
HiPEAC'15
1/19/2015

Towards Automated Characterization of the Data
Movement Complexity of Affine Programs

 V. Elango†, F. Rastello§, L-N Pouchet†, J. Ramanujam‡, P. Sadayappan†

†The Ohio State University §INRIA ‡Louisiana State University

for (i=1; i<N-1; i++)
 for (j=1;j<N-1; j++)
 A[i][j] = A[i][j-1] + A[i-1][j];

for(it = 1; it<N−1; it +=B)
 for(jt = 1; jt<N−1; jt +=B)
 for(i = it; i < min(it+B, N−1); i++)
 for(j = jt; j < min(jt+B, N−1); j++)
 A[i][j] = A[i−1][j] + A[i][j−1]; Un#led	
 version	
 	

Comp.	
 complexity:	
 (N-­‐1)2	
 Ops	
 Tiled	
 Version	

Comp.	
 complexity:	
 (N-­‐1)2	
 Ops	

• Data	
 movement	
 cost	
 is	

different	
 for	
 two	
 versions	

• Also	
 depends	
 on	
 cache	
 size	

Ques#on:	
 Can	
 we	
 do	
 beJer?	

How	
 do	
 we	
 know	
 when	
 no	

further	
 improvement	
 possible?	

Ques#on:	
 What	
 is	
 the	
 lowest	

achievable	
 data	
 movement	

cost	
 among	
 all	
 equivalent	

versions	
 of	
 the	
 computa#on?	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

CDAG	
 for	
 N=6	

o CDAG	
 abstrac#on:	

– Vertex	
 =	
 opera#on,	
 edge	
 =	
 data	
 dep.	
 	

• 2-­‐level	
 memory	
 hierarchy	
 with	
 S	
 fast	

mem	
 loca#ons	
 &	
 infinite	
 slow	
 locs.	

– To	
 compute	
 a	
 vertex,	
 predecessor	
 ver#ces	

must	
 hold	
 values	
 in	
 fast	
 memory	

–  Limited	
 fast	
 memory	
 =>	
 computed	
 values	

may	
 need	
 to	
 be	
 temporarily	
 stored	
 in	
 slow	

memory	
 and	
 reloaded	

• Inherent	
 data	
 mvmt.	
 complexity	
 of	

CDAG:	
 Minimal	
 #loads+#stores	
 among	

all	
 possible	
 valid	
 schedules	

Minimum	
 possible	
 data	
 movement	
 cost?	

	
 	
 	
 No	
 known	
 effec?ve	
 solu?on	
 to	
 problem	

Develop	
 upper	
 bounds	
 on	
 min-­‐cost	

Develop	
 lower	
 bounds	
 on	
 min-­‐cost	

Modeling	
 Data	
 Movement	
 Complexity	
 	

Theory	
 &	
 Models	

Tools	
 Applica#ons	

1)	
 Alternate	
 lower	
 bounds	

approach	
 (graph	
 min-­‐cut	
 based)	

2)	
 Composi#on	
 of	
 lower	
 bounds	

3)	
 Modeling	
 ver#cal	
 +	
 horizontal	

data	
 movement	
 bounds	
 for	

scalable	
 parallel	
 systems	
 	
 	
 	
 	

	
 [SPAA	
 ‘14]	

	

1)  Automated	
 lower	

bounds	
 for	
 arbitrary	

explicit	
 CDAGs	

2)  Automated	
 parametric	

lower	
 bounds	
 for	
 affine	

programs	

	
 	
 	
 	
 	
 [this	
 poster;	
 POPL	
 ’15]	

1)	
 Compara#ve	
 analysis	
 of	

algorithms	
 via	
 lower	
 bounds	

2)	
 Assessment	
 of	
 compiler	

effec#veness	
 	

3)	
 Algorithm/architecture	
 co-­‐
design	
 space	
 explora#on	
 	

	
 [ACM	
 TACO	
 ’14,	
 Hipeac	
 ’15]	

Our	
 work:	
 Sta?c	
 analysis	
 to	
 automate	
 asympto?c	
 parametric	
 lower	

bounds	
 analysis	
 of	
 affine	
 codes	
 for	
 CDAG	
 model	
 	

o Linear-­‐Algebra-­‐like	
 algorithms:	

§ Irony	
 et	
 al.	
 (2004)	
 and	
 Ballard	
 et	
 al.	

