Integer Set Coalescing

Sven Verdoolaege

INRIA and KU Leuven
January 19, 2015

Outline

(1) Introduction and Motivation

- Polyhedal Model
- The need for coalescing
- Traditional "Coalescing"
(2) Coalescing in isl
- Rational Cases
- Constraints adjacent to inequality
- Constraints adjacent to equality
- Wrapping
- Existentially Quantified Variables
(3) Conclusions

Outline

(1) Introduction and Motivation

- Polyhedal Model
- The need for coalescing
- Traditional "Coalescing"
(2) Coalescing in isl
- Rational Cases
- Constraints adjacent to inequality
- Constraints adjacent to equality
- Wrapping
- Existentially Quantified Variables
(3) Conclusions

Polyhedral Model

```
R: h(A[2]);
    for (int i = 0; i < 2; ++i)
        for (int j = 0; j < 2; ++j)
        A[i + j] = f(i, j);
        for (int k = 0; k < 2; ++k)
        g(A[k], A[0]);
```


Polyhedral Model

R: h(A[2]);
for (int $\mathrm{i}=0$; $\mathrm{i}<2$; + i) for (int $\mathrm{j}=0$; $\mathrm{j}<2$; +j)
S: $\quad A[i+j]=f(i, j)$;
for (int $k=0 ; k<2 ;++k)$
T: $\quad \mathrm{g}(\mathrm{A}[\mathrm{k}], \mathrm{A}[0])$;

- Instance set (set of statement instances)

$$
I=\{\mathrm{R}() ; \mathrm{S}(0,0) ; \mathrm{S}(0,1) ; \mathrm{S}(1,0) ; \mathrm{S}(1,1) ; \mathrm{T}(0) ; \mathrm{T}(1)\}
$$

Polyhedral Model

R: h(A[2]);
for (int $\mathrm{i}=0$; $\mathrm{i}<2$; + i) for (int $\mathrm{j}=0$; $\mathrm{j}<2$; +j)
S: $\quad A[i+j]=f(i, j)$;
for (int $k=0 ; k<2 ;++k)$
$\mathrm{T}: \quad \mathrm{g}(\mathrm{A}[\mathrm{k}], \mathrm{A}[0])$;

- Instance set (set of statement instances)

$$
\begin{aligned}
I & =\{\mathrm{R}() ; \mathrm{S}(0,0) ; \mathrm{S}(0,1) ; \mathrm{S}(1,0) ; \mathrm{S}(1,1) ; \mathrm{T}(0) ; \mathrm{T}(1)\} \\
& =\{\mathrm{R}() ; \mathrm{S}(i, j): 0 \leq i<2 \wedge 0 \leq j<2 ; \mathrm{T}(k): 0 \leq k<2\}
\end{aligned}
$$

Equivalent Representations

$$
\begin{aligned}
& \text { extensive } \quad\{\mathrm{S}(0,0) ; \mathrm{S}(0,1) ; \mathrm{S}(1,0) ; \mathrm{S}(1,1)\} \\
& =\{\mathrm{S}(i, j):(i=0 \wedge j=0) \vee(i=0 \wedge j=1) \vee \\
& (i=1 \wedge j=0) \vee(i=1 \wedge j=1)\}
\end{aligned}
$$

intensive
$\{\mathrm{S}(i, j): 0 \leq i<2 \wedge 0 \leq j<2\}$

Equivalent Representations

$$
\begin{array}{ll}
\text { extensive } & \{\mathrm{S}(0,0) ; \mathrm{S}(0,1) ; \mathrm{S}(1,0) ; \mathrm{S}(1,1)\} \\
& =\{\mathrm{S}(i, j):(i=0 \wedge j=0) \vee(i=0 \wedge j=1) \vee \\
& (i=1 \wedge j=0) \vee(i=1 \wedge j=1)\} \\
\text { intensive } & \{\mathrm{S}(i, j): 0 \leq i<2 \wedge 0 \leq j<2\} \\
\text { alternative } & \{\mathrm{S}(i, j):(i=0 \wedge 0 \leq j<2) \vee(i=1 \wedge 0 \leq j<2)\}
\end{array}
$$

