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ABSTRACT
As the HPC community moves into the exascale computing
era, application energy has become a big concern. Tuning for
energy will be essential in the effort to overcome the limited
power envelope. How is tuning for lower energy related to
tuning for faster execution? Understanding that relationship
can guide both performance and energy tuning for exascale.
In this paper, a strong correlation is presented between the
two that allows tuning for execution to be used as a proxy
for energy tuning. We also show that polyhedral compilers
can effectively tune a realistic application for both time and
energy.

For a large number of variants of the Polybench pro-
grams and LULESH energy consumption is strongly corre-
lated with total execution time. Optimizations can increase
the power and energy required between variants, but the
variant with minimum execution time also has the lowest
energy usage. The polyhedral framework was also used to
optimize a 2D cardiac wave propagation simulation applica-
tion. Various loop optimizations including fusion, tiling, vec-
torization, and auto-parallelization, achieved a 20% speedup
over the baseline OpenMP implementation, with an equiv-
alent reduction in energy on an Intel Sandy Bridge system.
On an Intel Xeon Phi system, improvements as high as 21%
in execution time and 19% reduction in energy are obtained.

1. INTRODUCTION
As the HPC community approaches the exascale comput-

ing era, reducing application energy and power consumption
is important. The cost of supplying the peak power and
operational energy for exascale systems will be substantial.
Controlling application energy usage of increasingly power-
ful compute nodes will be required. Before tuning an appli-
cation for power efficiency, it is necessary to understand how
energy consumption is related to the application execution
time. Knowledge of the relationship between performance
and energy can guide the tuning effort.

Previous work which performed coarse-grain measurement
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have provided evidence for the existence of opportunities to
auto-tune for energy in parallel applications [23]. Using the
Resource Centric Reflection daemon tool (RCRtool) devel-
oped at RENCI [16], energy consumption can be measured
at a fine granularity for any OpenMP program. Fine-grain
measurements enable attribution of energy consumption to
particular application regions and even to the individual
lines of codes. This allows for an accurate study of the cor-
relation between execution time and energy consumption of
an application.

For most scientific applications, nested loops consume a
significant portion of the total running time. When tun-
ing the application for better performance and energy us-
age, some combination of loop optimizations, including loop
tiling, loop unrolling, and loop fusion, are usually performed
on the program along with the auto-parallelization. Deter-
mining which set of optimizations produces the best results
is hard. Polyhedral auto-tuning frameworks have shown
promising results at simplifying that effort [15, 13, 14] for
small computation kernels like the Polybench programs [18].
In addition to the polybench kernels, we also examine two
small applications with the polyhedral framework to deter-
mine the frameworks’ effectiveness at reducing overall en-
ergy consumption.

This paper has 3 main contributions: 1) Fine-grained
measurement of execution time and energy consumption with
RCRtool and documenting the correlation between the two.
2) Additional speedups up to 20% over the already efficient
OpenMP baseline implementation of a small realistic appli-
cation using polyhedral optimizations on Intel Sandy Bridge
and Xeon Phi processors. 3) Evaluation of how a different
architecture effects the utility of the polyhedral optimiza-
tions techniques for execution time and energy.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the tools used to measure energy con-
sumptions. Section 3 describes the benchmarks used for
measuring the energy consumptions and evaluating the ef-
fectiveness of polyhedral compilers in optimizing a realistic
application. Experimental setup, results and analysis are
presented in Section 4 and Section 5. Section 6 explains and
compares with related work. Section 7 has our conclusions.

2. ENERGY MEASUREMENT-AND-TUNING
TOOLS

To understand energy consumption, execution time and
various optimizations, a light-weight fine-grained measure-
ment tool is required. RCRtool provides user-level fast ac-
cess to hardware counters. Finding the optimal combination
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of compiler optimizations requires a compilation framework,
like the Polyhedral Compiler Collection, that easily produces
a large number of program variants with specific optimiza-
tion parameters.

