
If we are to use classical tiling technique to tile the Nussinov 
matrix, we have to divide the tiles as shown above. While we 
have to update values in Tile 2 exclusively with Tile 1, we 
would want to make sure that doing so does not violate any 
dependency rule. Considering updating the data element named 
3. Complete update of element 3 will require data element 4 to 
be finalized before calculation of 3. However, the finalization 
of data element 4 requires the usage of values from Tile 3 
therefore failing the criteria for classical tiling which clearly 
requires the full execution of Tile 1 before any read is 
performed on Tile 3. The same problem occurs if we use the 
values from Tile 3 before Tile 1. The lack of tiling worsens our 
cache performance. So we believe a new approach to tiling is 
required.

INTRODUCTION
Multi-dimensional arrays are ubiquitously used in many algorithms. They are 

segments of memory blocks, contiguous or scattered, indexed and accessed by its 
unique memory locations, which can be obtained by various ways. The performance 
of these arrays is usually closely related to the overall performance of the algorithm. 
Therefore, it is worth investigating which type of arrays leads to a better 
performance. Commonly, various types of arrays show little difference in terms of 
their performance; however, when arrays are extensively used in programs with 
high cache reuse, some intriguing performance patterns begin to emerge between 
these different types of arrays.

TYPES OF ARRAYS
Different types of arrays differ from each other in terms of their sites of 

allocation, memory layout and access patterns. For sites of allocation, an array could 
be situated in BSS segment, stack and heap. For memory layout, an array could be 
declared as a continuous block of memory or using multiple malloc calls to obtain 
several blocks of memory and connecting them using another layer of pointers. The 
actual difference between these two ways of memory layout should be trivial as 
consecutive multiple malloc calls usually return consecutive memory addresses 
pointing to physically adjacent memory spaces which are very close to a contiguous 
block of memory. Access pattern is an important factor as a determinant of array 
performance. Two methods of accessing array elements are widely used:

a). Calculation
In this case, arrays are usually allocated into a linear block of memory. Multi-

dimensional arrays are mapped into a linear one by arithmetic transformation. To 
access specific element, integer calculation has to be performed to compute the exact 
memory location of it. An example formula for calculating the memory address of a 
two-by-three two-dimensional array is shown below:

Address = 3 × column index + row index
b). Array of pointers
In this case, arrays are usually disjoint memory pieces linked together by a layer 

of pointers pointing to the starting position of each row. For a two-dimensional 
array, to access certain element, one has to retrieve the starting row position first and 
then add the result to the row index, which eventually gives the memory location of 
that element. An example of array of pointers is illustrated below where each block 
on the left (an array of pointers) points to the starting position of a row in the array.

EXPERIMENTAL PROCEDURE
Several factors are identified as likely contributors to the performance difference 

between access-by-calculation and access-by-array-of-pointers patterns:
(a) Rate of cache misses
(b) Site of allocation
(c) Dimensionality
(d) Row size (padding)
(e) The ratio of computation to memory traffic
The following body of code is modified in each case to test the effect of each 

factor on performance of the program:
 
for(int i=START; i<END; i+=T_SIZE)

for(int j=START; j<END; j+=T_SIZE)
        for (int id=0; id<T_SIZE; id++)
            for (int jd=0; jd<T_SIZE; jd++)
                matrix(i+id,j+jd) = matrix(i+id-R,j+jd-R) OP

                                      matrix(i+id+R,j+jd-R) OP
                                        matrix(i+id-R,j+jd+R) OP
                                        matrix(i+id+R,j+jd+R)+1;
 

The knobs: T_SIZE refers to the size of the tile if the code is tiled. An 
appropriate configuration of tile size will lead to better cache efficiency during the 
runtime of the program. R refers to the access radius of the array elements used in 
this algorithm, which determines the memory locality of it. A large R means little 
memory locality and therefore little cache reuse. OP is the operator that defines the 
arithmetic operations to be carried out between each array elements used in the 
algorithm. OP is adjusted to have different computational heaviness.

Caution with GCC: for statically allocated arrays, which are default to be 
accessed by calculation, GCC may not be optimizing the program fully. Programs 
using statically allocated arrays therefore have to use the following code as a 
workaround:

int* matrix=(int*)&_matrix[0];
#define matrix(i,j) matrix[(i)*5000+(j)];
In the above code, a pointer is obtained pointing to the starting position of the 

memory chunk and access-by-calculation pattern is explicitly defined as macros. In 
this case, GCC is capable of optimizing it to a similar extent as it does to programs 
using access-by-array-of-pointers pattern. This might very well be an issue with 
GCC as similar performance slowdown is also seen in other programs with high 
cache reuse apart from our experimental ones.
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foo[0]  foo[0][0] foo[0][1] foo[0][2]

foo[1]  foo[1][0] foo[1][1] foo[1][2]

foo[2]  foo[2][0] foo[2][1] foo[2][2]

RESULTS AND DISCUSSION
a). Rate of cache misses

● Rate of cache misses measures how many of the memory operations are 
accessing memory locations not present in L1 CPU cache. Regardless of 
which ways of access pattern an algorithm employs, its performance is 
highly dependent on the rate of cache misses as long as there exist 
memory operations somewhere within the algorithm.

