Automatic Tiling of "Mostly-Tileable" Loop Nests

David Wonnacot
Tian Jin
Allison Lake

Haverford College, Haverford, Pa.

Slides from Dave's IMPACT 2015 presentation, with later annotations/corrections in red.

Loop Tiling [a.k.a. Blocking, Supernode Partitioning]

Idea

- Treat $n * n$ iteration space as $\left\lfloor\frac{n}{b}\right\rfloor *\left\lfloor\frac{n}{b}\right\rfloor$ tiles of size $b * b$

Purpose: Optimization

- Improve locality on uniprocessors
- Transfer blocks, reduce false sharing on multicore

Legality (classical conditions):

- "Fully permutable" loop nest, i.e.,
- All elements of all dependence vectors are $\geqslant 0$
- (May be enabled by prior loop transformation)

Are Reductions "Permutable"?

What are the dependences of this loop?

$$
\begin{aligned}
& \text { sums }(i)=0 \\
& \text { for } j=0, \text { size-1 do } \\
& \quad \text { sums }(i)=\operatorname{sums}(i)+A(i, j) \\
& \text { endfor }
\end{aligned}
$$

The Omega Project's "petit" analysis tool says:

anti	6: sums (i)	> 6: sums (i)	(+)
flow	6: sums (i)	> 6: sums (i)	(
output	6: sums (i)	--> 6: sums (i)	(+)
reduce	6: sums (i)	--> 6: sums(i)	$(+)$

Maybe this? reduce 6: sums(i) --> 6: sums (i) (*)

A Challenging Program with Reductions

Nussinov's algorithm (RNA secondary structure prediction)

$$
N(i, j)=\max \left(N(i+1, j-1)+\delta(i, j), \max _{i \leqslant k<j}(N(i, k)+N(k+1, j))\right)
$$

(i.e., maximize number of base-pair matches.) In code:

```
! N initially all 0
for i = size-1,0,-1 do
    for j = i+1,size-1 do
        for k = i,j-1 do
            N(i,j) = max(N(i,j), N(i,k)+N(k+1,j))
        endfor
        if j-1 >= 0 and i+1 < size and i < j-1 then
            N(i,j) = max(N(i,j), N(i+1,j-1) +match(seq[i], seq[j]))
        endif
    endfor
endfor
```


Tiling Nussinov's Algorithm

Dependences (from petit -r, reductions as * not +):

```
reduce 19:N(i,j) --> 22:N(i,j) (0,0)
reduce 19:N(i,j) --> 19:N(i,j) (0,0,*)
flow 19:N(i,j) --> 19:N(i,k) (0,+,*) / / (0,+,+)
flow 19: N(i,j) --> 19:N(k+1,j) (+,0,*)
flow 19: N(i,j) --> 22: N(i+1,j-1) (-1#,1)
flow 22:N(i,j) --> 19:N(i,k) (0,+)
flow 22:N(i,j) --> 19:N(k+1,j) (+,0)
flow 22: N(i,j) --> 22: N(i+1,j-1) (-1#,1)
```

So, is this tileable?

- ? No (or, only i / j), since ($0,0,{ }^{*}$) is not all $\geqslant 0$
- ? Yes, since $\left(0,0,{ }^{*}\right)$ should be $(0,0,+)$ for $\delta, \delta^{-}, \delta^{o}$ note: $\left(+, 0,{ }^{*}\right)$ also blocks tiling; the dep marked ($0,+,{ }^{*}$) by petit is actually ($0,+,+$).
- ? "Mostly", as we shall see...

Tiling Nussinov’s Algorithm Well

So, is this tileable?

- ? No (or, only i / j), since $\left(0,0,{ }^{*}\right)$ is not all $\geqslant 0$
- correct code, but could be faster...
- ? Yes, since $\left(0,0,{ }^{*}\right)$ should be $(0,0,+)$ for $\delta, \delta^{-}, \delta^{o}$
- incorrect code produced by classical tiling due to the ($+, 0,{ }^{*}$) flow dependence
- ? "Mostly"? What do I mean by "mostly-tileable"?
- asymptotically small number of problematic dependences (grow w/tile size, not problem)

Mostly-Tileable Loops of Nussinov's Algorithm

Tiling only the i / j nest works fine, as noted before.

Mostly-Tileable Loops of Nussinov's Algorithm

If we group updates from consecutive k, some are o.k.

Mostly-Tileable Loops of Nussinov's Algorithm

However, some read unfinished elements of updating tile...

Mostly-Tileable Loops of Nussinov's Algorithm

... for any order of the k-loop's tiles.

Mostly-Tileable Loops of Nussinov's Algorithm

... for any order of the k-loop's tiles. :-(

Tiling Mosty-Tileable Loop Nests

Recall that some updates were fine $:: 0:: \because:-$
As problem size grows, these outnumber problems, so:

- Tile loop nest ignoring the reduction
- "Peel" problematic iterations of k (index-set splitting)
- Execute
- tiled non-problematic iterations
- then peeled iterations

How Best to Generalize This

What should we ignore to find mostly-tileable nests?

- Just (all) reductions? actually, these aren't the problem
- Identify direction of reductions as in [GR06]?
- Ignore some other "problematic" dependences?
- Current plan: check all not-fully-tileable nests to see if $O($ card(problem iterations) $)<O$ (card(non-problem iterations))
Best choice may depend on which problems can benefit... So, what other problems look interesting?
- Other dynamic programming (e.g., bioinformatics)
- Note: some is fully tileable without peeling
- Circular-Stencils? Yes? No? Still thinking....
- Your thoughts?