2.1 RCRtool on Sandy Bridge Systems
The Intel Sandy Bridge architecture allows users to track

energy usage through the exposed Running Average Power
Limit (RAPL) interface [9]. A model-specific register (MSR)
was added with the Sandy Bridge to track energy consumed
by the chip – MSR PKG ENERGY STATUS. The counter
is frequently updated and counts the energy in 15.3 micro-
Joule units. Experiments have shown [16] and the documen-
tation [9] states that the counter can be accessed as often
as every microsecond. The counter is only 32 bits and can
wrap in as little as a couple of minutes. The RCRtool de-
tects the wraps and supplies a 64 bit value with the upper
32 bits being the number of wraps since RCRtool instantia-
tion. The RCRtool must run at supervisor level to access the
counter. It writes the current value of the counter at least
1000 times a second into a shared-memory data structure.
This “blackboard” structure provides a hierarchical view of
the system where various current performance information is
stored. The information is available to any OpenMP appli-
cations through a simple API that delineates a code region
for measurement with a start and end call. Each region
is identified by its file name and line number. If a region
is executed multiple times the energy is summed across all
executions. All energy information is available during appli-
cation shutdown.

The ROSE source-to-source compiler [20] finds OpenMP
parallel regions and adds RCRtool API calls around the
region automatically. ROSE tracks original file name and
source line number allowing simple parallel region identifi-
cation. When the program finishes execution, the elapsed
time, the amount of energy used (in Joules), and the aver-
age computed power (in Watts) of the parallel regions and
the whole application are output. Additional information
such as processor temperature is also available during appli-
cation shut-down. RCRtool runs on Intel architectures with
the RAPL interface, and has been tested on Sandy Bridge
and Ivy Bridge implementations.

The overhead of the RCRdaemon is negligible on both ar-
chitectures. It enables us to measure the energy consump-
tion of the application with a granularity of about one mil-
lisecond.

2.2 RCRtool on Xeon Phi System
The Intel MIC architecture in the Intel Xeon Phi chips

is a recent addition to the Intel processor offerings. Our
Phi accelerator cards contain 61 cores, each core supports
4 hardware threads. One notable feature is the 512-bit
wide SIMD vectors providing fine-grain vectorization and
high floating-point performance for each thread. With the
wide vector registers, a single instruction can operate on 8
adjacent double-precision floating point data or 16 single-
precision floating point data. The cores, threads and vector
unit combine to achieve well over a Teraflop from a single
socket.

RCRtool collects power information of Intel Phi natively
or on the host. Natively, users can track power usage in mi-
croWatts through a file (/sys/class/micras/power) updated
every 50 millisecond. RCRtool monitors the power at user

level and computes the energy consumption over time. The
information is available to the applications through the same
simple API as on Sandy Bridge.

RCRtool can also run on the host. On the host, it collects
power information using the MICAccessSDK API provided
by Intel at the same granularity as the native version. Mea-
surements in this paper were collected with a native Phi
RCRdaemon.

2.3 Polyhedral Optimizations Tools
The Polyhedral Compiler Collection (PoCC) [17] was used

to generate program variants with different optimizations.
The PoCC requires that programs contain static control
parts (SCoP) [4, 6] so that valid transformations can be
applied. Polybench is a collection of programs that contain
SCoPs and can be polyhedral optimized.

PolyOpt (a Polyhedral Optimizer for the ROSE compiler)
[19] was also used to automatically detect SCoPs in applica-
tions. PolyOpt is integrated into the ROSE compiler. Aside
from its capability of extracting SCoP regions in an auto-
matic way, it fully supports PoCC analysis and optimiza-
tions. PolyOpt supports loops fusion, loop tiling, thread-
level parallelization and vectorization. PolyOpt has better
support for side-effect free program features [1] like math
functions, allowing some function calls within a SCoP.

