le

s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

As a larger application, LULESH also displays the similar correlation
between energy and time. The best optimized program for time is
also for energy. (Note: the graph is from optimizing one loop nest).

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Effectiveness of Polyhedral Optimizations on a
Realistic Application

2D Cardiac Wave Propagation
Simulation

Speedup obtained on a Sandy
Bridge system.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

256 512 1024 2048
 0

 0.05

 0.1

 0.15

 0.2

 0.25

S
p

ee
d

u
p

s

N
o

rm
al

iz
ed

 E
n

er
g

y
S

av
in

g
s

Problem Size

Time
Energy

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Results on MIC for Cardiac Simulation

 40

 60

 80

 100

 120

 140

 160

256 512 1024 2048
 40

 60

 80

 100

 120

 140

 160

S
p

ee
d

u
p

s

Problem Size

Manual
Polyopt

 1

 1.05

 1.1

 1.15

 1.2

 1.25

256 512 1024 2048
 0

 0.05

 0.1

 0.15

 0.2

 0.25

S
p

ee
d

u
p

s

N
o

rm
al

iz
ed

 E
n

er
g

y
S

av
in

g
s

Problem Size

Speedups
EnergySavings

Left: The best optimized PolyOpt program variant vs manual
OpenMP (over sequential baseline).
Right: Speedups and energy savings comparing the manual
OpenMP with the best PolyOpt program variant.
Conclusion: Polyhedral Approach is effective in optimizing the 2D
Cardiac Wave Propagation Simulation.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Energy Consumption and Execution Time Correlation
(2D Cardiac Wave Propagation Simulation)

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 0 10 20 30 40 50 60 70 80 90
 40

 45

 50

 55

 60

 65

 70

 75

E
n

er
g

y
(j

o
u

le
s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60 70 80 90
 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

E
n

er
g

y
(j

o
u

le
s)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Program Variants

Time
Energy

Left: Time and energy correlation on Sandy Bridge
Right: Time and energy correlation on MIC
Conclusion: Energy tracks the time. Saving energy consumption is
consistent with improving performance on both processors

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Challenges/Limitations using Polyhedral Compilers

Exposing SCoPs of the application
LULESH contains six large regions that are potential SCoPs.
Temporary (array/scalar) variables
Large number of dependences between statements in a SCoP.
In LULESH, a human-readable SCoP can easily contain
thousands of dependences.
Temporary variables elimination
Resulting code is not human-readable and may reduce
optimization effectiveness.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Polyhedral Transformable LULESH Code :(

That is part of ONE statement!

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Conclusion

Tuning for time can be used as proxy to tuning for energy
Energy/time correlation observed for many benchmarks.
Optimizations can increase the power and energy, but variant with
minimum execution time also has the lowest energy usage.

Effectiveness
On different architectures, improvements as high as 20% in
execution time and a similar amount of reduction in energy (for a
realistic application) are obtained using polyhedral approach.

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

Acknowledgment

EunJung Park, University of Delaware
Matthew Kay, The George Washington University
Louis-Noël Pouchet, UCLA
Albert Cohen, INRIA
Riyadh Baghdadi, INRIA
Sven Verdoolaege, ENS

IMPACT 2014 Workshop, Jan 20, 2014, Vienna, Austria Energy Auto-Tuning using the Polyhedral Approach