Equivalent Representations

```
extensive \(\quad\{S(0,0) ; S(0,1) ; S(1,0) ; S(1,1)\}\)
    \(=\{S(i, j):(i=0 \wedge j=0) \vee(i=0 \wedge j=1) \vee\)
    \((i=1 \wedge j=0) \vee(i=1 \wedge j=1)\}\)
intensive \(\quad\{\mathrm{S}(i, j): 0 \leq i<2 \wedge 0 \leq j<2\}\)
alternative \(\{S(i, j):(i=0 \wedge 0 \leq j<2) \vee(i=1 \wedge 0 \leq j<2)\}\)

In general, representation with fewer disjuncts is preferred
- (usually) occupies less memory
- operations can be performed more efficiently
- the outcome of some operations depends on chosen representation
- transitive closure approximation
- AST generation
\(\Rightarrow\) coalescing: replace representation by one with fewer disjuncts

\section*{Effect on AST Generation - guide}

Without coalescing input
\[
\begin{aligned}
& \{\mathrm{S} 1(i) \rightarrow(i):(1 \leq i \leq N \wedge i \leq 2 M) \vee(1 \leq i \leq N \wedge i \geq M) ; \\
& \mathrm{S} 2(i) \rightarrow(i):(N+1 \leq i \leq 2 N)\} \\
& \text { for (int } c \theta=1 \text {; } c \theta<=\min (2 * M, N) ; c \theta+=1) \\
& \text { S1 (cQ); } \\
& \text { for (int } c \theta=\max (1,2 \text { * } M+1) \text {; } c \theta<=N ; c \theta+=1) \\
& \text { S1 (cQ); } \\
& \text { for (int cQ = } \mathrm{N}+1 \text {; cQ <= } 2 \text { * } \mathrm{N} \text {; c } \mathrm{CO}+=1 \text { ) } \\
& \text { S2 (cQ) ; }
\end{aligned}
\]

\section*{Effect on AST Generation - guide}

Without coalescing input
\[
\begin{aligned}
\{\mathrm{S} 1(i) & \rightarrow(i):(1 \leq i \leq N \wedge i \leq 2 M) \vee(1 \leq i \leq N \wedge i \geq M) ; \\
\text { s2(i) } & \rightarrow(i):(N+1 \leq i \leq 2 N)\}
\end{aligned}
\]
\[
\text { for (int } c \theta=1 ; c \theta<=\min (2 * M, N) ; c \theta+=1)
\] S1(c0);
for (int cQ = max (1, 2 * M + 1); cQ <= N; cQ += 1) S1 (c0);
for (int cO = N + 1; cO <= 2 * N; cO += 1) S2(c0);

After coalescing input
\[
\{\mathrm{S} 1(i) \rightarrow(i): 1 \leq i \leq N ; \mathrm{S} 2(i) \rightarrow(i):(N+1 \leq i \leq 2 N)\}
\]
for (int cQ = 1; cO <= N; cQ += 1) S1(c0);
for (int cQ = N + 1; cQ <= 2 * N; cD += 1) S2(c0);

\section*{Effect on AST Generation - cholesky}
\(\Rightarrow\) demo

\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]

\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
\[
\min \{(x, y) \rightarrow(z): z \geq 0 \wedge x+z \geq 0 \wedge y+z \geq 0\}
\]


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
- Union


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
- Union


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
- Union
- Intersection


\section*{Causes of Splintering}

Several operations on integer sets may introduce coalescing opportunities
- Projection
- Subtraction
- Parametric integer programming
- Union
- Intersection


\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)


\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)


\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)


\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)


\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)

Issues:

- Convex hull may have exponential number of constraints We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
\(\Rightarrow\) mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
\(\Rightarrow\) in isl, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)

Issues:

- Convex hull may have exponential number of constraints We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
\(\Rightarrow\) mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
\(\Rightarrow\) in isl, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

\section*{Effect on AST Generation - covariance}

With isl coalescing (in this case same result as no coalescing)
```