(2011):	
 Geometric	
 approach	
 based	

on	
 geometric	
 inequality	
 	

§ Christ	
 et	
 al.	
 (2013):	
 Automa#on,	

based	
 on	
 generalized	
 geometric	
 HBL	

inequality	
 (Holder-­‐Brascamp-­‐Lieb)	

§ (+)	
 Automated	
 asympto#c	

parametric	
 lower	
 bound	
 expressions,	

e.g.,	
 O(N3/sqrt(S))	
 for	
 NxN	
 mat-­‐mult	

§ (-­‐)	
 Restricted	
 computa#onal	
 model:	

weakness	
 of	
 bounds	
 or	

inapplicability	

o Arbitrary	
 CDAGs:	

§ Hong	
 &	
 Kung	
 (1981):	
 strong	

rela#on	
 between:1)	
 Data	

movement	
 cost	
 for	
 a	
 CDAG	

schedule,	
 and	
 2)	
 Number	
 of	

vertex-­‐sets	
 in	
 “2S-­‐par##on”	

of	
 CDAG	

§ Change	
 from	
 reasoning	
 about	

all	
 valid	
 schedules	
 to	
 all	
 valid	

2S-­‐par##ons	
 of	
 graph	

§ (+)	
 Generality	

§ (-­‐)	
 Manual	
 CDAG-­‐specific	

reasoning	
 =>	
 challenge	
 to	

automate	

Lower	
 Bounds:	
 Geometric	
 Reasoning	
 with	
 Data	
 Footprints	

Prior	
 Work:	
 Data	
 Movement	
 Lower	
 Bounds	
 Lower	
 Bounds	
 for	
 CDAGs:	
 Geometric	
 Reasoning	

Lower	
 Bounds:	
 Research	
 Direc?ons	

CDAG	
 Lower	
 Bounds:	
 Hong/Kung	
 S-­‐Par??oning	

for	
 (i=0;	
 i<N;	
 i++)	

	
 	
 for	
 (j=0;j<N;j++)	

	
 	
 	
 	
 if	
 (i	
 <>	
 j)	
 	
 force[i]	
 +=	
 	

	
 	
 	
 	
 func(pos[i],pos[j])	

E	

i	

j	
 …...	

Ei	

Ej	

…
...	

Load	

Load	

Load	

Load	

Load	

Load	

Load	

Store	

Store	

Store	

Store	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

Ti
m

e

Se
g.

 1

Se
g.

 2

Se
g.

 3

S
o

u
rc

e
:

J
im

 D
e

m
m

e
l

	
 2D	
 Loomis-­‐Whitney	
 Inequality	
 	
 	
 	
 	
 	
 	

|E|	
 <=	
 |Ei|*|Ej|	
 	

o Loomis-­‐Whitney	
 inequality	
 (2D):	

bounds	
 #points	
 in	
 a	
 set	
 by	
 product	
 of	

#	
 projected	
 points	
 on	
 coordinate	
 axes	

o Prior	
 work:	
 Uses	
 Loomis-­‐Whitney	

inequality	
 &	
 generaliza#on	
 (Holder-­‐
Brascamp-­‐Lieb)	
 for	
 lower	
 bounds	
 for	

linear-­‐algebra-­‐like	
 computa#ons	

§ Projec#ons	
 of	
 itera#on-­‐space	

points	
 <==>	
 Data	
 footprint	
 	

§ Geometric	
 inequality:	
 Bound	
 max.	