PoCC generates hundreds and even thousands of program
variants for simple programs, like Polybench. PolyOpt, al-
though more powerful than PoCC, still may not be able
to extract any SCoPs because of structural impediments.
Changes to the program may be required to “manually” ex-
pose the SCoPs for PolyOpt, allowing loop transformations,
parallelization, and vectorization to occur.

3. BENCHMARKS FOR ENERGY MEASURE-
MENT AND TUNING

In this work, we evaluate three kinds of programs for
energy auto-tuning with the polyhedral framework: Poly-
bench programs, the publicly-accessible LULESH program
[10], and a realistic application developed and frequently
used by our collaborators.

3.1 Polybench
Previous work has obtained significant speedups with the

polyhedral framework for the Polybench programs [15, 13,
14]. Extending that work to examine whether the best tuned
variants are also the most energy efficient is the focus of this
work. Using PoCC, program variants were generated using
a different set of the optimizations from the following five
groups:

• Loop fusion: smartfuse, maxfuse, nofuse

• Loop unrolling factor: 1, 2, 4, 8

• Loop tiling: 1, 16, 32, 64. Note that the number of
different flags depends on the level of nested loops

• Loop vectorization: on, off

• Loop parallelization: on, off

The Tiling Hyperplane method [2] is used to legally perform
loop transformations. Loop fusion is performed to minimize
loop overheads. Depending on reuse patterns, fusion can
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Figure 1: Graph showing the workflow of obtaining
energy consumption of polyhedral optimized (Poly-
bench) programs.

increase or decrease locality. As in [14], 1) nofuse results
in no loop fusion 2) smartfuse only fuses statements that
carry data reuse and are at similar nesting levels 3) maxfuse
performs all legal loop fusion. If the maximum nested loop
level is 3, applying all possible combinations of the above
flags generates 5135 program variants. The ROSE source-
to-source compiler was used to add energy profiling calls to
each variant. GCC(4.4.6) generated the final executable.
During execution, periodic queries to the RCRtool black-
board provide the energy consumption information. Fig-
ure 1 gives the workflow for measuring energy consumption
of Polybench programs using the energy-aware polyhedral
compiler framework.

3.2 LULESH
LULESH [10] is a shock hydrodynamic simulation applica-

tion. It mimics a larger realistic application called ALE3D.
We used the OpenMP implementation v1.0 for evaluation.
The original LULESH uses a block structured mesh accessed
via an indirect reference pattern [10]. To make LULESH go
through the polyhedral compilation procedure, we modified
LULESH by resolving all indirect array accesses. Although
doing this oversimplified LULESH, it allows us to study the
energy and time relationship of polyhedral compilation tech-
niques with LULESH.

The LULESH OpenMP implementation contains 30 par-
allel regions, 6 of which take up more than 60% of the to-
tal application time [16]. We manually converted the two
most significant parallel regions to two SCoPs so that they
can be passed to the polyhedral framework. The resulting
largest SCoP contained too many dependences and we found
it was hard for the polyhedral compiler to finish transforma-
tion and parallelization. When all temporary variables were
eliminated from the most computationally intensive loop to
create an SCoP, greatly expanded statements required hours
of compilation to finish generating even one variant. In this
work, we focus on optimizing the 2nd (largest) SCoP of
LULESH. 200 program variants were produced by applying
loop fusion (maxfuse and smartfuse), loop tiling, vectoriza-
tion, and parallelization. The execution time and energy of
each was measured.

3.3 A Realistic Application
In addition to the Polybench programs, a 2D monodomain

cardiac wave propagation simulation (named brdr2d) was
used as a test case. Its model involves solving a set of ODEs
and PDEs and is well-known in the computational cardiac
modeling field [25]. Equation (1) is the PDE that needs to
be solved. The ODEs are used to represent the Iion variable.

