
Automatic Tiling of
“Mostly-Tileable” Loop Nests

David Wonnacott Tian Jin Allison Lake

Haverford College, Haverford, Pa.

Slides from Dave’s IMPACT 2015 presentation,

with later annotations/corrections in red.

Loop Tiling [a.k.a. Blocking, Supernode Partitioning]

Idea

• Treat n∗n iteration space as
⌊

n

b

⌋

∗

⌊

n

b

⌋

tiles of size b∗b

Purpose: Optimization

• Improve locality on uniprocessors

• Transfer blocks, reduce false sharing on multicore

Legality (classical conditions):

• “Fully permutable” loop nest, i.e.,

• All elements of all dependence vectors are >0

• (May be enabled by prior loop transformation)

Are Reductions “Permutable”?

What are the dependences of this loop?

sums(i) = 0

for j = 0,size-1 do

sums(i) = sums(i) + A(i,j)

endfor

The Omega Project’s “petit” analysis tool says:

anti 6: sums(i) --> 6: sums(i) (+)

flow 6: sums(i) --> 6: sums(i) (+)

output 6: sums(i) --> 6: sums(i) (+)

“petit -r”: reduce 6: sums(i) --> 6: sums(i) (+)

Maybe this? reduce 6: sums(i) --> 6: sums(i) (*)

A Challenging Program with Reductions

Nussinov’s algorithm (RNA secondary structure prediction)

N(i, j)=max (N(i+1, j − 1)+ δ(i, j),maxi6k<j (N(i, k)+N(k+1, j)))

(i.e., maximize number of base-pair matches.) In code:

! N initially all 0

for i = size-1,0,-1 do

for j = i+1,size-1 do

for k = i,j-1 do

N(i,j) = max(N(i,j), N(i,k)+N(k+1,j))

endfor

if j-1 >= 0 and i+1 < size and i < j-1 then

N(i,j) = max(N(i,j), N(i+1,j-1)+match(seq[i], seq[j]))

endif

endfor

endfor

Tiling Nussinov’s Algorithm

Dependences (from petit -r, reductions as * not +):

reduce 19: N(i,j) --> 22: N(i,j) (0,0)

reduce 19: N(i,j) --> 19: N(i,j) (0,0,*)

flow 19: N(i,j) --> 19: N(i,k) (0,+,*) //(0,+,+)

flow 19: N(i,j) --> 19: N(k+1,j) (+,0,*)

flow 19: N(i,j) --> 22: N(i+1,j-1) (-1#,1)

flow 22: N(i,j) --> 19: N(i,k) (0,+)

flow 22: N(i,j) --> 19: N(k+1,j) (+,0)

flow 22: N(i,j) --> 22: N(i+1,j-1) (-1#,1)

So, is this tileable?

• ? No (or, only i/j), since (0,0,*) is not all >0

• ? Yes, since (0,0,*) should be (0,0,+) for δ,δ−, δo note:

(+,0,*) also blocks tiling; the depmarked (0,+,*) by petit is actually (0,+,+).

• ? “Mostly”, as we shall see...

Tiling Nussinov’s Algorithm Well

So, is this tileable?

• ? No (or, only i/j), since (0,0,*) is not all >0

− correct code, but could be faster...

• ? Yes, since (0,0,*) should be (0,0,+) for δ, δ−, δo

− incorrect code produced by classical tiling

due to the (+, 0, *) flow dependence

• ? “Mostly”? What do I mean by “mostly-tileable”?

− asymptotically small number of problematic

dependences (grow w/tile size, not problem)

Mostly-Tileable Loops of Nussinov’s Algorithm

Tiling only the i/j nest works fine, as noted before.

Mostly-Tileable Loops of Nussinov’s Algorithm

If we group updates from consecutive k, some are o.k.

Mostly-Tileable Loops of Nussinov’s Algorithm

However, some read unfinished elements of updating tile...

Mostly-Tileable Loops of Nussinov’s Algorithm

... for any order of the k-loop’s tiles.

Mostly-Tileable Loops of Nussinov’s Algorithm

... for any order of the k-loop’s tiles. :-(

Tiling Mosty-Tileable Loop Nests

Recall that some updates were fine:

As problem size grows, these outnumber problems, so:

• Tile loop nest ignoring the reduction

• “Peel” problematic iterations of k (index-set splitting)

• Execute

− tiled non-problematic iterations

− then peeled iterations

How Best to Generalize This

What should we ignore to find mostly-tileable nests?

• Just (all) reductions? actually, these aren’t the problem

• Identify direction of reductions as in [GR06]?

• Ignore some other “problematic” dependences?

• Current plan: check all not-fully-tileable nests to see if

O(card(problem iterations))<O(card(non-problem iterations))

Best choice may depend on which problems can benefit...

So, what other problems look interesting?

• Other dynamic programming (e.g., bioinformatics)

− Note: some is fully tileable without peeling

• Circular-Stencils? Yes? No? Still thinking....

• Your thoughts?