#of	
 ops	
 for	
 a	
 given	
 #	
 of	
 data	
 moves	

o Divide	
 execu#on	
 trace	
 into	
 segments	
 with	

S	
 load/stores	
 (3	
 in	
 ex.)	

o Within	
 each	
 segment,	
 #dis#nct	
 elements	

of	
 pos[]	
 <=	
 2S	
 (up	
 to	
 S	
 coming	
 into	

segment	
 in	
 scratchpad	
 and	
 another	
 S	

explicitly	
 loaded)	

o For	
 code	
 example,	
 projec#on	
 of	
 Stmt(i,j)	

onto	
 i-­‐axis	
 maps	
 to	
 data	
 element	
 pos[i];	

similarly	
 for	
 j-­‐axis	
 Max.	
 #	
 dis#nct	
 elts	
 of	

pos[i]	
 or	
 pos[j]	
 read	
 in	
 any	
 segment	
 <=	
 2S	

o By	
 Loomis-­‐Whitney,	
 max.	
 #	
 itera#on	

points	
 in	
 any	
 segment,	
 |P|	
 <=	
 2S*2S	

o Min.	
 #segments	
 >=	
 N2/4S2;	
 each	
 seg.	
 (but	

last)	
 has	
 S	
 load/stores	

o #load/stores	
 >=	
 (N2/4S2-­‐1)*S	
 =	
 Ω(N2/S)	

Geometric	
 Reasoning	
 with	
 Data	
 Footprints:	
 Limita?ons	

for (i=0; i<N; i++)
 for (j=0;j<N;j++)
 for (k=0;k<N;k++)
 C[i][j] += A[i][k]*B[k][j];

for (i=0; i<N; i++)
 for (j=0;j<N;j++)
 for (k=0;k<N;k++) {
 C[i][j] += 1;
 A[i][k] += 1;
 B[k][j] += 1;
 }

Same access functions
⇒ same analysis result
LB = Ω(N3/√S)

for (i,j,k) C[i][j] += 1;
for (i,j,k) A[i][k] += 1;
for (i,j,k) B[k][j] += 1;

Loop Distribution	

Semantically equivalent
code after loop distribution:
but different IO lower bound
LB = Ω(N2)

o Cannot	
 handle	
 mul#-­‐
statement	
 programs	

§ Computa#ons	
 with	
 very	

different	
 data	
 mvmt.	

Rqmts.	
 but	
 same	
 array	

access	
 footprint	
 =>	
 same	
 LB	

§ Seman#cs	
 preserving	
 loop	

transforma#ons	
 can	
 result	

in	
 change	
 to	
 lower	
 bound	

o Cannot	
 model	
 effect	
 of	
 data	

dependences	

§ Dependences	
 may	
 impose	
 	

constraints	
 =>	
 higher	
 data	

movement	
 cost	
 than	

footprint	
 analysis	
 reveals	

§ Example:	
 1D	
 Jacobi	
 –	

footprint	
 based	
 geometric	

analysis	
 cannot	
 derive	

known	
 LB	
 of	
 Ω(NT/S)	
 	

for (t=1; t<T; t++) {
 for (i=1; i<N-1; i++)
 B[i] = A[i-1]+A[i]+A[i+1];
 for (i=1; i<N-1; i++)
 A[i] = B[i];
}

Contributions: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

· Apply geometric reasoning on Z-polyhedra to bound |P|

21

Load	

Load	

Load	

Load	

Load	

Load	

Load	

Store	

Store	

Store	

Store	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

FLOP	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

Store	

Load	

….	

1	

1	

2	

2	

3	

3	

4	

4	

5	

6	

7	

5	

6	

7	

VS1	

VS2	

VS3	

Total	
 of	
 NS	
 Segments	

Se
gm

en
t 1

Se

gm
en

t 2

Se
gm

en
t 3

o Any	
 valid	
 schedule	
 using	
 S	
 registers	
 is	

associated	
 with	
 a	
 2S-­‐par##on	
 of	
 CDAG	

§ Divide	
 trace	
 into	
 segments	
 incurring	

exactly	
 S	
 load/stores	

§ Ops	
 executed	
 in	
 segment-­‐i	
 form	
 a	

convex	
 vertex	
 set	
 VSi	

§ |In(VSi)|	
 <=	
 2S	
 (up	
 to	
 S	
 from	
 prev.	

