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ABSTRACT
The polyhedral model is a powerful algebraic framework that
has enabled significant advances to analyses and transfor-
mations of sequential affine (sub)programs, relative to tra-
ditional AST-based approaches. However, given the rapid
growth of parallel software, there is a need for increased ex-
periences with using polyhedral frameworks for analysis and
transformations of explicitly parallel programs. An interest-
ing side effect of supporting explicitly parallel programs is
that doing so can also enable analysis and transformation
of programs with unanalyzable data accesses within a poly-
hedral framework, since explicit parallelism can often mit-
igate the imprecision that accompanies unanalyzable data
accesses arising from a variety of sources, including unre-
stricted pointer aliasing, unknown function calls, and certain
classes of non-affine constructs. In this paper, we address
the problem of extending polyhedral frameworks to enable
analysis and transformation of programs that contain both
explicit parallelism and unanalyzable data accesses.

A summary of our approach is as follows. As in past work,
we first enable conservative dependence analysis of a given
region of code; for simplicity, we use an approach based on
dummy variables that can work with any polyhedral tool
that supports access functions. After obtaining conserva-
tive dependences, we use the Fourier-Motzkin elimination
method to remove all dummy variables. Next, we iden-
tify happens-before relations from the explicitly parallel con-
structs, and subtract their complement from the conserva-
tive dependences. The resulting set of dependences can then
be passed on to a polyhedral transformation tool, such as
PLuTo, to enable transformation of explicitly-parallel pro-
grams with unanalyzable data accesses.

To motivate our approach, we studied 18 explicitly-parallel
OpenMP benchmarks from the Rodinia benchmark suite,
and found that these benchmarks use six classes of non-affine
constructs that are commonly found in parallel scientific ap-
plications:1) Non-affine subscript expressions, 2) Indirect ar-
ray subscripts, 3) Use of structs, 4) Calls to user-defined
functions, 5) Non-affine loop bounds, and 6) Non-affine if
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conditions. While there are known techniques from past
work to enable automatic analysis for some of these non-
affine constructs in polyhedral frameworks, we show that the
use of explicit parallelism can enable a larger set of polyhe-
dral transformations for some of these programs, compared
to what might have been possible if the input program was
sequential.

Keywords
Explicit parallelism, Polyhedral transformations

1. INTRODUCTION
A key challenge for optimizing compilers is to keep up with

the increasing complexity related to locality and parallelism
in modern computers, especially as computer vendors head
towards new designs for extreme-scale processors and exas-
cale systems. Classical AST-based optimizers typically focus
on one particular objective at a time, such as vectorization,
locality or parallelism. On the other hand, polyhedral trans-
formation frameworks are able to support arbitrarily com-
plex sequences of transformations of perfectly/imperfectly
nested loops in a unified framework. The benefit of this uni-
fied formulation can be seen in polyhedral optimizers such as
PLuTo [6, 7], which has even been extended and specialized
to integrate SIMD constraints [17]. Polyhedral frameworks
achieve this generality in transformation by restricting the
class of programs that are supported to those that do not
have “unanalyzable” data or control flow. In the original
formulation of polyhedral frameworks, all array subscripts,
loop bounds, and if conditions in “analyzable” programs
were required to be affine functions of loop index variables
and global parameters. However, decades of research since
then has led to a great expansion of programs that can be
considered analyzable by polyhedral frameworks. The main
remaining constraints include restrictions on pointer usage
in order to eliminate aliasing, on recursion, and on unstruc-
tured control flow [3]. While recent work [23] has shown how
to combine polyhedral and AST-based techniques, it would
be interesting to try and further generalize the polyhedral
model so that it can deal with both explicit parallelism and
unanalyzable constructs.

This work is motivated by the observation that software
with explicit parallelism is on the rise, and that explicit par-
allelism can be used to enable larger sets of polyhedral trans-
formations (by mitigating conservative dependences), com-
pared to what might have been possible if the input program
was sequential. Our work focuses on explicitly-parallel pro-
grams that specify potential parallelism, rather than actual
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parallelism. Thus, explicit parallelism is simply a specifica-
tion of a partial order, which is traditionally referred to as a
happens-before relation [29]. Hence, we can mitigate conser-
vative dependences arising from unanalyzable constructs by
subtracting the complement of the happens-before relation
from the conservative dependences, since dependences can
only occur among statement instances that are ordered by
the happens-before relation. In this paper, we will restrict
our attention to explicitly-parallel programs that satisfy the
serial elision property i.e., the property that removal of all
parallel constructs results in a sequential program that is a
valid (albeit inefficient) implementation of the parallel pro-
gram semantics.

A summary of our approach is as follows. As in past work,
we first enable conservative dependence analysis of a given
region of code; for simplicity, we use an approach based on
dummy variables that can work with any polyhedral tool
that supports access functions. After obtaining conserva-
tive dependences, we use the Fourier-Motzkin elimination
method to remove all dummy variables. Next, we iden-
tify happens-before relations from the explicitly parallel con-
structs, and subtract their complement from the conserva-
tive dependences. The resulting set of dependences can then
be passed on to a polyhedral transformation tool, such as
PLuTo, to enable transformation of explicitly-parallel pro-
grams with unanalyzable data accesses.