Cm
∂Vm

∂t
= ∇ ·D∇Vm − Iion (1)

The sequential C implementation is more than 1K lines.
One loop nest takes up more than 90% of the total appli-

cation execution time. The dominant loop nest is an ideal
situation for the polyhedral compiler. The loop nest is inside
a while loop and is executed many times. This code struc-
ture is not unique to cardiac wave propagation simulation.
Computationally dominate loops inside either while loops
looking for some termination condition or inside a simula-
tion time-step loop are common in scientific codes. LULESH
falls into this category with multiple loop nests within a
time-step loop.

While PolyOpt originally cannot extract any SCoP from
brdr2d, it does output information useful to the user to man-
ually transform the application to contain at least one SCoP.
To expose the SCoPs the following changes were required.
The computation part of brdr2d was fully inlined removing
all function calls. Then, all array indexes were changed to
be affine functions of the loop iterators. This involved loop
unswitching to specialize modular operations like step % 2.
Finally, the number of dependencies was reduced by forward
substitution of temporary variables. After these changes,
PolyOpt automatically detected the code region and applied
various transformations to the SCoPs.

Program variants were generated to explore data local-
ity and parallelism using loop fusion (smartfuse/maxfuse),
different tiling sizes, vectorization and auto-parallelization.
OpenMP pragmas were automatically generated for each
variant. The original sequential C implementation had all
required OpenMP pragmas manually added to serve as a
baseline. Four different input files for brdr2d were used to
study how the performance of the program variants is im-
pacted by different input sizes.

4. EXPERIMENTAL SETUP
The tests ran on a 2-socket 8-core Intel Xeon E5-2680 pro-

cessor with 20MB (40MB total) L3 cache. PoCC v1.2 was
used to generate program variants from Polybench v3.2. The
extra large data set (specified in Polybench) was used. A
few modifications were made to ROSE (version timestamped
1370387370) to insert the energy API calls. GCC v4.4.6 was
the backend compiler. Every executable was compiled with
the -O3 optimization flag. To protect against low start-
up energy/power measurements, the system was warmed up
with a computational intensive script before any test was
executed.

Experiments were also run on a Xeon Phi coprocessor.
The Phi architecture accelerator card contained 61 cores
clocked at 1.09GHz. Each core had 512KB of L2 cache.
The generated program variants used the ICC v14.0.0 com-
piler as their backend, producing OpenMP programs that
ran natively on the Phi.

5. EXPERIMENTAL RESULTS
The polyhedral framework was first used to examine the

energy usage (and the execution time) of the Polybench pro-
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grams and LULESH on the Intel Sandy Bridge architecture.
These programs are written to allow easy framework manip-
ulation of the program. A more realistic application brdr2d
on both the Intel Sandy Bridge and the Intel Xeon Phi ar-
chitectures is then studied.

5.1 Execution Time and Energy Consumption
Correlation

The first experiments verify the relationship between ex-
ecution time and energy consumption.

5.1.1 Polybench
The Polybench v3.2 contains 30 programs. Because of the

large number of variants created, the energy consumption of
3 (covariance, 2mm, and stencil seidel-2d) were chosen for
closer examination. Figure 2 shows the relationship between
the execution time and the energy usage for the 5135 vari-
ants of the covariance benchmark, sorted by execution time.
The left y-axis shows the energy consumption (in joules) and
the right y-axis shows the execution time (in seconds).

