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Introduction

Application Energy Consumption
Optimizing for lower energy has become critical when we
approach Exascale Computing.

Tuning for faster execution vs. tuning for lower Energy?
Knowledge of the relationship between the two will guide
auto-tuning process.

Energy Impact of Polyhedral Optimizations
Not well understood.
Polyhedral optimizations barely studied on non-trivial/realistic
applications.
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Auto-tuning Framework

Program Characterization
Control Flow Graph(CFG)
Source Code, Performance
Counters, ...

Optimization Sequences
Src-to-Src Compiler

Energy Profiling
Energy Related Counters

Machine Learning Algorithms
SVM
Linear Regression,...

Auto-tuning for time is very effective,
especially using CFG as program feature.
(Refs: Park et al. CGO’11, CGO’12, IJPP’13)
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Energy Measurement using RCRTool

MSRs/Energy File:
Instantaneous Energy
RCRTool Energy Blackboard:
Accumulated Energy
RCRTool API calls: Records
energy consumption of
executed application codes
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Energy Measurement using RCRTool

Architecture Tested
Sandy Bridge, Ivy Bridge
Shared memory stores MSR counters.
Update frequency: > 1000/s.
Supported Language: OpenMP, MPI.
MIC
Shared memory stores energy obtained from PAPI and Intel
MICAccessSDK.
Update frequency: about 20/s.
Host version and MIC-native version.
Supported Language: OpenMP (offload and native), OpenCL
(host).
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RCRTool Exposed APIs

energyDaemonInit()
energyDaemonEnter(): Start/Resume measurement when
entering a region.
energyDaemonExit(file, line_no): Stop/Pause measurement
upon exiting the region
energyDaemonTerm()
energyDaemonTEStart(): Start measuring Time and Energy
energyDaemonTEStop(): Stop measuring Time and Energy
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Exposed APIs-Example
Original OpenMP program Added with energy profiling call
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Polyhedral Compilers

Generate code variants of a program containing Static Control Parts
(SCoP) using PoCC (Polyhedral Compiler Collection).

Loop Transformations
Auto Parallelization (PLUTO)
Tested Applications
Existing: Polybench
New: 2D Cardiac Wave Propagation Simulation, LULESH
(C/C++)
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Energy Profiling of Different Program Optimizations

Workflow of energy-aware polyhedral framework
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Experiments Setup

Hardware
Intel Xeon E5-2680 (dual socket 8-core processor with 20MB
cache)
Xeon Phi coprocessor (61 cores, 1.09GHz, 512KB cache each)

Software
Polyhedral Compilers: PoCC v1.2 and Polyopt v0.2.1
Application: Polybench v3.2 and LULESH v1.0 (OpenMP)
Back-end Compilers: GCC v4.4.6 and ICC v14.0.0
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Energy Consumption and Execution Time Correlation
(Polybench)

Covariance Polybench
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2mm Polybench
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Loop fusion (maxfuse) reduce execution time but increases energy
consumption (spikes and the tail in Covariance benchmark). Bad
tiling configuration increases energy consumption (spikes in 2mm
benchmark). Best optimizations for time are best for energy savings
for these two polybench application.
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Energy Consumption and Execution Time Correlation
(Polybench Stencil Seidel2D Program)
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For the stencil program, the correlation between the execution time
and the energy consumption is also observed. Jumps in energy
usage (and decreased execution time) are results of turning
parallelization on.
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Energy Consumption and Execution Time Correlation
(LULESH)
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As a larger application, LULESH also displays the similar correlation
between energy and time. The best optimized program for time is
also for energy. (Note: the graph is from optimizing one loop nest).
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Effectiveness of Polyhedral Optimizations on a
Realistic Application

2D Cardiac Wave Propagation
Simulation

Speedup obtained on a Sandy
Bridge system.
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Results on MIC for Cardiac Simulation
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Left: The best optimized PolyOpt program variant vs manual
OpenMP (over sequential baseline).
Right: Speedups and energy savings comparing the manual
OpenMP with the best PolyOpt program variant.
Conclusion: Polyhedral Approach is effective in optimizing the 2D
Cardiac Wave Propagation Simulation.
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Energy Consumption and Execution Time Correlation
(2D Cardiac Wave Propagation Simulation)
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Left: Time and energy correlation on Sandy Bridge
Right: Time and energy correlation on MIC
Conclusion: Energy tracks the time. Saving energy consumption is
consistent with improving performance on both processors
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Challenges/Limitations using Polyhedral Compilers

Exposing SCoPs of the application
LULESH contains six large regions that are potential SCoPs.
Temporary (array/scalar) variables
Large number of dependences between statements in a SCoP.
In LULESH, a human-readable SCoP can easily contain
thousands of dependences.
Temporary variables elimination
Resulting code is not human-readable and may reduce
optimization effectiveness.
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Polyhedral Transformable LULESH Code :(

That is part of ONE statement!
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Conclusion

Tuning for time can be used as proxy to tuning for energy
Energy/time correlation observed for many benchmarks.
Optimizations can increase the power and energy, but variant with
minimum execution time also has the lowest energy usage.

Effectiveness
On different architectures, improvements as high as 20% in
execution time and a similar amount of reduction in energy (for a
realistic application) are obtained using polyhedral approach.
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