for (long c1 = n >= 1 ? ((n - 1) % 32) - n - 31 : 0;
c1 <= (n >= 1 ? n - 1 : 0); c1 += 32) {
/* .. */
}

```

With convex hull based "coalescing"
for (long c1 = 32 * floord( -1073741839 * \(n\) 32749125633, 68719476720) - 1073741792; c1 <= floord (715827882 * n + 357913941, 1431655765) + 1073741823; c1 += 32) \{
/* .. */
\}

\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)

Issues:

- Convex hull may have exponential number of constraints We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
\(\Rightarrow\) mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
\(\Rightarrow\) in isl, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

\section*{Traditional "Coalescing"}

Traditional method (e.g., in CLooG with original PolyLib backend)
(1) Compute convex hull \(H\) of \(S\)
(2) Remove integer elements not in \(S\) from \(H\) \(\Rightarrow H \backslash(H \backslash S)\)

Issues:

- Convex hull may have exponential number of constraints We may be able to remove some of them, but we still need to compute them first.
- Constraints of convex hull may have very large coefficients
- Convex hull is an operation on rational sets
\(\Rightarrow\) mixture of operation on rational sets (convex hull) and integer sets (set subtraction)
\(\Rightarrow\) in isl, convex hull operation not fully defined on sets with existentially quantified variables
- Convex hull is costly to compute

\section*{AST Generation Times}

Generation times on isl AST generation test cases
\begin{tabular}{lr} 
isl coalescing & 16.0 s \\
no coalescing & 16.3 s \\
convex hull (FM) & 24 m 00 s \\
convex hull (wrapping) & 6 m 40 s
\end{tabular}

Note: isl may not have the most efficient convex hull implementation However, double description based implementations are costly too

\section*{Outline}
(1) Introduction and Motivation
- Polyhedal Model
- The need for coalescing
- Traditional "Coalescing"
(2) Coalescing in isl
- Rational Cases
- Constraints adjacent to inequality
- Constraints adjacent to equality
- Wrapping
- Existentially Quantified Variables
(3) Conclusions

\section*{Coalescing in isl}

Coalescing in isl
- never increases the total number of constraints
- based on solving LP problems with same dimension as input set
- recognizes a set of patterns


\section*{Coalescing Cases}


\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)

Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint


Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B \(\Rightarrow\) separating constraint


Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B \(\Rightarrow\) separating constraint

- otherwise (attains both positive and negative values over \(B\) )
\(\Rightarrow\) cut constraint
Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Coalescing Cases}


\section*{Coalescing Cases}

(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow \operatorname{drop} B\)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}

(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow \operatorname{drop} B\)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}

(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow \operatorname{drop} B\)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}

(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}
(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}
(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}
(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}
(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}
(1) All constraints of \(A\) are valid for \(B\)
\(\Rightarrow\) drop \(B\)
(2) Neither \(A\) nor \(B\) have separating constraints and all cut constraints of \(A\) are valid for the cut facets of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B \(\Rightarrow\) separating constraint

- otherwise (attains both positive and negative values over \(B\) )
\(\Rightarrow\) cut constraint
Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B
\(\Rightarrow\) separating constraint special cases:
- \(t=-u-1\) with \(u(\mathbf{x}) \geq 0\) a constraints of \(B\) \(\Rightarrow\) constraint is adjacent to an inequality of \(B\)

- otherwise (attains both positive and negative values over \(B\) )
\(\Rightarrow\) cut constraint
Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- cut: otherwise

\section*{Coalescing Cases}

(3) single pair of adjacent inequalities (other constraints valid)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Coalescing Cases}

(3) single pair of adjacent inequalities (other constraints valid)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Coalescing Cases}

(4) A has single inequality adjacent to inequality of \(B\) (other constraints of \(A\) are valid)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Coalescing Cases}

(4) A has single inequality adjacent to inequality of \(B\) (other constraints of \(A\) are valid)
Result of replacing \(t(\mathbf{x}) \geq 0\) by \(t(\mathbf{x}) \leq-1\) and adding valid constraints of \(B\) is a subset of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- cut: otherwise

