The Power of Polynomials

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr
January 8, 2015

αp

Université Claude Bernard Lyon 1

Motivation

Mathematical Background
Theorems
Implementation

Applications
Dependences
Scheduling
Related Work

Conclusion and Future Work

Motivation: Polynomials Everywhere, I

$$
\begin{array}{lc}
k=0 ; & \text { for }(i=0 ; i<N ; i++) \\
\text { for }(i=0 ; i<N ; i++) \\
\quad \text { for }(j=0 ; j<N ; j++) & \\
\quad a[k++]=0 . ; & \\
\quad \text { for }(j=0 ; j<N ; j++) \\
& a[N * i+j]=0 .
\end{array}
$$

Are the loops parallel? Are there loop-carried dependences?
Can be solved by delinearization, or by the SMT solver Z3, or by ISL using Bernstein polynomials. Other approaches?

Polynomials Everywhere: Scheduling

Find a schedule for:

$$
\begin{aligned}
& s=0 . ; \\
& \text { for }(i=1 ; i<N ; i++) \\
& \quad \operatorname{for}(j=0 ; j<i ; j++) \\
& \quad s+=a[i][j] ;
\end{aligned}
$$

Since the program runs in time $O\left(N^{2}\right)$ whatever the number of processors, it has no affine schedule. It has a two-dimensional schedule, which is equivalent to a quadratic schedule.

Can one find the quadratic schedule directly?

Polynomials Everywhere: Transitive Closure

What is the exact transive closure of:

$$
\left(x^{\prime}=x+y, y^{\prime}=y, i^{\prime}=i+1\right) ?
$$

Answer:

$$
\left(x^{\prime}-i^{\prime} \cdot y^{\prime}=x-i \cdot y, y^{\prime}=y, i^{\prime} \geq i\right)
$$

a polynomial relation.

The Basic Problem

Given: a set K and a function f, is f positive in K :

$$
\forall x \in K: f(x)>0 ?
$$

Extension: f is a template depending on a vector of parameters μ.
Find μ such that:

$$
\forall x \in K: f_{\mu}(x)>0
$$

Farkas lemma is the case where K is a polyhedron $K=\{x \mid A x+b \geq 0\}$ and f is affine. The solution is:

$$
f(x)=\lambda_{0}+\lambda \cdot(A x+b), \lambda \geq 0
$$

Notations

A semi-algebraic set (sas):

$$
K=\left\{x \mid p_{1}(x) \geq 0, \ldots, p_{n}(x) \geq 0\right\}
$$

where x is a set of unknowns x_{1}, \ldots, x_{p} and the p_{i} s are polynomials in x. A polyhedron is an sas such that all the $p_{i} \mathrm{~s}$ are of first degree.
Schweighofer products: for each $\vec{e} \in \mathbb{N}^{n}$:

$$
S_{\vec{e}}(x)=p_{1}^{e_{1}}(x) \ldots p_{n}^{e_{n}}(x)=\prod_{i=1}^{n} p_{i}^{e_{i}}(x)
$$

Given a finite subset $Z \subset \mathbb{N}^{n}$ the associated Schweighofer sum is:

$$
S_{Z}(x)=\sum_{\vec{e} \in Z} \lambda_{\vec{e}} \cdot S_{\vec{e}}(x), \lambda_{\vec{e}}>0
$$

Clearly, all Schweighofer sums are positive in K.

Theorems

Theorem (Handelman, 1988)

If K is a compact polyhedron, then a polynomial p is strictly positive in K if and only if it can be represented as a Schweighofer sum for some finite $Z \in \mathbb{N}^{n}$.

Theorem (Schweighofer, 2002)

If K is the intersection of a compact polyhedron and a semi-algebraic set, then a polynomial p is strictly positive in K if it can be represented as a Schweighofer sum for some finite $Z \in \mathbb{N}^{n}$.

Notice the similarity between the conclusion of the two theorems, and the difference with Farkas lemma: since there is no known bound on the size of Z, it is usually impossible to obtain a negative answer.

Algorithm H

The aim of this algorithm is to collect a set \mathcal{C} of constraints on the unknowns λ and μ.

- $\mathcal{C}=\emptyset$.
- Given: a set of Schweighofer products $\left\{S_{\vec{e}}(x) \mid \vec{e} \in Z \subset \mathbb{N}^{n}\right\}$ and a polynomial (template) $p_{\mu}(x)$,
- Result: A system of constraints on the λ and μ.
- Completely expand the master equation:

$$
E=p_{\mu}(x)-\sum_{\vec{e} \in Z} \lambda_{\vec{e}} \cdot S_{\vec{e}}(x)
$$

- For each monomial $x_{1}^{f_{1}} \ldots x_{p}^{f_{p}}$, collect its coefficient c and add $c=0$ to $\mathcal{C} . c$ is an affine form in the λ and μ.

Comments

- Algorithm H works equally well in the Handelman or Schweighofer case, provided one use a uniform representation of polynomials, whatever their degree.
- The main difficulty is the selection of the products. One may use an oracle(!), or all products of a given degree, or all products of a given number of antecedents.
- The resulting system of constraints may be used in many ways: it may be solved by itself, or may be combined with other constraints before solving.
- If a solution for the λ and μ is found, this solution can be certified, independently of Handleman or Schweighofer, by straightforward algebraic evaluation.