To motivate our approach, we studied 18 explicitly-parallel
OpenMP benchmarks from the Rodinia benchmark suite,
and found that these benchmarks use six classes of non-affine
constructs that are commonly found in parallel scientific ap-
plications: 1) Non-affine subscript expressions, 2) Indirect
array subscripts, 3) Use of structs, 4) Calls to user-defined
functions, 5) Non-affine loop bounds, and 6) Non-affine if

conditions. While there are known techniques from past
work to enable automatic analysis for some of these non-
affine constructs in polyhedral frameworks, we show that
the use of explicit parallelism can enable a larger set of poly-
hedral transformations for some of these programs (due to
conservative dependences), compared to what might have
been possible if the input program was sequential. Recent
work on the PENCIL intermediate language [3], has also
shown similar results through the use of directives/pragmas
that can be generated from higher-level domain-specific lan-
guages (DSLs). A key difference between our approach and
the PENCIL approach is that we are interested in lever-
aging happens-before information from programs written in
general-purpose explicitly parallel languages, such as OpenMP
and X10, whereas PENCIL is focused on supporting DSLs
in which certain coding rules are enforced related to pointer
aliasing, recursion, unstructured control flow, etc.

The rest of the paper is organized as follows. Section 2
introduces the parallel constructs considered in this paper.
Section 3 motivates the problem and provides an overview
of our proposed approach. Section 4 discuss some potential
limitations of existing polyhedral frameworks. Section 5 dis-
cusses details of our approach to enable polyhedral transfor-
mations of explicitly parallel programs. Section 6 presents
a case study to illustrate the potential of our proposed ap-
proach. Section 7 and Section 8 summarize related work and
our conclusions.

2. EXPLICITLY-PARALLEL PROGRAMS
The biggest difference between sequential programs and

explicitly-parallel programs is that sequential programs spec-
ify a total execution order, whereas the execution of an
explicitly-parallel program can be viewed as a partial or-
der, which is traditionally referred to as a happens-before
relation. Thus, we can mitigate conservative dependences
arising from non-affine constructs by subtracting the com-
plement of the happens-before relation from the conserva-
tive dependences, since dependences can only occur among
statement instances that are ordered by the happens-before
relation [29].

In this paper, we will restrict our attention to explicitly-
parallel programs that satisfy the serial elision property i.e.,
the property that removal of all parallel constructs results in
a sequential program that is a valid (albeit inefficient) im-
plementation of the parallel program semantics. As a first
step, we will focus on two kinds of loop-level parallel con-
structs, doall and doacross, both of which satisfy the serial
elision property. We briefly summarize these constructs in
the context of OpenMP [20], which is a widely used par-
allel programming model. The OpenMP standard already
supports doall parallelism as in the form of parallel loops.
In OpenMP 4.1, doacross parallelism is expected to be sup-
ported as extensions to the ordered construct [24, 21].

2.1 Doall parallelism
The OpenMP loop construct, “#pragma omp for”, is spec-

ified immediately before a for loop and indicates that the
iterations of the loop have no happens-before dependence
and hence can be executed in parallel. A barrier, i.e., an
all-to-all synchronization point, is implied immediately af-
ter the parallel loop construct. The implicit barrier may be
omitted if a nowait clause is specified on the loop construct.

The reduction(op: list) clause, which is attached to a
for loop construct, indicates that the parallel loop contains
a reduction computation whose operator is specified by op
(e.g., + or max) and the reduction variables are specified in
list. Note that both scalar and array reductions are sup-
ported in OpenMP-FORTRAN while only scalar reductions
are supported in OpenMP-C. For convenience, we assume
the availability of array reductions in OpenMP-C (as pro-
posed in [13]), when discussing examples in this paper. The
aggregation for reduction is handled by the OpenMP run-
time and the target variables specified in list have no other
happens-before dependences from the compiler viewpoint.

The example in Section 3.2 shows an example usage of the
OpenMP for loop construct, where the loops in lines 2, 8,
20 and 24 of Fig. 3 are annotated as doall loops.

2.2 Doacross parallelism
Doacross parallelism [10] is supported as a proposed ex-

tension to the OpenMP ordered construct. The ordered(n)
clause, which is attached to for loop construct, indicates
the availability of doacross parallelism in a set of n perfectly
nested loops, “#pragma omp for ordered(n)”. The n loops
form an n-dimensional iteration space in which an iteration
instance can only depend on lexicographically earlier itera-
tions (thereby satisfying the serial elision property). This
pragma specifies the rank/dimensionality for the iteration
vectors specified in the depend source/sink clauses intro-
duced below.

In order to specify cross-iteration dependences within the
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n-dimensional space, the ordered construct is extended with
depend(type: vec) clauses. Here, type is source or sink and
vec is an n-dimensional vector whose elements are simple ex-
pressions of the form, vec = (x1±c1, x2±c2, · · · , xn±cn), where
xk is the k-th loop index and ck is an integer constant (1 ≤ k ≤
n). The ordered depend(sink: vec) [depend(sink: vec) [...]]
construct specifies a dependence sink and indicates a syn-
chronization point that waits for the iterations specified by
vec to reach the dependence sources. Note that vec for sink
must be lexicographically smaller than the current iteration
vector - i.e., (x1, x2, · · · , xn). At runtime, a depend(sink: vec)
clause becomes a no-op if its vec indicates a point outside the
iteration space. The ordered depend(source: vec) con-
struct specifies a dependence source and indicates the point
at which dependences on the current iteration vec = (x1, x2, · · · , xn)
are satisfied .

The example in Section 3.1 shows the usage of a doacross
construct. In Fig. 1, the ordered(3) clause at line 2 speci-
fies a 3-level doacross loop nest. Within the specified triply
nested loops, the ordered depend construct in lines 6-10 in-
dicates a dependence sink (i.e., synchronization point) that
depends on nine dependence sources in iterations (t,i-1,j-
1), (t,i-1,j), (t,i-1,j+1), (t,i,j-1), (t-1,i,j+1),

(t-1,i+1,j-1), (t-1,i+1,j), and (t-1,i+1,j+1) while
the ordered depend(source: t,i,j) construct at line 16
specifies the location of the dependence source arising from
current iteration (t,i,j).