\section*{Coalescing Cases}

(4) A has single inequality adjacent to inequality of \(B\) (other constraints of \(A\) are valid)
Result of replacing \(t(\mathbf{x}) \geq 0\) by \(t(\mathbf{x}) \leq-1\) and adding valid constraints of \(B\) is a subset of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B
\(\Rightarrow\) separating constraint special cases:
- \(t=-u-1\) with \(u(\mathbf{x}) \geq 0\) a constraints of \(B\) \(\Rightarrow\) constraint is adjacent to an inequality of \(B\)

- otherwise (attains both positive and negative values over \(B\) )
\(\Rightarrow\) cut constraint
Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Constraint types}

Given two disjuncts \(A\) and \(B\)
For each affine constraint \(t(\mathbf{x}) \geq 0\) of \(A\), determine its effect on \(B\)
- \(\min t(\mathbf{x})>-1\) over \(B\)
\(\Rightarrow\) valid constraint
- max \(t(\mathbf{x})<0\) over B
\(\Rightarrow\) separating constraint special cases:
- \(t=-u-1\) with \(u(\mathbf{x}) \geq 0\) a constraints of \(B\) \(\Rightarrow\) constraint is adjacent to an inequality of \(B\)
- \(t(\mathbf{x})=-1\) over \(B\)
\(\Rightarrow\) constraint is adjacent to an equality of \(B\)
- otherwise (attains both positive and negative values over B)

\(\Rightarrow\) cut constraint
Note: affine expression \(t(\mathbf{x}) \geq 0\) has integer coefficients min and max computed using (incremental) LP solver

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- cut: otherwise

\section*{Coalescing Cases}

(5) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(5) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Result of replacing \(t(\mathbf{x}) \geq 0\) by \(t(\mathbf{x}) \leq-1\) is a subset of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(5) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Result of replacing \(t(\mathbf{x}) \geq 0\) by \(t(\mathbf{x}) \leq-1\) is a subset of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(5) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Result of replacing \(t(\mathbf{x}) \geq 0\) by \(t(\mathbf{x}) \leq-1\) is a subset of \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}
(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(6) A has single inequality adjacent to equality of \(B\) (other constraints of \(A\) are valid)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(7) \(B\) extends beyond \(A\) by at most one and all cut constraints of \(B\) can be wrapped around shifted facet of \(A\) to include \(A\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints (check final number of constraints does not increase)

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}


Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality: \(t=-u-1\)
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1\) ) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1\) ) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1\) ) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1)\) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Coalescing Cases}

(B) A has equality adjacent to equality of \(B\)
Non-valid constraints of \(B\) (except \(t(\mathbf{x}) \leq-1\) ) can be wrapped around \(t(\mathbf{x}) \geq-1\) to include \(A\) Non-valid constraints of \(A\) (except \(t(\mathbf{x}) \geq 0\) ) can be wrapped around \(t(\mathbf{x}) \leq 0\) to include \(B\)
\(\Rightarrow\) replace \(A \cup B\) by set bounded by all valid constraints and all wrapped constraints

Constraint \(t(\mathbf{x}) \geq 0\)
- valid: \(\min t(\mathbf{x})>-1\)
- separate: \(\max t(\mathbf{x})<0\)
- adjacent to inequality:
\[
t=-u-1
\]
- adjacent to equality: \(t=-1\)
- cut: otherwise

\section*{Existentially Quantified Variables and Equalities}
- Quantifier elimination in isl replaces existentially quantified variables by integer divisions of affine expressions in other variables
- These integer divisions are sorted prior to coalescing
- \(A\) and \(B\) have same number of integer divisions/existentials
\(\Rightarrow\) try all cases
- integer divisions of \(A\) form subset of those of \(B\)
(after exploiting equalities of \(B\) )
\(\Rightarrow\) check if \(B\) is a subset of \(A\)
- integer divisions of \(B\) form subset of those of \(A\) and equalities of \(B\) simplify away the integer divisions of \(A\) not in \(B\)
\(\Rightarrow\) introduce integer divisions in \(B\) and try all cases

\section*{Outline}
(1) Introduction and Motivation
- Polyhedal Model
- The need for coalescing
- Traditional "Coalescing"
(2) Coalescing in isl
- Rational Cases
- Constraints adjacent to inequality
- Constraints adjacent to equality
- Wrapping
- Existentially Quantified Variables
(3) Conclusions


\section*{Conclusions}
- it is important to keep the number of disjuncts in a set representation as low as (reasonably) possible
- coalescing in isl
- never increases the total number of constraints
- based on solving LP problems with same dimension as the original set
- recognizes a set of patterns```

