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Polyhedral Model

R: h(A[2]);

for (int i = 0; i < 2; ++i)

for (int j = 0; j < 2; ++j)

S: A[i + j] = f(i, j);

for (int k = 0; k < 2; ++k)

T: g(A[k], A[0]);

Instance set (set of statement instances)

I = { R(); S(0, 0); S(0, 1); S(1, 0); S(1, 1); T(0); T(1) }

= { R(); S(i, j) : 0 ≤ i < 2 ∧ 0 ≤ j < 2; T(k) : 0 ≤ k < 2 }
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Equivalent Representations

extensive { S(0, 0); S(0, 1); S(1, 0); S(1, 1) }

4

= { S(i, j) : (i = 0 ∧ j = 0) ∨ (i = 0 ∧ j = 1) ∨
(i = 1 ∧ j = 0) ∨ (i = 1 ∧ j = 1) }

intensive { S(i, j) : 0 ≤ i < 2 ∧ 0 ≤ j < 2 }

1
alternative { S(i, j) : (i = 0 ∧ 0 ≤ j < 2) ∨ (i = 1 ∧ 0 ≤ j < 2) }

2

In general, representation with fewer disjuncts is preferred

(usually) occupies less memory

operations can be performed more efficiently
the outcome of some operations depends on chosen representation

I transitive closure approximation
I AST generation

⇒ coalescing: replace representation by one with fewer disjuncts
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Effect on AST Generation — guide
Without coalescing input
{ S1(i)→ (i) : (1 ≤ i ≤ N ∧ i ≤ 2M) ∨ (1 ≤ i ≤ N ∧ i ≥ M);

S2(i)→ (i) : (N + 1 ≤ i ≤ 2N) }

for (int c0 = 1; c0 <= min(2 * M, N); c0 += 1)

S1(c0);

for (int c0 = max(1, 2 * M + 1); c0 <= N; c0 += 1)

S1(c0);

for (int c0 = N + 1; c0 <= 2 * N; c0 += 1)

S2(c0);

After coalescing input

{ S1(i)→ (i) : 1 ≤ i ≤ N; S2(i)→ (i) : (N + 1 ≤ i ≤ 2N) }

for (int c0 = 1; c0 <= N; c0 += 1)

S1(c0);

for (int c0 = N + 1; c0 <= 2 * N; c0 += 1)

S2(c0);
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Effect on AST Generation — cholesky

⇒ demo
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Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection

Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection

Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction

Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming

min { (x, y)→ (z) : z ≥ 0 ∧ x + z ≥ 0 ∧ y + z ≥ 0 }

0

−y

−x

Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming
Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming
Union

Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming
Union
Intersection



Introduction and Motivation The need for coalescing January 19, 2015 8 / 27

Causes of Splintering
Several operations on integer sets may introduce coalescing opportunities

Projection
Subtraction
Parametric integer programming
Union
Intersection



Introduction and Motivation Traditional “Coalescing” January 19, 2015 9 / 27

Traditional “Coalescing”
Traditional method (e.g., in CLooG with original PolyLib backend)

1 Compute convex hull H of S
2 Remove integer elements not in S from H
⇒ H \ (H \ S)

Issues:

Convex hull may have exponential number of constraints
We may be able to remove some of them, but we still need to
compute them first.

Constraints of convex hull may have very large coefficients
Convex hull is an operation on rational sets
⇒ mixture of operation on rational sets (convex hull) and integer sets (set

subtraction)
⇒ in isl, convex hull operation not fully defined on sets with existentially

quantified variables

Convex hull is costly to compute
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Effect on AST Generation — covariance

With isl coalescing (in this case same result as no coalescing)

for (long c1 = n >= 1 ? ((n - 1) % 32) - n - 31 : 0;

c1 <= (n >= 1 ? n - 1 : 0); c1 += 32) {

/* .. */

}

With convex hull based “coalescing”

for (long c1 = 32 * floord(-1073741839 * n -

32749125633, 68719476720) - 1073741792; c1 <=

floord(715827882 * n + 357913941, 1431655765) +

1073741823; c1 += 32) {

/* .. */

}
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AST Generation Times

Generation times on isl AST generation test cases

isl coalescing 16.0s
no coalescing 16.3s
convex hull (FM) 24m00s
convex hull (wrapping) 6m40s

Note: isl may not have the most efficient convex hull implementation

However, double description based implementations are costly too
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Coalescing in isl
Coalescing in isl

never increases the total number of constraints
based on solving LP problems with same dimension as input set
recognizes a set of patterns
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Coalescing Cases

1 All constraints of A are valid for B

⇒ drop B

2 Neither A nor B have separating
constraints and all cut constraints of
A are valid for the cut facets of B

⇒ replace A ∪ B by set bounded by
all valid constraints

5 single pair of adjacent inequalities
(other constraints valid)

⇒ replace A ∪ B by set bounded by
all valid constraints

7 A has single inequality adjacent to
inequality of B (other constraints of
A are valid)

Result of replacing t(x) ≥ 0 by
t(x) ≤ −1 and adding valid
constraints of B is a subset of B

⇒ replace A ∪ B by set bounded by
all valid constraints

9 A has single inequality adjacent to
equality of B (other constraints of A
are valid)

Result of replacing t(x) ≥ 0 by
t(x) ≤ −1 is a subset of B

⇒ replace A ∪ B by set bounded by
all valid constraints

11 A has single inequality adjacent to
equality of B (other constraints of A
are valid)
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A

⇒ replace A ∪ B by set bounded by
all valid constraints and all
wrapped constraints