There is clear correlation between the time and the energy.
The energy line (blue, mostly the bottom) generally follows
the time line. The best optimized program variant for time
(bottom right in the figure) consumed the least amount of
energy. The energy line has many places where 2 runs that
take the same amount of time consume significantly differ-
ent energy. These appear as spikes in the graph. Examin-
ing the data, we noticed that the higher energy usage value
always had the “maxfuse” flag set. The last jump is at vari-
ant 4236, above which all executions have “maxfuse” set.
The executable with “maxfuse” requires significantly more
power than with either “smartfuse” or “nofuse”. For the exe-
cutables where no performance improvement is gained, this
has noticeable energy costs. However, when the polyhedral
framework finds the correct tiling size, the “maxfuse” flag
produces a significantly faster executable (note the change
in the execution curve that occurs at variant 4236). We
believe that “maxfuse” exposes more instruction-level par-
allelism to the hardware resulting in faster execution. For
poor tile sizes this results in an increase in the number of
concurrent memory accesses and an increased power demand
by the application. With the proper tile size execution time
and energy is minimized. The “smartfuse” and “no fuse” op-
tions produce executables that run at lower power and may
be beneficial if peak power usage is a constraint, but longer
execution times (up to 2×) result in significantly higher over-
all energy costs. The interaction between optimizations can
have significant impact on their effectiveness for both time,
energy and power.

A similar correlation between execution time and energy
occurs for the 2mm benchmark (as shown in Figure 3). No
single optimization has as great an effect on power as “max-
fuse” did in the previous example. The spikes that do occur
(especially the left side) are from poor tiling configurations.
Power is approximately constant for all the runs, so energy
consumption is a function of execution time.

For the stencil benchmark seidel-2d, Figure 4 shows when
the execution time becomes lowest, the energy consump-
tion is also minimal. The jump in the energy curve occurs
for all variants with parallelization turned on. Power for
non-parallel variants is less than 60 Watts. Power for the
parallel variants are between 110 and 135 Watts. No other
optimizations have as significant an effect on the power or
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Figure 2: Graph showing the relationship between
the execution time and the energy consumption of
all covariance Polybench program variants on Sandy
Bridge (sorted by execution time). The spikes are
caused by the “maxfuse” loop transformation.
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Figure 3: Graph showing the correlation between
the execution time and the energy consumption of
2mm Polybench on Sandy Bridge (sorted by exe-
cution time). The spikes are caused by bad tiling
configurations.

energy usage.

5.1.2 Modified LULESH
For 200 variants of LULESH, Figure 5 shows the energy

used and execution time. The energy curve mirrors the ex-
ecution time. A slight (< 2%) run-to-run variation in the
energy, presents a minor opportunity for energy tuning be-
yond execution time. LULESH optimizations overall provide
almost a 2× reduction in execution time (22.9 vs 12.1 sec-
onds - 47% reduction) and a significant decrease in energy
(3650 vs 2185 Joules - 40% reduction). No optimizations re-
sulted in a significant increase in power, although the power
required did rise slightly (from 160 Watts to 180 Watts -
12% increase).

5.1.3 Realistic Application
brdr2d contains two symmetric SCoPs (because of loop

unswitching). Each SCoP contained 42 statements. The
number of dependencies between these statements was 638
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Figure 4: Graph showing the correlation between
the execution time and the energy consumption of
the Polybench stencil seidel-2d on Sandy Bridge
(sorted by execution time). Jumps in energy us-
age (and decreased execution time) are results of
turning parallelization on.
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Figure 5: Graph showing the correlation between
the execution time and the energy consumption of
LULESH program on Sandy Bridge (sorted by exe-
cution time).

(there were no loop carried dependencies). PolyOpt detected
and applied loop fusion (maxfuse or smartfuse) and loop
tiling transformations (various tile sizes) as well as vector-
ization and auto-parallelization to the SCoPs. The fastest 84
program variants were chosen for study on both the Sandy
Bridge processor and Xeon Phi coprocessor. 49 of the 84
programs had the “maxfuse” flag turned on.