3. MOTIVATING EXAMPLES
To motivate the proposed approach, we discuss two ex-

plicitly parallel kernels with data accesses that may be con-
sidered unanalyzable by some polyhedral frameworks. The
first example uses C nested arrays, which may have unre-
stricted pointer aliasing in general. The second example
uses non-affine linearized array subscripts, that would re-
quire a delinearization analysis to make them analyzable by
polyhedral frameworks.

3.1 2-D Gauss Seidel Computation
The first example is a 2-dimensional 9 point Gauss Seidel

computation. In Fig. 1, the statement S is enclosed in triply

1 // Assume array A is a nested array
2 #pragma omp parallel for ordered (3)

3 for (t = 0; t <= _PB_TSTEPS - 1; t++) {
4 for (i = 1; i<= _PB_N - 2; i++) {
5 for (j = 1; j <= _PB_N - 2; j++) {

6 #pragma omp ordered depend(sink: t,i-1,j-1)\
7 depend(sink: t,i-1,j) depend(sink: t,i-1,j+1)\

8 depend(sink: t,i,j-1) depend(sink: t-1,i,j+1)\
9 depend(sink: t-1,i+1,j-1) depend(sink: t-1,\

10 i+1,j) depend(sink: t-1,i+1,j+1)

11 A[i][j] = (A[i-1][j-1] + A[i-1][j] +
12 A[i-1][j+1] + A[i][j-1] +

13 A[i][j] + A[i][j+1] +
14 A[i+1][j-1] + A[i+1][j] +

15 A[i+1][j+1])/9.0; //S
16 #pragma omp ordered depend(source: t,i,j)
17 }

18 }
19 }

Figure 1: Input 2-D Gauss Seidel computation

nested loops that are defined as a doacross nest where the
ordered and depend clauses are new extensions proposed for
OpenMP 4.1 [24, 21]. Even though the loop nest has affine

accesses on a single array, C’s unrestricted aliasing seman-
tics for nested arrays can prevent a sound compiler analysis
from detecting the exact cross-iteration dependences. How-
ever, the happens-before relations through explicit doacross
parallelism can provide sufficient dependence information to
enable loop skewing and tiling transformations to be per-
formed so as to improve both locality and parallelism gran-
ularity, as shown in Fig. 2.

1 // Assume array A is a nested array
2 #pragma omp parallel for ordered (3)

3 for (c1 = ...) {
4 for (c3 = ...) {

5 for (c5 = ...) {
6 #pragma omp ordered depend(sink: c1 -1, c3, c5)\

7 depend(sink: c1, c3 -1, c5)\
8 depend(sink: c1, c3, c5 -1)
9 for (c7 = ...) {

10 for (c9 = ...) {
11 for (c11 = ...) {

12 A[c9-c7][c11-c7-c9] =
13 (A[c9-c7 -1][c11-c7 -c9 -1] + A[c9-c7 -1][c11-c7-c9]
14 +A[c9-c7 -1][c11-c7 -c9+1] + A[c9-c7][c11-c7-c9 -1]

15 +A[c9-c7][c11-c7-c9] + A[c9-c7][c11-c7-c9+1]
16 +A[c9-c7+1][c11-c7 -c9 -1] + A[c9-c7+1][c11-c7-c9]

17 +A[c9-c7+1][c11-c7 -c9+1]) / 9.0; //S
18 }}}

19 #pragma omp ordered depend (source: c1, c3, c5)
20 }}}

Figure 2: Transformed 2-D Gauss Seidel computation

To illustrate the potential performance impact of these
transformations, we timed three versions of this Gauss-Seidel
computation when executed for 100 time steps on a 2000×2000
matrix. These timings were obtained on a quad eight-core
3.86GHz IBM Power7 system (32 cores total). The timings
were as follows, and clearly illustrate the potential benefit
of the transformations in Fig. 2:

• Original parallel version (Fig. 1) on 32 cores: 7.39 sec-
onds

• Sequential version: 3.93 seconds

• Optimized parallel version (Fig. 2) on 32 cores: 0.32
seconds

3.2 Particle Filter
The second example is particle filter from Rodinia bench-

marks [8] and is shown in Fig. 3. The second loop nest in this
kernel contains non-affine array subscripts ind[x*countOnes+y]
and indirect array subscripts I[ind[x*countOnes+y]]. We
observe that these non-affine accesses do not pose an obsta-
cle to recent polyhedral tools, since existing delinearization
techniques [16] can be used to handle the ind[x*countOnes+y]
case, and the fact that the array I is read-only in the kernel
can be used to handle the I[ind[x*countOnes+y]] case..
However, we would still like to discuss how the use of the
parallel constructs can enable analysis and transformations,
even in the absence of techniques such as delinearization.

Fig. 4 shows the transformed version of this kernel after
loop fusion is performed. The legality of loop fusion is easily
established by the fact that all variables that cross multiple
loops have affine accesses with no fusion-preventing depen-
dences. The key information needed from the parallel pro-
gram is that the second loop (lines 7-17 in Fig. 3) has no
loop carried dependence. This ensures that the fused loop
can also be made parallel.
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1 #pragma omp parallel for
2 for(x = 0; x < Nparticles; x++){
3 arrayX[x] += 1 + 5*randn(seed , x);

4 arrayY[x] += -2 + 2*randn(seed , x);
5 }

7 #pragma omp parallel for private (y, indX , indY)

8 for(x = 0; x < Nparticles; x++){
9 for(y = 0; y < countOnes; y++){

10 indX = roundDouble(arrayX[x]) + objxy[y*2+1];

