Automatic Tiling of "Mostly-Tileable" Loop Nests

David Wonnacott Tian Jin Allison Lake

Haverford College, Haverford, Pa.

Slides from Dave's IMPACT 2015 presentation, with later annotations/corrections in red.

Loop Tiling [a.k.a. Blocking, Supernode Partitioning]

Idea

• Treat n*n iteration space as $\lfloor \frac{n}{b} \rfloor * \lfloor \frac{n}{b} \rfloor$ tiles of size b*b

Purpose: Optimization

- Improve locality on uniprocessors
- Transfer blocks, reduce false sharing on multicore

Legality (classical conditions):

- "Fully permutable" loop nest, i.e.,
- All elements of all dependence vectors are ≥ 0
- (May be enabled by prior loop transformation)

Are Reductions "Permutable"?

```
What are the dependences of this loop?
    sums(i) = 0
    for j = 0,size-1 do
        sums(i) = sums(i) + A(i,j)
    endfor
```

The Omega Project's "petit" analysis tool says:

	anti	6:	sums(i)	>	6:	sums(i)	(+)
	flow	6:	sums(i)	>	6:	sums(i)	(+)
	output	6:	sums(i)	>	6:	sums(i)	(+)
"petit -r":	reduce	6:	sums(i)	>	6:	sums(i)	(+)

Maybe this? reduce 6: sums(i) --> 6: sums(i) (*)

A Challenging Program with Reductions

Nussinov's algorithm (RNA secondary structure prediction) $N(i, j) = \max (N(i+1, j-1) + \delta(i, j), \max_{i \le k < j} (N(i, k) + N(k+1, j)))$

(i.e., maximize number of base-pair matches.) In code:

```
! N initially all 0
for i = size-1,0,-1 do
for j = i+1,size-1 do
for k = i,j-1 do
    N(i,j) = max(N(i,j), N(i,k)+N(k+1,j))
endfor
if j-1 >= 0 and i+1 < size and i < j-1 then
    N(i,j) = max(N(i,j), N(i+1,j-1)+match(seq[i], seq[j]))
endif
endfor
endfor</pre>
```

Tiling Nussinov's Algorithm

Dependences (from petit -r, reductions as * not +):

reduce	19:	N(i,j)	>	22:	N(i , j)	(0,0)	
reduce	19:	N(i,j)	>	19:	N(i,j)	(0,0,*)	
flow	19:	N(i,j)	>	19:	N(i,k)	(0,+,*)	//(0,+,+)
flow	19:	N(i,j)	>	19:	N(k+1,j)	(+, 0, *)	
flow	19:	N(i,j)	>	22:	N(i+1,j-1)	(-1#, 1)	
flow	22:	N(i,j)	>	19:	N(i,k)	(0,+)	
flow	22:	N(i,j)	>	19:	N(k+1,j)	(+, 0)	
flow	22:	N(i,j)	>	22:	N(i+1,j-1)	(-1#, 1)	

So, is this tileable?

- ? No (or, only i/j), since (0,0,*) is not all ≥ 0
- ? Yes, since (0,0,*) should be (0,0,+) for $\delta, \delta^-, \delta^o$ note: (+,0,*) also blocks tiling; the dep marked (0,+,*) by petit is actually (0,+,+).
- ? "Mostly", as we shall see...

Tiling Nussinov's Algorithm *Well*

So, is this tileable?

- ? No (or, only i/j), since (0,0,*) is not all ≥ 0
 - correct code, but could be faster...
- ? Yes, since (0,0,*) should be (0,0,+) for $\delta, \delta^-, \delta^o$
 - *incorrect* code produced by classical tiling due to the (+, 0, *) flow dependence
- ? "Mostly"? What do I mean by "mostly-tileable"?
 - asymptotically small number of problematic dependences (grow w/tile size, not problem)

Tiling Mosty-Tileable Loop Nests

As problem size grows, these outnumber problems, so:

- Tile loop nest *ignoring the reduction*
- "Peel" problematic iterations of k (index-set splitting)
- Execute
 - tiled non-problematic iterations
 - then peeled iterations

How Best to Generalize This

What should we ignore to find mostly-tileable nests?

- Just (all) reductions? actually, these aren't the problem
- Identify direction of reductions as in [GR06]?
- Ignore some other "problematic" dependences?
- Current plan: check all not-fully-tileable nests to see if O(card(problem iterations))<O(card(non-problem iterations))

Best choice may depend on which problems can benefit... So, what other problems look interesting?

- Other dynamic programming (e.g., bioinformatics)
 - Note: some is fully tileable without peeling
- Circular-Stencils? Yes? No? Still thinking....
- Your thoughts?