Figure 6 compares execution time and energy consump-
tion (for 2048 input size) for the cardiac simulation ap-
plication on the Sandy Bridge processor and on Xeon Phi
card. Both Figure 6(a) and Figure 6(b) show that the en-
ergy tracks the time. Saving energy consumption is consis-
tent with improving performance on both processors. The
brdr2d application has a small number of loops and one dom-
inant loop. In Figure 6(a), the effect of fusion (smartfuse
and maxfuse) on power was small (less than 10 Watts dif-
ference). Some variants with “bad” tile sizes required less
power/energy (indicated by the energy drops). Overall the
effect of fusion was insignificant. Figure 6(b) has the time
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(a) Time and energy correlation on Sandy Bridge
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Figure 6: Graph showing the correlation between
the execution time and the energy consumption of
brdr2d on Sandy Bridge and on the MIC architec-
ture (both sorted by execution time).

line above the energy line for the left half but below for
the right half. For the Phi, the “smartfuse” option clearly
used lower power than “maxfuse” (at least 20 Watts). In the
meanwhile, the performance of “maxfuse” was much better
than “smartfuse” and the overall execution time and energy
use for “maxfuse” was lower (up to 5×). On Xeon Phi “max-
fuse” combined with good tiling size exposed more paral-
lelism for Xeon Phi to take advantage of. The fastest exe-
cution times occurred with “maxfuse” and good tiling sizes.

5.2 Polyhedral Optimization Results on the Re-
alistic Application

Optimizing brdr2d on the Sandy Bridge Processor and on
Phi coprocessor shows the advantage using the polyhedral
framework to optimize for both execution time and energy.

5.2.1 Results on the Sandy Bridge Processor
To better understand the optimization variants of brdr2d

they were executed with four different input sizes. Figure 7
compares the best variant for each input size with the base-
line OpenMP version. The optimal tiling was different as the
input grew. For the 256 case 1× 128 resulted in the fastest
execution, For the larger cases, the variant with tile size
1× 256 was fastest. As the problem size grew the optimized
variants’ relative performance and energy consumption im-
proved (256 - 2.5% to 2048 - 21%). As the loop size increases
and the loop nest becomes a more dominant portion of the
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Figure 7: Graph showing the performance improve-
ment and energy savings of the optimal program
variant over the baseline OpenMP implementation
for different problem sizes on the Sandy Bridge Pro-
cessor.

execution, the relative performance (comparing to the base-
line OpenMP implementation) from optimization improves.
For the smaller sizes the data fit into various cache levels
and the benefits of loop optimizations for data locality are
ineffective.

5.2.2 Results on Intel Xeon Phi
To show the benefits of using polyhedral optimization

techniques on the Phi accelerator card, the performance of
a manual OpenMP implementation can be compared with
the best Polyopt/PoCC generated OpenMP program variant
(shown in Figure 8). The speedups were calculated against
a sequential Sandy Bridge execution.

The best PoCC variant of brdr2d, is over 20% faster than
the baseline Phi version for small sizes. For the largest size,
2048, the best Polyopt/PoCC variant is still slightly bet-
ter than the baseline and has an absolute speed up of over
150×. The optimal tiling size changes as the input grows. In
each case, 1× size is preferred for maximum vectorization.
As the problem size grows, non-tiled vectorization improves,
reducing the effectiveness of tiling. As expected, the two
main performance drivers for the Phi are parallelization, for
threads, and vectorization, within threads.

The polyhedral optimizations also improve energy. Fig-
ure 9 shows the relative speedups and the normalized energy
savings offered by the polyhedral transformations and auto-
parallelization. The energy savings approximately match
the relative speedups, ranging from 20% down to 3% as size
increases (and baseline vectorization improves).

6. RELATED WORK

6.1 Benchmarks for Polyhedral Framework
There are a few benchmarks available to evaluate poly-

hedral transformations as an approach to improving appli-
cation performance. Our work adds two non-trivial appli-
cation (LULESH and brdr2d) to the family of benchmarks
that are polyhedral optimizable. The Polybench [18] and
the SWIM [24] benchmark are two benchmark suites that
are often used. The Polybench programs evaluate polyhe-
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Figure 8: Graph showing the comparison between
speedups of a manual OpenMP implementation and
the best Polyopt/PoCC generated OpenMP pro-
gram variant over the sequential implementation on
the MIC architecture.
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Figure 9: Graph showing the performance im-
provement and energy savings of the optimal Poly-
opt/PoCC generated program variant over the base-
line OpenMP implementation for different problem
sizes on the MIC architecture.