11 indY = roundDouble(arrayY[x]) + objxy[y*2];
12 ind[x*countOnes+y] = fabs(indX ... indY ...);

13 ...
14 likelihood[x] += ...I[ind[x*countOnes+y]]...
15 }

16 ...
17 }

19 #pragma omp parallel for

20 for(x = 0; x < Nparticles; x++){
21 weights[x] = weights [x] * exp(likelihood[x]);

23 #pragma omp parallel for private (x) \
24 reduction(+:sumWeights)

25 for(x = 0; x < Nparticles; x++)
26 sumWeights += weights [x];
27 }

Figure 3: Particle filter kernel having Non-affine and Indirect
array subscripts

1 #pragma omp parallel for private (x, y, \
2 indX , indY) reduction(+:sumWeights)

3 for(x = 0; x < Nparticles; x++){
4 arrayX[x] += 1 + 5*randn(seed , x);

5 arrayY[x] += -2 + 2*randn(seed , x);
6 for(y = 0; y < countOnes; y++){

7 indX = roundDouble(arrayX[x]) + objxy[y*2+1];
8 indY = roundDouble(arrayY[x]) + objxy[y*2];
9 ind[x*countOnes+y] = fabs(indX ... indY ...);

10 ...
11 likelihood[x] += ...I[ind[x*countOnes+y]]...

12 }
13 ...
14 weights[x] = weights [x] * exp(likelihood[x]);

15 sumWeights += weights [x];
16 }

Figure 4: Particle filter kernel after Loop fusion

3.3 Summary of our Approach

Figure 5: Overview of our approach

Our overall approach is summarized in Fig. 5, which is be-

ing implemented as an extension to the PACE Compiler
framework [1, 23], and consists of the following components:
1) Conversion from source code to AST (with support for
doall and doacross parallel constructs), 2) AST Modifier (in-
sertion of dummy variables), 3) AST to SCoP converter
(with dummy variables), 4) Use of CANDL for conserva-
tive dependence analysis, 5) Use of Fourier-Motzkin elimi-
nation method to remove all dummy variables, 6) Identifica-
tion of happens-before relations from the explicitly parallel
constructs, and subtract their complement from the conser-
vative dependences, 7) Communication of the resulting set
of dependences to a polyhedral transformation tool, such as
PLuTo, and 8) Generation of transformed AST from opti-
mized SCoP. Of these, we have currently implemented steps
1) to 6), and are currently working on integrating the output
from 6) with PLuTo, so as to complete steps 7) and 8).

4. POLYHEDRAL MODEL AND ITS LIMI-
TATIONS

In general, our interest is in using the polyhedral model
as an intermediate representation for performing compiler
transformations for improved performance. Polyhedral frame-
works transform selected regions in the input program into
Static Control Part (SCoP) [12, 14], and capture precise
dependence information among statement instances in the
form of a dependence polyhedron over the iterators and
global parameters. If there are any unanalyzable constructs
in the SCoP, then there may be obstacles in constructing the
dependence polyhedron. The good news is that decades of
research has led to a great expansion of programs that can
be considered analyzable by polyhedral frameworks, thereby
reducing the impact of these limitations. The main remain-
ing constraints include restrictions on pointer usage in order
to eliminate aliasing, on recursion, and on unstructured con-
trol flow.

Based on a study of the Rodinia benchmarks [8], we have
identified six common patterns in scientific applications that
may be considered unanalyzable by some polyhedral frame-
works: 1) Non-affine subscript expressions, 2) Indirect array
subscripts, 3) Use of structs, 4) Calls to user-defined func-
tions, 5) Non-affine loop bounds, and 6) Non-affine if con-
ditions. Doerfert et.al. [11], performed a similar investiga-
tion recently on the applicability of Polly [15], a polyhedral
framework for LLVM, on the SPEC 2000 benchmark suite
and classified the root causes that prevented the application
of polyhedral frameworks to these programs. We discuss
two of the identified six common patterns (non-affine and
indirect array subscripts) in Section 4.2 and Section 4.3. A
more challenging limitation (unrestricted pointer aliasing)
was already discussed in Section 3.1.

4.1 Background on polyhedral model
The polyhedral model is a flexible representation for per-

fect and imperfect loop nests with static predictable con-
trol. Loop nests amenable to this algebraic representation
are called Static Control parts (SCoPs), roughly defined as a
set of consecutive statements such that loop bounds, condi-
tionals and array accesses are affine functions over iterators
and global parameters invariant to the SCoP.
Iteration domain, DS: A statement S enclosed by ‘m’
loops is represented as m-dimensional polytope, referred to
as an iteration domain [4].
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Access relation, A maps from statement instances to the
array elements accessed by those statement instances [28].
The access relation can be an access function, in which case
the mapping is described using affine constraints over loop
iterators and global parameters. In our conservative ap-
proach using dummy variables, the access relation, for an
array access with non-affine subscripts, represents a read or
write access to the entire array.
Dependence Polyhedra, PS→T : captures all possible de-
pendences between statements S and T . Two instances ~Xs

and ~Xt, which belong to the iteration domains of statements
S and T respectively, are said to be in dependence if they
access the same array location and at least one of them is
a write. Multiple dependence polyhedra may be required
to capture all dependent instances between two statements,
at least one for each pair of array references accessing the
same array cell (scalars being a particular case of array). In
the remainder of this section, we briefly summarize our ap-
proach to handling non-affine and indirect array subscripts
in a polyhedral framework.