Dependence Tests

A dependence set D is defined by a system of constraints:

- The iteration domains of its source and destination,
- A set of subscript equations,
- An order predicate.

Some or all of these constraints may involve polynomials. The problem is to decide whether this set is empty or not. A possible solution is to prove, using algorithm H , that -1 is a positive combination of Schweighofer products of D !
Since -1 can never be positive, it follows that the constraints defining D cannot all be satisfied at the same time, i.e. that D is empty. Compare to the familiar Fourier-Motzkin algorithm.

An Example

The dependence set:

$$
\begin{array}{rrl}
\text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
\operatorname{for}(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++) & 0 \leq i \leq N-1 & , \\
\mathrm{a}[\mathrm{~N} * \mathrm{i}+\mathrm{j}]=0 . ; & 0 \leq j \leq N-1 & , \\
& 0 \leq i^{\prime} \leq N-1 \\
& N i+j & =N j^{\prime} \leq N-1 \\
& i+1 \leq i^{\prime}+j^{\prime}
\end{array}
$$

Algorithm H finds the following solution:

$$
\begin{aligned}
-1 & =(N-i-1)\left(i^{\prime}-i-1\right)+i\left(i^{\prime}-i-1\right)+\left(i^{\prime}-i-1\right) \\
& +j^{\prime}+(N-j-1)+\left(N i+j-N i^{\prime}-j^{\prime}\right)
\end{aligned}
$$

Hence, the dependence set is empty.

Scheduling

Notations

- R, S, \ldots a set of instructions
- D_{R} the iteration domain of R, usually a polyhedron, sometimes an sas
- $\Delta_{R S} \subseteq D_{R} \times D_{S}$, a dependence set from R to S.

Problem For each statement R find a function $\theta_{R}: D_{R} \rightarrow \mathbb{Z}$ such that:

$$
\begin{gathered}
x \in D_{R} \Rightarrow \theta_{R}(x) \geq 0 \\
\binom{x}{y} \in \Delta_{R S} \Rightarrow \theta_{R}(x)+1 \leq \theta_{S}(y)
\end{gathered}
$$

Method

- For each statement R, build a template schedule θ_{R} by applying the first part of algorithm H to D_{R}
- For each dependence, build a master equation for the delay $\theta_{S}(y)-\theta_{R}(x)-1$ by applying algorithm H to $\Delta_{R S}$
- Collect the constraints and solve for the λ and $\mu \mathrm{s}$ using a linear programming tool.

DEMONSTRATION

Motivation

Dependences Scheduling

Result

```
table((__node,S) = [[i,j],{(N >= i+1), (i >= j+1), (i >= 1),
    (j >= 0)}],(__nodes) = [S], (__transition,TO) = [S,S,table(i = i',j = j'),
        {(i' >= i+1)}],(__transition,T1) = [S,S,table(i = i',j = j'),{(i= = ''),
            (j' >= j+1)}],(__transitions) = [T0,T1])
(N * N)*mu_6+N*i*mu_11+N*i*mu_8+N*j*mu_15+N*mu_5+(i * i)*mu_12+
(j * j)*mu_16-j*mu_15-j*mu_16-j*mu_17-j*mu_7-mu_10-mu_5-mu_7
dependence polyhedron [(N >= i+1), (N >= i'+1),(i' >= i+1),(i >= j+1),
    (i >= 1),(i' >= j'+1),(i' >= 1),(j >= 0),(j' >= 0)]
dependence polyhedron [(N >= i+1), (N >= i'+1),(i = i'),(i >= j+1),(i >= 1),
    (i' >= j'+1),(i' >= 1),(j' >= j+1),(j >= 0),(j' >= 0)]
table(mu = 0,mu_10 = 1/2,mu_11 = 0,mu_12 = 0,mu_13 = 1/2,mu_14 = 1,mu_15 = 0,
    mu_16 = 0,mu_17 = 0,mu_18 = 0,mu_5 = 0,mu_6 = 0,mu_7 = 0,mu_8 = 0,mu_9 = 0
    )
theta[S] = [1/2*(i * i)+j-1/2*i] == (j) + 1/2.(i-1)*(i-1) + 1/2 . (i-1)
delay [T0] = 1/2*i+1/2*(i' * i') +j'-1/2*(i * i) -1/2*i'-j-1
=== (j') + 1/2 . (i'-i-1)*(i'-1) + 1/2 . (i'-i-1)*(i-1) + (i-j-1) + (i'-i-1)
```


Related Work

- Early work by B. Pugh et. al. using uninterpreted functions, and by van Engelen et. al. using interval analysis
- Polynomial minimization using a Bernstein expansion, implemented in ISL, can be applied to dependence testing
- Work in progress by A. Maréchal and M. Périn (Verimag) on linearization (i.e. getting rid of polynomials) using Handelman theorem and an oracle to control complexity.

Conclusion and Future Work

- The method works well and give interesting results in acceptable time, at least for small problems
- Other applications: transitive closure, program termination, (perhaps) invariant construction, ressource allocation, ...
- Complexity, very high, exponential in the degree of Schweighofer products
- Can one use an oracle to guess which products are useful?

THE END - QUESTIONS