dral transformations and are used to construct predictive
models by Park et al. [15, 13, 14]. They are also used to
evaluate auto-parallelization techniques targeting different
architectures, using different tools. Grauer-Gray et al. [7]
utilized high level languages to target GPU architectures
by annotating Polybench programs. Konstantinidis et al.
[12] studied GPU code generation given the Polybench pro-
grams that contain affine loops. SCoPs in LULESH and
brdr2d are much more complex than polybench programs.
In particular, some LULESH SCoPs contain thousands of
dependencies. The two benchmarks can be used to evaluate
the effectiveness of newly-developed polyhedral techniques.

6.2 Energy Measurement and Tuning
The accuracy of our energy-aware polyhedral framework

relies on the exactness of RAPL. While presenting the HAE-
CER framework for short-term energy measurements using
RAPL, Hähnel et al. reported identical curve characteristics

6



comparing RAPL with external measurement [8]. The HAE-
CER framework was not used here because of the need to
measure long code paths–the executions finish in the order
of seconds by testing with large datasets.

Our work is not the first to show that “hurry up to quit”
can be most energy efficient. Yuki et al. developed a high-
level energy model of power consumption under Dynamic
Voltage and Frequency Scaling (DVFS) and found it best to
run as fast as possible to completion [26]. They pointed out
that the constant power of current machines were significant
enough to render DVFS useless in saving energies. Before
them, Cho and Melhem [3] identified that DVFS might not
help if the fraction of total power unaffected by DVFS is
large. We evaluated the energy effects of polyhedral opti-
mizations, rather than DVFS, by measuring the energy con-
sumptions of hundreds to thousands of program variants. In
most cases, programs trying to“hurry up to finish”consumed
the minimum amount of energy and we conclude that opti-
mizing for execution can be used as a proxy to optimizing
for energy.

Rahman et al. [21] studied the impact of application level
optimizations from both the performance and power effi-
ciency perspective of various applications. They found that
optimizing for performance did not guarantee better power
consumption. We observed similar results in Figure 2 and
Figure 3 for non-optimal program variants but the graphs
showed that for the optimal case, tuning for performance
and power were effectively equivalent. To improve perfor-
mance and energy efficiency for a Many-Core architecture,
Garcia et al. [5] studied the energy consumptions of applica-
tions and proposed models characterizing application energy
consumption footprints. We did not develop energy models
but took advantage of the exposed hardware interfaces to ob-
tain accurate energy consumption information from modern
commodity processor architectures like Intel Sandy Bridge
and Xeon Phi.

To improve performance, people have developed techniques
from distinctive ways. Tavarageri et al. [22] adopted a com-
piler analysis approach to configure the cache size to reduce
energy consumption without performance loss. New pro-
gramming languages [11] and models like Chapel, Liszt and
others were introduced to facilitate program optimizations
on parallel architectures.

7. CONCLUSION
As expected, using an auto-tuning framework on a vari-

ety of small benchmarks and small applications has shown
the high degree of correlation between execution time and
energy consumption. Individual optimization can however
have significant impact on the power required by an ap-
plication. In the Polybench program covariance, using the
“maxfuse”option resulted in a 20+% percent power increase.
With the correct tile size “maxfuse” also resulted in a 50+%
time decrease. “maxfuse” increases power consumption but
reduces total energy required to complete the computation
due to the decrease in execution time. Understanding how
power and energy are used at the small scale can contribute
to the understanding of power/energy requirements of Ex-
ascale applications.

Polyhedral optimization techniques can provide significant
increases in performance but currently require significant
user modifications to any real application to generate SCoPs
with reasonable compilation times. On small real applica-

tions, like LULESH and brdr2d, polyhedral transformations
allow the discovery of effective tiling sizes for SCoPs within
the applications.
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