4.2 Non-affine Subscripts
Consider the kernel from Fig. 6, part of the hotspot pro-

gram from the Rodinia benchmark suite [8]. In this program,

1 int result[N], temp[N];
2 for (r = 0; r < row; r++)

3 for (c = 0; c < col; c++)
4 result[r*col+c]=temp[r*col+c]; // S

Figure 6: Part of hotspot kernel

r*col+c is a non-affine subscript expression used to index
into the result array. As mentioned earlier, delinearization
techniques can be used to make this example analyzable.
However, our approach makes this example conservatively
analyzable by introducing a dummy variable to capture the
r*col+c value, and later uses explicit parallelism to mitigate
the conservative dependence analysis.

4.3 Indirect Array Subscripts
Now, consider the sparse matrix-vector multiplication ker-

nel in Fig. 7. The statement S performs a non-affine read

1 for(i = 0; i < n; i++)
2 for(j = index[i]; j < index[i+1]; j++)
3 y[i] += A[j]*x[col[j]]; //S

Figure 7: Sparse matrix-vector multiplication

operation (col[j]) on array x. This particular access can-
not be represented as an affine combination of iterators (i,
j) and global variables (n). As we will see later in Sec-
tion 5, our approach makes these indirect references ana-
lyzable by introducing a dummy variable to represent the
subscript col[j] of array x, and considers col[j] itself as
a read array reference of array col.

5. APPROACH DETAILS
This section presents the details of the proposed work-

flow, which was summarized in Section 3. For simplicity,
our approach to handle conservative dependences is based
on dummy variables that can work with any polyhedral tool
that supports access functions; alternative approaches would
have been possible if we had used access relations instead.

5.1 Terminology: Dummy vector
A dummy vector consists of dummy variables to repre-

sent non-affine subscript expressions and indirect array sub-
scripts in the statement. These parameters are different
from iterators and parameters in the polyhedral model. Each
non-affine expression and indirect array subscript in a state-
ment is uniquely associated with an element from the dummy
vector corresponding to that statement. Now, each dynamic
instance of a statement S is uniquely identified by its iter-

ation vector (~iS ), dummy vector ( ~dS ) and parameter vector
(~p). The kernel in Fig. 8 contains two indirect array sub-
scripts (x[i][j], y[i][j]) in the statement S. These sub-
scripts are treated as dummy variables for that statement,
and are replaced by the dummy variables, dmy1 and dmy2,
respectively for subsequent computation of dependences in
Fig. 12.

5.2 Overall Algorithm

Algorithm 1 Overall algorithm for transformation of ex-
plicit parallel program with non-affine constructs

1: Input: SCoP
2: Let P be the set of dependence polyhedra computed over

SCoP using conservative analysis with dummy variables.

3: Let P′ be the set of dependence polyhedra obtained after
elimination of the dummy variables from P using FM
elimination.

4: Let P′′ be the set of dependence polyhedra after reflec-
tion of happens-before relations from explicitly parallel
constructs (C) in P′.

5: Forward SCoP and P′′ to a polyhedral optimizer, such
as PLuTo [2].

6: Output: SCoP with optimized schedules

Algorithm 1 shows the overall approach at a high level,
to handle non-affine constructs (step 2) and to use explicit
parallelism to improve the accuracy of conservative depen-
dences (step 4). In step 2, statements with non-affine ex-
pressions and indirect array subscripts are handled by the
conservative approach with dummy variables while using ex-
act dependence analysis techniques for regular statements.
Finally, the resulting dependence polyhedra are passed to
polyhedral optimizers to leverage existing loop transforma-
tions(step 5).

5.3 Conservative Approach
In this subsection, we summarize our conservative ap-

proach to compute dependence polyhedra for a SCoP with
both regular statements, and statements with non-affine ex-
pressions or indirect array subscripts. In conservative ap-
proaches, the basic assumption for a compiler is that all
memory accesses of an array in a statement can potentially
conflict with other memory accesses of that array, or perhaps
even memory accesses in other arrays (in the case of unre-
stricted aliasing). We use dummy variables instead of access
relations for simplicity, since we use the Scoplib format when
using CANDL.1

In case of non-affine expressions, we replace these expres-
sions with dummy variables as part of pre-processing before

1We recently learned that CANDL also supports the Open-
Scop format which does supports access relations.
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1 int A[N][N], x[N][N], y[N][N];
2 #pragma omp parallel for
3 for (i = 0; i < N; i++)

4 #pragma omp parallel for ordered (1)
5 for (j = 0; j < N; c++)

6 #pragma omp ordered depend(sink: j-1)
7 A[j][i] = A[x[i][j]][y[i][j]]; // S

8 #pragma omp ordered depend(source: j)

Figure 8: Input kernel

1 int A[N][N], x[N][N], y[N][N];
2 #pragma omp parallel for ordered (2)

3 for (j = 0; j < N; i++)
4 for (i = 0; i < N; c++)

5 #pragma omp ordered depend(sink: j-1, i)
6 A[j][i] = A[x[i][j]][y[i][j]]; // S
7 #pragma omp ordered depend(source: j, i)

Figure 9: Transformed kernel for better spatial locality
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Figure 10: DS : Domain of statement S
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Figure 11: D′S : Domain of statement S after elimination

Conservative Dependences (P) Dependences after elimination (P′) Happens-before relations (C) Reflection (P′′ = P′ ∩ C)

PS→S
1 :

i ≤ i1 − 1

j = dmy1 , i = dmy2

0 ≤ i, j ≤ (N − 1)

0 ≤ i1 , j1 ≤ (N − 1)

0 ≤ dmy1 , dmy2 ≤ (N − 1)

0 ≤ dmy1
1 , dmy1

2 ≤ (N − 1)

P′S→S
1 :

i ≤ i1 − 1

0 ≤ i, j ≤ (N − 1)

0 ≤ i1 , j1 ≤ (N − 1)