13 B extends beyond A by at most one
and all cut constraints of B can be
wrapped around shifted facet of A
to include A

⇒ replace A ∪ B by set bounded by
all valid constraints and all
wrapped constraints
(check final number of constraints
does not increase)

15 A has equality adjacent to equality
of B
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A
Non-valid constraints of A (except
t(x) ≥ 0) can be wrapped around
t(x) ≤ 0 to include B

⇒ replace A ∪ B by set bounded by
all valid constraints and all
wrapped constraints

Constraint t(x) ≥ 0

valid: min t(x) > −1
separate: max t(x) < 0

I adjacent to inequality:
t = −u − 1

I adjacent to equality:
t = −1

cut: otherwise
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Constraint types
Given two disjuncts A and B

For each affine constraint t(x) ≥ 0 of A , determine its effect on B

min t(x) > −1 over B
⇒valid constraint

max t(x) < 0 over B
⇒separating constraint

special cases:

I t = −u − 1 with u(x) ≥ 0 a constraints of B
⇒ constraint is adjacent to an inequality of B

I t(x) = −1 over B
⇒ constraint is adjacent to an equality of B

otherwise (attains both positive and negative
values over B)
⇒cut constraint

Note: affine expression t(x) ≥ 0 has integer coefficients
min and max computed using (incremental) LP solver
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Constraint types
Given two disjuncts A and B

For each affine constraint t(x) ≥ 0 of A , determine its effect on B
min t(x) > −1 over B
⇒valid constraint

max t(x) < 0 over B
⇒separating constraint

special cases:

I t = −u − 1 with u(x) ≥ 0 a constraints of B
⇒ constraint is adjacent to an inequality of B

I t(x) = −1 over B
⇒ constraint is adjacent to an equality of B

otherwise (attains both positive and negative
values over B)
⇒cut constraint

Note: affine expression t(x) ≥ 0 has integer coefficients
min and max computed using (incremental) LP solver
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Result of replacing t(x) ≥ 0 by
t(x) ≤ −1 is a subset of B

⇒ replace A ∪ B by set bounded by
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Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
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of B
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A
Non-valid constraints of A (except
t(x) ≥ 0) can be wrapped around
t(x) ≤ 0 to include B

⇒ replace A ∪ B by set bounded by
all valid constraints and all
wrapped constraints

Constraint t(x) ≥ 0

valid: min t(x) > −1
separate: max t(x) < 0

I adjacent to inequality:
t = −u − 1

I adjacent to equality:
t = −1

cut: otherwise
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Coalescing Cases

5 A has single inequality adjacent to
equality of B (other constraints of A
are valid)

Result of replacing t(x) ≥ 0 by
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Constraint types
Given two disjuncts A and B

For each affine constraint t(x) ≥ 0 of A , determine its effect on B
min t(x) > −1 over B
⇒valid constraint

max t(x) < 0 over B
⇒separating constraint
special cases:

I t = −u − 1 with u(x) ≥ 0 a constraints of B
⇒ constraint is adjacent to an inequality of B

I t(x) = −1 over B
⇒ constraint is adjacent to an equality of B

otherwise (attains both positive and negative
values over B)
⇒cut constraint

Note: affine expression t(x) ≥ 0 has integer coefficients
min and max computed using (incremental) LP solver
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Coalescing Cases

5 A has single inequality adjacent to
equality of B (other constraints of A
are valid)

Result of replacing t(x) ≥ 0 by
t(x) ≤ −1 is a subset of B

⇒ replace A ∪ B by set bounded by
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Non-valid constraints of A (except
t(x) ≥ 0) can be wrapped around
t(x) ≤ 0 to include B
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Coalescing Cases

6 A has single inequality adjacent to
equality of B (other constraints of A
are valid)
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A

⇒ replace A ∪ B by set bounded by
all valid constraints and all
wrapped constraints

8 B extends beyond A by at most one
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to include A

⇒ replace A ∪ B by set bounded by
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Coalescing Cases
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t(x) ≥ −1 to include A
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Coalescing Cases

6 A has single inequality adjacent to
equality of B (other constraints of A
are valid)
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A

⇒ replace A ∪ B by set bounded by
all valid constraints and all
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8 B extends beyond A by at most one
and all cut constraints of B can be
wrapped around shifted facet of A
to include A

⇒ replace A ∪ B by set bounded by
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Coalescing Cases

6 A has single inequality adjacent to
equality of B (other constraints of A
are valid)
Non-valid constraints of B (except
t(x) ≤ −1) can be wrapped around
t(x) ≥ −1 to include A

⇒ replace A ∪ B by set bounded by
all valid constraints and all
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Coalescing Cases
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Coalescing Cases

7 B extends beyond A by at most one
and all cut constraints of B can be
wrapped around shifted facet of A
to include A
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separate: max t(x) < 0
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Coalescing Cases
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Coalescing Cases
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Existentially Quantified Variables and Equalities

Quantifier elimination in isl replaces existentially quantified variables
by integer divisions of affine expressions in other variables

These integer divisions are sorted prior to coalescing

A and B have same number of integer divisions/existentials
⇒ try all cases

integer divisions of A form subset of those of B
(after exploiting equalities of B)
⇒ check if B is a subset of A

integer divisions of B form subset of those of A and
equalities of B simplify away the integer divisions of A not in B
⇒ introduce integer divisions in B and try all cases
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Conclusions

it is important to keep the number of disjuncts in a set representation
as low as (reasonably) possible
coalescing in isl

I never increases the total number of constraints
I based on solving LP problems with same dimension as the original set
I recognizes a set of patterns
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