segment	
 and	
 up	
 to	
 S	
 new	
 loads)	

§ Each	
 segment	
 (except	
 last)	
 has	
 S	
 loads/
stores	
 =>	
 S*NS	
 >=	
 Total	
 I/O	
 >=S*(NS-­‐1)	

§ Reasoning	
 about	
 minimum	
 #vertex	
 sets	

for	
 any	
 valid	
 2S-­‐par##on	
 =>	
 Lower	

bound	
 on	
 #	
 loads/stores	

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

o Analyze	
 	
 CDAG	
 structure	

§ Establish	
 Max	
 |VSi|	
 <=	
 VSmax(S)	

§ =>	
 Min.	
 #	
 vertex	
 sets	
 =	
 NSmin(S)	
 =	
 	

Nver#ces/VSmax(S)	

§ =>	
 IOmin(S)	
 >=	
 (NSmin-­‐1)*S	

§ In	
 example:	
 S=2,	
 	
 Nver#ces=16	

§ VSmax(S)	
 =	
 4	
 	
 =>	
 	
 NSmin=	
 16/4	
 =	
 4	

§ IOmin	
 >=	
 2*(4-­‐1)	
 =	
 6	

Background

Hong & Kung’s S-partitioning

I/O lower bounding technique based on graph partitioning.

Valid with and without re-computation.

Definition (SNR-partitioning – Recomputation prohibited)

Given a CDAG C, an SNR-partitioning of C is a collection of h subsets of V \ I
such that:

P1 8i 6= j, Vi \Vj = /0, and
Sh

i=1 Vi = V \ I

P2 there is no cyclic dependence between subsets

P3 8i, |In(Vi)| S

P4 8i, |Out(Vi)| S

In(Vi): set of vertices of V \Vi that have at least one successor in Vi.

Out(Vi): set of vertices of Vi that are also part of the output set O or that
have at least one successor outside of Vi.

POPL 2015 9 / 27

S-­‐Par??on	
 of	
 CDAG	

sa?sfies	
 4	
 proper?es	

o How	
 to	
 upper-­‐bound	
 |VSi|for	
 any	

valid	
 2S-­‐par##on?	

o Key	
 Idea:	
 Use	
 geometric	
 inequality,	

but	
 relate	
 itera#on	
 points	
 to	
 In(VSi)	

and	
 not	
 data	
 footprint	

§ Find	
 rays	
 corresponding	
 to	

dependence	
 chains	
 =>	
 projec#ons	

§ Projected	
 points	
 from	
 VSi	
 must	
 be	

subset	
 of	
 In(VSi)	
 	

§ Transform	
 itera#on	
 space	
 so	
 that	

rays	
 are	
 along	
 coordinate	
 axes	

for (t=1; t<T; t++) {
 for (i=1; i<N-1; i++)
 B[i] = A[i-1]+A[i]+A[i+1];
 for (i=1; i<N-1; i++)
 A[i] = B[i];
}

Parameters:	
 N,	
 T	

Inputs:	
 In[N];	
 Outputs:	
 A[N]	

for	
 (i=0;	
 i<N;	
 i++)	
 	

	
 	
 	
 A[i]	
 =	
 In[i];	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 S1	
 	

for	
 (t=0;t<T;t++)	
 {	

	
 	
 for(i=1;i<N-­‐1;i++)	

	
 	
 	
 	
 B[i]	
 =	
 A[i-­‐1]+A[i]+A[i+1];	
 	
 S2	

	
 	
 for(i=1;i<N-­‐1;i++)	

	
 	
 	
 	
 A[i]	
 =	
 B[i];	
 }	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 S3	

5.3 Automated I/O Lower Bound Computation

We present a static analysis algorithm for automated derivation
of expressions for parametric asymptotic I/O lower bounds for
programs. We use two illustrative examples to explain the various
steps in the algorithm before providing the detailed pseudo-code
for the full algorithm.

Illustrative example 1: Consider the following example of Jacobi
1D stencil computation.