CS→S
1 : i = i1 P′′S→S

1 : φ

PS→S
2 :

i = i1 , j ≤ j1 − 1

j = dmy1 , i = dmy2

0 ≤ i, j ≤ (N − 1)

0 ≤ i1 , j1 ≤ (N − 1)

0 ≤ dmy1 , dmy2 ≤ (N − 1)

0 ≤ dmy1
1 , dmy1

2 ≤ (N − 1)

P′S→S
2 :

i = i1 , j ≤ j1 − 1

0 ≤ i, j ≤ (N − 1)

0 ≤ i1 , j1 ≤ (N − 1)

CS→S
2 : i = i1 , j = j1 − 1 P′′S→S

2 :

i = i1 , j = j1 − 1

0 ≤ i, j ≤ (N − 1)

0 ≤ i1, j1 ≤ (N − 1)

Figure 12: Dependences (P) from conservative approach, Dependences (P′) after elimination of additional parameters, Happens-before
dependences from explicitly parallel constructs (C) and Dependences (P′′) after reflection of C to P′

SCoP extraction. Then, we create affine inequalities from
access ranges of these arrays, and eliminate these dummy
variables from the SCoP using the FM elimination after the
computation of conservative dependences. In case of indi-
rect array subscripts, we associate the index arrays into the
read arrays list of that statement after the computation of
affine inequalities from access range of arrays. Algorithm 2
summarizes the steps involved in computing dependences in
our conservative approach. For the kernel in Fig. 8, the indi-
rect array subscripts in statement S are replaced by dummy
variables dmy1, dmy2 as part of pre-processing before SCoP
extraction. Then, the affine inequalities for the dummy vari-
ables are created based on access range of array A and they
are incorporated into iteration domain of the statement S,
shown in Fig. 10. After the computation of conservative
dependences, the dummy variables are eliminated from the
iteration domain using the FM elimination method, shown
in Fig. 11. First two columns of Fig. 12 respectively show
the conservative dependences with dummy variables and de-
pendences after elimination of dummy variables for kernel in
Fig. 8.

5.4 Reflection of happens-before relations in
dependence polyhedra

Algorithm 2 Conservative Approach

1: Input: SCoP
2: for each statement S in SCoP do

3: for each array a in statement S that has non-affine
expression/ indirect accesses in its subscripts do

4: for each subscript i in a that has non-affine expres-
sion/ indirect accesses do

5: Incorporate the affine inequalities, based on ac-
cess range of array a for subscript i, into iteration
domain of statement S

6: if subscript i has indirect array subscripts then
7: Associate index arrays into read arrays list of

statement S
8: end if

9: end for

10: end for

11: end for

12: Forward SCoP to dependence analyzer
13: Output: Set of dependence polyhedra (P)
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The set of dependence polyhedra in the source program

is represented as P =
{

P
S i→S j

d | there exists a dependence be-
tween source statement Si and target statement S j at depth
d
}

. Here depth represents the loop nest level that carries the
data dependence. The doall and doacross parallel constructs
are tied to specific loops and impose constraints on the de-
pendence polyhedra whose source statement S i and target
statement S j are enclosed in the specified loop and depth d is
matched with the specified loop’s nest level. As with depen-

dence polyhedra, let C
S i→S j

d denote a constraint on possible
dependences between source S i and target S j at depth = d,

which is imposed by doall/doacross constructs and xS i
k /x

S j

k
denote the k-th loop indexes of S i/S j respectively. A doall
construct specified at depth d always imposes a constraint

C
S i→S j

d such that xS i
k = x

S j

k for 1 ≤ k ≤ d. On the other
hand, a doacross construct with ordered(n) - i.e., n-level
doacross parallelism - at depth d may impose multiple con-

straints C
S i→S j

d , C
S i→S j

d+1 , ..., C
S i→S j

d+n−1 , which correspond to the
depend(sink: vec) clauses within the loop body. Let de-

pend(sink: (x
S j

d , · · · , x
S j

m−1, x
S j
m −cm, · · · , x

S j

d+n−1−cd+n−1)) denote
a depend clause that specifies a cross-iteration dependence

at depth m ≥ d. The corresponding constraint is C
S i→S j
m

such that xS i
k = x

S j

k for 1 ≤ k ≤ m − 1 & xS i
k = x

S j

k − ck for
m ≤ k ≤ d + n − 1. For instance, Fig. 8 has two constraints
CS→S

1 , which is imposed by the doall construct at the out-
ermost level, and CS→S

2 , which is imposed by the doacross
construct at the second level, as shown in Fig. 12.

Algorithm 3 shows how to compute the set of depen-
dence polyhedra P′′ after reflecting the constraints due to
the above explicit parallel constructs (i.e., set of constraints
C), where the input P′ is the set of conservative dependence
polyhedra computed in Section 5.3. For each polyhedron

P
′S i→S j

d in P′ (line 2), it searches for the matched constraint

C
S i→S j

d in C (lines 3–9). If such a C
S i→S j

d is found, the modi-
fied dependence polyhedron after reflection is computed as:

P
′′S i→S j

d = P
′S i→S j

d ∩ C
S i→S j

d (line 7). Otherwise, the depen-

dence polyhedron P
′S i→S j

d is left unchanged (line 11). The
Reflection column of Fig. 12 shows the dependence polyhe-
dra for the kernel in Fig. 8 after reflection. After the reflec-
tion of explicit parallelism onto dependences, the loop inter-
change transformation is performed for better data-locality
and the transformed program is shown in Fig. 9.