● However, access-by-array-of-pointers pattern is reasonably more 
sensitive to the rate of cache misses because for access-by-array-of-
pointers pattern, memory access to each array element is sometimes 
preceded by at least another memory access to retrieve the starting 
position of that row (although loop invariant hoisting could happen) and 
thus will consume relatively more CPU cycles doing memory operations.

● By varying tile size and access radius, one can get a sense of how 
performances of these two access patterns vary as rate of cache misses 
changes.

● Below is the benchmarking results when access radius is relatively large 
and memory locality is relatively low: 

● And another benchmarking results when access radius is relatively small 
and memory locality is relatively high: 

● As seen from the experimental data, for low memory locality, two ways 
of memory access pattern have similar performance results; however, as 
memory locality becomes higher, an interesting pattern emerges: as tile 
size becomes bigger and bigger, access-by-array-of-pointers eventually 
outperforms access-by-multiplication. 

● The fact that as cache misses gets fewer and fewer, access-by-
multiplication will be decreasingly advantageous is obvious; however, 
we could not find evidence supporting the observation that at certain 
point, access-by-array-of-pointers outperforms access-by-calculation.

b). Sites of allocation:
Multi-dimensional arrays could be allocated in the BSS segment or on 

the heap. The experimental program is ran with different rate of cache misses 
to see the effect of different sites of allocation on the performance of the 
arrays.  
● D_HEAP: Arrays are allocated as discontiguous blocks in the heap.
● C_HEAP: Arrays are allocated as a continuous block in the heap
● D_BSS: Arrays are allocated as discontiguous blocks in the BSS segment
● C_BSS: Arrays are allocated as a contiguous block in the BSS segment

● The data collected clearly suggests that for the same rate of cache misses 
and access patterns, the performance difference between arrays allocated 
in the heap and BSS segment is insignificant.

● However, it is worth noticing that accessing uninitialized arrays declared 
in BSS segment usually costs more than those declared in the heap as 
zeros may be filled on demand to the array upon access.

 

Config D_HEAP(ms) C_HEAP(ms) D_BSS(ms) C_BSS(ms)

T=2 ,R=500 16.8 13.1 16.3 12.7

T=5 ,R=200 22.1 33.1 22.6 32.1

T=10 ,R=100 42.6 46.3 43.9 45.9

T=20 ,R=50 20.9 18.8 21.0 18.9

T=40 ,R=25 17.3 20.4 16.3 20.0

c). Dimensionality
Another way to further increase the data locality is through declaring the 

operation array as a four-dimensional one, making each of the iteration 
dimension an actual storage dimension. Therefore memory operations within 
one iteration dimension will actually stay in a close physical region. Using this 
four-dimensional array, performance results for two access patterns are gathered 
as follow: 

    As the graph clearly indicates, as data locality increases, access-by-array-of-
pointers pattern starts to gain significant advantage over access-by-calculation 
pattern. 

d). Row size (padding)
● The access-by-calculation pattern performs integer multiplication while 

calculating the memory location of each memory address. 
● Multiplication is a relatively heavy computation whereas if row size is a 

power of two, shift instructions could be performed rather than 
multiplication.

● However changing row size to a power of two runs the risk of high cache 
misses as the size of CPU cache is often a power of two.

● Therefore the row size is changed to sums of powers of two to test its effect 
(Numbers are in milliseconds):

As seen from the experimental data, there is no significant gain in terms of 
performance by padding the row size to make it a sum of powers of two.

b). The ratio of computation to memory traffic
This ratio provides a measure of how important memory operation is as a 

factor for performance consideration. It also helps confirm that the performance 
difference is caused by memory access speed by ruling out the possibility that 
such difference is a result of computational factors. The operator in the 
experimental program body is changed to addition, multiplication and division 
to increase the “heaviness” of computation. The results for two access patterns 
are shown below:

As clearly demonstrated, as computation instructions increases from 
addition to division, the performance gap quickly closes up and eventually no 
significant performance difference could be seen. This corroborates the 
hypothesis that such difference is not caused by any computations but purely a 
result of memory access patterns. 

CONCLUSION
● Rate of cache misses is critical in determining which method of allocation 

is better in each case. For low rate of cache misses, access-by-array-of-
pointers usually outperforms access-by calculation pattern.

● The site of allocation is not a significant factor affecting performance for 
multi-dimensional arrays that are previously initialized.

● Arrays with higher dimensionality, which increases data locality, will make 
the effect of rate of cache misses more dramatic.

● Row size does not matter even when cheaper shift instructions may be used 
instead of more expensive multiplication instructions.

● The ratio of computation to memory traffic is an important factor that 
determines the extent to which one access pattern is better than the other. A 
higher ratio of computation to memory traffic will make the performance 
difference between two access patterns less obvious.

~Size Pointers Calculation Pointers(SPT) Calculation(SPT)

4400 26.1 34.7 25.9 35.0

4600 27.6 35.1 27.5 36.9

5100 29.4 36.0 29.9 37.3

6100 27.5 34.2 30.2 35.3

Operation Static(ms) Dynamic(ms) Difference

Addition 34.3 29.2 17%

Multiplication 45.5 42.4 7.4%

Division 103 103 0%