Parameters: N, T
Inputs: I[N]
Outputs: A[N]

for (i=0; i<N; i++)
S1: A[i] = I[i];

for (t=1; t<T; t++)
{
for (i=1; i<N-1; i++)

S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N-1; i++)
S3: A[i] = B[i];

}

I

S1

�e1�

S2

�e2� �e3� �e4� �e5� �e6�

S3

�e7� �e8��e9� �e10�

Figure 6: Data-flow graph for Jacobi 1D

Fig. 6 shows the static data-flow graph GF =(VF ,EF) for Jacobi
1D. GF contains a vertex for each statement in the code. The input
I is also explicitly represented in GF by node I (shaded in black in
Fig. 6). Each vertex has an associated domain as shown below:
• DI =[N]->{I[i]:0<=i<N}
• DS1 =[N]->{S1[i]:0<=i<N}
• DS2 =[T,N]->{S2[t,i]:1<=t<T and 1<=i<N-1}
• DS3 =[T,N]->{S3[t,i]:1<=t<T and 1<=i<N-1}

The edges represent the true (read-after-write) data dependences
between the statements. Each edge has an associated affine depen-
dence relation as shown below:
• Edge e1: This edge corresponds to the dependence due to copy-

ing the inputs I to array A at statement S1 and has the following
relation.
[N]->{I[i]->S1[i]:0<=i<N}

• Edges e2, e3 and e4: The use of array elements A[i-1], A[i]
and A[i+1] at statement S2 are captured by edges e2, e3 and
e4, respectively.

[T,N]->{S1[i]->S2[1,i+1]:1<=i<N-2}
[T,N]->{S1[i]->S2[1,i]:1<=i<N-1}
[T,N]->{S1[i]->S2[1,i-1]:2<=i<N-1}

• Edges e5 and e6: Multiple uses of the boundary elements
I[0] and I[N-1] by A[t][1] and A[t][N-2], respectively,
for 1<=t<T are represented by the following relations.
[T,N]->{S1[0]->S2[t,1]:1<=t<T}
[T,N]->{S1[N-1]->S2[t,N-2]:1<=t<T}

• Edge e7: The use of array B in statement S3 corresponds to edge
e7 with the following relation.
[T,N]->{S2[t,i]->S3[t,i]:1<=t<T and 1<=i<N-1}

• Edges e8, e9 and e10: The uses of array A in statement S2 from
S3 are represented by these edges with the following relations.
[T,N]->{S3[t,i]->S2[t+1,i+1]:1<=t<T-1 and 1<=i<N-2}
[T,N]->{S3[t,i]->S2[t+1,i]:1<=t<T-1 and 1<=i<N-1}
[T,N]->{S3[t,i]->S2[t+1,i-1]:1<=t<T-1 and 2<=i<N-1}

Given a path p=(e1, . . . ,el) with associated edge relations (R1, . . . ,Rl),
the relation associated with p can be computed by composing
the relations of its edges, i.e., relation(p) = Rl ◦ · · · ◦ R1. For
instance, the relation for the path (e7,e8) in the example, ob-
tained through the composition Re8 ◦Re7 , is given by Rp = [T,N]
-> {S2[t,i] -> S2[t+1,i+1]}. Further, the domain and im-
age of a composition are restricted to the points for which the
composition can apply, i.e., domain(R j ◦Ri) = Ri

−1(image(Ri)∩
domain(R j)) and image(R j ◦Ri) = R j(image(Ri)∩domain(R j)).
Hence, domain(Rp) = [T,N] -> {S2[t,i] : 1<=t<T-1 and
1<=i<N-2} and image(Rp) = [T,N] -> {S2[t,i] : 2<=t<T
and 2<=i<N-1}.

Two kinds of paths, namely, injective circuit and broadcast
path, defined below, are of specific importance to the analysis.

DEFINITION 6 (Injective edge and circuit). An injective edge a is
an edge of a data-flow graph whose associated relation Ra is both

affine and injective, i.e., Ra = A.⃗x + b⃗, where A is an invertible
matrix. An injective circuit is a circuit E of a data-flow graph such
that every edge e ∈ E is an injective edge.