Algorithm 3 Reflection of happens-before relations from
explicitly parallel constructs

1: Input: conservative dependences P′ and constraints C

2: for each dependence polyhedron P
′S i→S j

d in P′ do
3: found := false;
4: for each constraint CS k→S l

e in C do

5: if S i = S k & S j = S l & d = e then

6: found := true;

7: P
′′S i→S j

d = P
′S i→S j

d ∩ C
S k→S l
e ;

8: end if

9: end for

10: if found = false then

11: P
′′S i→S j

d = P
′S i→S j

d ;
12: end if

13: Add the reflected polyhedron P
′′S i→S j

d to P′′;
14: end for

15: Output: dependence polyhedra after reflection P′′

6. CASE STUDY
For all 18 benchmarks in the Rodinia suite, Table 1 sum-

marizes 1) constructs used in the benchmarks that limit the
use of some polyhedral frameworks, and 2) potential oppor-
tunities for polyhedral loop transformations that can be en-
abled by our proposed approach based on exploiting explicit
parallelism. The constructs in 1) include non-affine array
subscripts (NAS), indirect array accesses (I), use of structs
(S), and use of function calls (F). For instance, the hotspot
benchmark has non-affine array subscripts (NAS), but can
benefit from loop fusion, skewing, tiling, and doacross trans-
formations (by leveraging explicit parallelism to identify happens-
before dependences). The table also shows that non-affine
subscripts and function calls are common in this benchmark
suite, while indirect array accesses and structs are found in
a few benchmarks. In the remainder of this section, we illus-
trate an optimizing transformations on one of the Rodinia
benchmarks, LU Decomposition. Another Rodinia bench-
mark, Particle Filter, was discussed earlier in Section 3.2.

The kernel of LU Decomposition (LUD) calculates solu-
tions to a set of linear equations and Fig. 13 shows a part
of LUD kernel. In Fig. 13, the j and k loops are parallel
and that the k loop is parallel with a reduction on array a

(using an extension to OpenMP to specify array reductions
in C [13, 23]). In the access pattern k*size+j of array a in

1 int a[size*size];

2 for (i=0; i <size; i++) {
3 #pragma omp parallel for

4 for (j=i; j <size; j++) {
5 #pragma omp parallel for reduction(+:a)
6 for (k=0; k<i; k++) {

7 a[i*size+j]-=a[i*size+k]*a[k*size+j]; //S1
8 }

9 }
10 ....

11 }

Figure 13: Input LUD Kernel

statement S1, each iteration of loop k results in accessing an
element distant from size elements from current location. As
a result, it exhibits poor spatial locality. In this scenario, the
interchange of loops j, k preserves semantics and improves
spatial locality. The code after performing loop permutation
on the input kernel is shown in Fig. 14.

1 int a[size*size];

2 for (i=0; i <size; i++) {
3 #pragma omp parallel for reduction(+:a) \
4 private (j)

5 for (k=0; k<i; k++) {
6 for (j=i; j <size; j++) {

7 a[i*size+j]-=a[i*size+k]*a[k*size+j]; //S1
8 }

9 }
10 ....
11 }

Figure 14: LUD Kernel after permutation

7. RELATED WORK
In this section, we discuss related approaches in apply-

ing polyhedral transformations to programs with non-affine
static parts, as well as related work on polyhedral analysis
of parallel programs. These approaches are broadly classi-
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Limitations
Kernel NAS I S F Transformations
b+ tree X X

backprop X perm, fuse, vect
bfs X X

cfd X X

heartwall X

hotspot X doacross, fuse, skew, tile, vect
kmean X perm, fuse, vect
lavaMD X X X

leukocyte X fuse, vect
lud X perm, vect
mummergpu X X

myocyte X X

nn X X

nw X X doacross, skew, perm
particle filter X X fuse, vect
path finder doacross, skew, tile
srad X

streamcluster X X X X

Total 10 4 5 11

Table 1: Limitations and possible transformations in Rodinia benchmarks (NAS: non-affine array subscript, I: indirect array access, S:
structure, F: function, and perm/fuse/skew/tile/doacross/vect: loop permutation/fusion/skewing/tiling/doacross parallelism/vectoriza-
tion)

fied into compile-time approaches, run-time approaches and
a combination of run-time and compile-time techniques.

Since non-affine static parts in programs are not directly
representable in the polyhedral model, the compile-time ap-
proaches use conservative dependence analysis techniques to
perform legal transformations on these programs. In gen-
eral, conservative approaches are over-approximation tech-
niques, and consider a large superset of existing dependences.
As a result, only a subset of legal transformations can be
applied, and profitable legal transformations that may yield
better performance may be bypassed. There has been a
significant effort to handle certain subsets of non-affine ac-
cesses, including polynomial accesses [19] in the polyhedral
model, and indirect array subscripts [18] for array depen-
dence analysis and loop transformations.

There has also been a large effort devoted to extending
the polyhedral model to support non-affine extensions. The
approach in [22] introduced techniques to perform depen-
dence analysis in the case of nonlinear expressions in ar-
ray subscripts and loop bounds. In this approach, the non-
linear constraints are not omitted, as in the generic conser-
vative approach. It uses uninterpreted function symbols to
represent non-linear expressions, and the proposed depen-
dence analysis technique generates dependence relations by
approximating with affine dependence relations, where as
in our approach, conservative dependences are pruned after
reflection of happens-before relations from explicit parallel
constructs.

Run-time approaches such as the inspector/ executor strat-
egy [5, 27, 26] have also gained significant attention to de-
termine data reordering and better communication sched-
ules at run-time. In these approaches, the inspector code,
generated from the program, is executed at run-time and
gathers information about non-affine static parts, such as
index expressions. Then, the executor part of strategy per-
forms optimizations based on the run-time information from

inspector code. Recently, this inspector/ executor transfor-
mation strategy was integrated into the polyhedral frame-
work [27] and combined with regular loop transformations
to optimize programs with non-affine static parts. But, this
work was restricted to only indirect array subscripts access-
ing read-only data, which is only one source of non-affine
computations.

There have been other run-time approaches to handle real
world programs with the polyhedral representation. The ap-
proach in [11] has shown that most of the issues stem from
overly conservative approximation of dependences through
static analyses of real world programs. The approach in [11]
proposed a speculative polyhedral optimization techniques,
a variant of just-in-time polyhedral optimization, and fo-
cused on two specific sources of false dependences (possible
aliasing and non-affine subscript expressions). The proposed
approach handles them by tuning the region of code not
amenable to the polyhedral optimizations with the run-time
information and speculatively specialized functions. In the
process of auto tuning, it infers the common values of param-
eters, and generates the optimized variants of those regions
of codes along with original region of code. These optimized
variants of code will get executed when enabled by run-time
parameters. Our approach differs from and is complemen-
tary to the approach in [11] in two ways: 1) We don’t rely on
auto tuning capabilities to improve the precision of depen-
dences over non-linear array subscript expressions but we
rely on explicit parallel directives to improve the precision
of dependences instead, and 2) Our approach is completely
static where the other approach has to keep several vari-
ants of original code for different values of parameters for
run-time execution of program.

Recent work [25], has also shown the applicability of poly-
hedral optimizations using POLLY (an extension of the LLVM
compiler) on over 50 real-world programs from different do-
mains. They have proposed extensions to POLLY to recog-
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nize and model multi-dimensional arrays using the polyhe-
dral model, instead of the default approach of modeling them
as indirect pointer accesses. In addition, the authors have
extended the polyhedral modeling capability in POLLY to
another generalized polyhedral model using semi-algebraic
sets and real algebra [25]. This formalism is proposed to
deal with polynomials in array subscript expressions along
with affine expressions. Quantifier elimination has been
used as a tool to remove the quantifiers generated while
computing data dependences among array accesses involv-
ing polynomial expressions over loop iterators and param-
eters. Since the authors handle polynomial expressions in
array subscripts, a sufficient condition was proposed to re-
duce dependence analysis problem for polynomial array sub-
script expressions to affine conditions. Our approach differs
from their approach [25] in two ways: 1) The implementa-
tion of our approach is in a high-level AST, in which multi-
dimensional array accesses are explicit and need not be re-
constructed via delinearization (as in LLVM), and 2) Our
approach does not have the worst case doubly exponential
complexity of modeling polyhedra over semi-algebraic sets,
as in [25], and can use explicit parallelism to handle more
non-affine cases (such as indirect accesses) than their ap-
proach.

There has been a recent work on PENCIL [3], a platform-
neutral compute intermediate language, aimed at facilitat-
ing automatic parallelization and optimization for execution
on multi-threaded SIMD hardware for multiple high per-
formance domain specific languages (DSLs). The language
provides extensions and directives that allow users to supply
information about dependences and memory access patterns
to help the optimizer to perform optimizations better than
in case of conservative optimizations. A key difference be-
tween our approach and the PENCIL approach is that we
are interested in leveraging happens-before information from
programs written in general-purpose explicitly parallel lan-
guages, such as OpenMP and X10, whereas PENCIL is fo-
cused on supporting DSLs in which certain coding rules are
enforced related to pointer aliasing, recursion, unstructured
control flow, etc.

A number of papers addressed the problem of data-flow
analysis of explicitly parallel programs, including extensions
of array data-flow analysis to data-parallel and/or task-parallel
programs [9], and adaptation of array data-flow analysis to
the X10 programs with finish/async parallelism [29]. In
these approaches, the happens-before relations are first an-
alyzed and the data-flow is computed based on the partial
order imposed by happen-before relations. On the other
hand, our approach first overestimates dependences based
on the sequential order and subtracts the complement of the
happen-before relations from the conservative dependences.
While the work in [29] identifies potential data races, our
approach does not treat potential data races as errors or
dependences. Further, the main focus of our work is on
transformations of explicitly parallel programs for improved
performance, whereas the work in [9] and [29] is only focused
on analysis.

8. CONCLUSIONS
This work is motivated by the observation that software

with explicit parallelism is on the rise, and that explicit
parallelism can be used to enable larger sets of polyhedral
transformations (by mitigating conservative dependences),

compared to what might have been possible if the input
program was sequential. We introduced an approach that
reflects happens-before constraints from explicitly parallel
constructs in the dependence polyhedra to help mitigate
conservative dependence analysis. In our approach, we sub-
tract the complement of the happens-before relation from
the conservative dependences, since dependences can only
occur among statement instances that are ordered by the
happens-before relation. The updated set of dependence can
then be passed on to a polyhedral transformation tool, such
as PLuTo, to enable transformation of explicitly parallel pro-
grams. Our approach to modeling non-affine constructs is
based on access functions, which are used through the intro-
duction of dummy variables.

To motivate our approach, we studied 18 explicitly-parallel
OpenMP benchmarks from the Rodinia benchmark suite,
and found that these benchmarks use six classes of non-affine
constructs that are commonly found in parallel scientific ap-
plications: 1) Non-affine subscript expressions, 2) Indirect
array subscripts, 3) Use of structs, 4) Calls to user-defined
functions, 5) Non-affine loop bounds, and 6) Non-affine if

conditions. While there are known techniques from past
work to enable automatic analysis for some of these non-
affine constructs in polyhedral frameworks, we show that
the use of explicit parallelism can enable a larger set of poly-
hedral transformations for some of these programs (due to
conservative dependences), compared to what might have
been possible if the input program was sequential.

For future work, we plan to explore how to incorporate
additional explicit parallel constructs (such as barriers) into
dependence polyhedra for increased precision.
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