DEFINITION 7 (Broadcast edge and path). A broadcast edge b is
an edge of a data-flow graph whose associated relation Rb is affine
and dim(domain(Rb)) < dim(image(Rb)). A broadcast path is a
path (e1, . . . ,en) of a data-flow graph such that e1 is a broadcast
edge and ∀n

i=2ei are injective edges.

Injective circuits and broadcast paths in a data-flow graph essen-
tially indicate multiple uses of same data, and therefore are good
candidates for lower bound analysis. Hence only paths of these two
kinds are considered in the analysis. The current example of Jacobi
1D computation illustrates the use of injective circuits to derive I/O
lower bounds, while the use of broadcast paths for lower bound
analysis is explained in another example that follows.
Injective circuits: In the Jacobi example, we have three circuits
to vertex S2 through S3. The relation for each circuit is computed
by composing the relations of its edges as explained earlier. The
relations, and the dependence vectors they represent, are listed
below.
• Circuit c1 = (e7,e8):

Rc1 = [T,N] -> {S2[t,i]->S2[t+1,i+1] : 1<=t<T-1 and
1<=i<N-2}
b⃗1 = (1,1)T

• Circuit c2 = (e7,e9):
Rc2 = [T,N] -> {S2[t,i]->S2[t+1,i] : 1<=t<T-1 and
1<=i<N-1}
b⃗2 = (1,0)T

• Circuit c3 = (e7,e10):
Rc3 = [T,N] -> {S2[t,i]->S2[t+1,i-1] : 1<=t<T-1 and
2<=i<N-1}
b⃗3 = (1,−1)T

o Use	
 ISL	
 to	
 find	
 all	
 “must”	
 data	
 flow	

dependences	

o Cycles	
 data	
 dep.	
 graph	
 ==	
 “rays”	
 in	
 the	
 CDAG	

o Generalized	
 geom.	
 inequality	
 allows	
 different	

dimensional	
 orthogonal	
 projec#ons	

§ Parametric	
 exponents	
 in	
 inequality:	
 sum	
 of	

weighted	
 ranks	
 of	
 projected	
 subspaces	

must	
 exceed	
 rank	
 of	
 full	
 itera#on	
 space	

§ solve	
 a	
 linear	
 program	
 to	
 find	
 op#mal	

weights	

§ =>	
 asympto#c	
 parametric	
 I/O	
 lower	
 bound	

for	
 affine	
 program	

Background

Loomis-Whitney Inequality

E ⇢ Rd an open subset in the euclidian d-space
f1(E), . . . ,fd(E) its projections on the coordinates hyperplanes

Then,

|E|
d

’
j=1

|fj(E)|1/(d�1)

Application to a 2d-case example (d = 2):

|P| |Pi|⇥ |Pj|.

for(i=0;i<N;i++)
for(j=0;j<N;j++)
if (i <> j) force(i)
+= f(mass(i),mass(j),pos(i),pos(j));

max(|Pi| , |Pj|) |Pi [Pj| |In(P)| 2S
=) |P| 4S2

POPL 2015 12 / 27

Background

Brascamp-Lieb inequality

Generalizes Loomis-Whitney – allows more general linear maps, not
necessarily all mapping onto spaces of the same dimension.
Further generalized by Bennett et al.

|E|
d
’
j=1

|fj(E)|1/(d�1) |E|
m
’
j=1

|fj(E)|sj s.t., 8i, 1  Âm
j=1 sidi,j

where,
(s1, . . . ,sm) 2 [0,1]m

fj : Rd ! Rdj are orthogonal projections
di,j : dim(fj(span(�!ei))) – where �!ei , i-th canonical vector.

Example: f1 : (i, j,k)! (i) and f2 : (i, j,k)! (j,k)

We get D =

0

@
1 0
0 1
0 1

1

A

Which leads to |E| |f1(E)|s1 ⇥ |f2(E)|s2 s.t., 1  s1 ^1  s2

POPL 2015 13 / 27

