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for (i=1; i<N-1; i++) 
  for (j=1;j<N-1; j++) 
    A[i][j] = A[i][j-1] + A[i-1][j]; 

for(it = 1; it<N−1; it +=B) 
  for(jt = 1; jt<N−1; jt +=B) 
    for(i = it; i < min(it+B, N−1); i++) 
      for(j = jt; j < min(jt+B, N−1); j++)  
        A[i][j] = A[i−1][j] + A[i][j−1]; Un#led	
  version	
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  Ops	
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  movement	
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  is	
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  for	
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  versions	
  

• Also	
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  cache	
  size	
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  Can	
  we	
  do	
  beJer?	
  
How	
  do	
  we	
  know	
  when	
  no	
  
further	
  improvement	
  possible?	
  
Ques#on:	
  What	
  is	
  the	
  lowest	
  
achievable	
  data	
  movement	
  
cost	
  among	
  all	
  equivalent	
  
versions	
  of	
  the	
  computa#on?	
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Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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CDAG	
  for	
  N=6	
  

o CDAG	
  abstrac#on:	
  
– Vertex	
  =	
  opera#on,	
  edge	
  =	
  data	
  dep.	
  	
  

• 2-­‐level	
  memory	
  hierarchy	
  with	
  S	
  fast	
  
mem	
  loca#ons	
  &	
  infinite	
  slow	
  locs.	
  
– To	
  compute	
  a	
  vertex,	
  predecessor	
  ver#ces	
  
must	
  hold	
  values	
  in	
  fast	
  memory	
  

–  Limited	
  fast	
  memory	
  =>	
  computed	
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  need	
  to	
  be	
  temporarily	
  stored	
  in	
  slow	
  
memory	
  and	
  reloaded	
  

• Inherent	
  data	
  mvmt.	
  complexity	
  of	
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all	
  possible	
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  schedules	
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  possible	
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  movement	
  cost?	
  
	
  	
  	
  No	
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  solu?on	
  to	
  problem	
  

Develop	
  upper	
  bounds	
  on	
  min-­‐cost	
  

Develop	
  lower	
  bounds	
  on	
  min-­‐cost	
  

Modeling	
  Data	
  Movement	
  Complexity	
  	
  

Theory	
  &	
  Models	
  

Tools	
   Applica#ons	
  

1)	
  Alternate	
  lower	
  bounds	
  
approach	
  (graph	
  min-­‐cut	
  based)	
  
2)	
  Composi#on	
  of	
  lower	
  bounds	
  
3)	
  Modeling	
  ver#cal	
  +	
  horizontal	
  
data	
  movement	
  bounds	
  for	
  
scalable	
  parallel	
  systems	
  	
  	
  	
  	
  
	
  [SPAA	
  ‘14]	
  
	
  

1)  Automated	
  lower	
  
bounds	
  for	
  arbitrary	
  
explicit	
  CDAGs	
  

2)  Automated	
  parametric	
  
lower	
  bounds	
  for	
  affine	
  
programs	
  

	
  	
  	
  	
  	
  [this	
  poster;	
  POPL	
  ’15]	
  

1)	
  Compara#ve	
  analysis	
  of	
  
algorithms	
  via	
  lower	
  bounds	
  
2)	
  Assessment	
  of	
  compiler	
  
effec#veness	
  	
  
3)	
  Algorithm/architecture	
  co-­‐
design	
  space	
  explora#on	
  	
  
	
  [ACM	
  TACO	
  ’14,	
  Hipeac	
  ’15]	
  

Our	
  work:	
  Sta?c	
  analysis	
  to	
  automate	
  asympto?c	
  parametric	
  lower	
  
bounds	
  analysis	
  of	
  affine	
  codes	
  for	
  CDAG	
  model	
  	
  

o Linear-­‐Algebra-­‐like	
  algorithms:	
  
§ Irony	
  et	
  al.	
  (2004)	
  and	
  Ballard	
  et	
  al.	
  
(2011):	
  Geometric	
  approach	
  based	
  
on	
  geometric	
  inequality	
  	
  

§ Christ	
  et	
  al.	
  (2013):	
  Automa#on,	
  
based	
  on	
  generalized	
  geometric	
  HBL	
  
inequality	
  (Holder-­‐Brascamp-­‐Lieb)	
  

§ (+)	
  Automated	
  asympto#c	
  
parametric	
  lower	
  bound	
  expressions,	
  
e.g.,	
  O(N3/sqrt(S))	
  for	
  NxN	
  mat-­‐mult	
  

§ (-­‐)	
  Restricted	
  computa#onal	
  model:	
  
weakness	
  of	
  bounds	
  or	
  
inapplicability	
  

o Arbitrary	
  CDAGs:	
  
§ Hong	
  &	
  Kung	
  (1981):	
  strong	
  
rela#on	
  between:1)	
  Data	
  
movement	
  cost	
  for	
  a	
  CDAG	
  
schedule,	
  and	
  2)	
  Number	
  of	
  
vertex-­‐sets	
  in	
  “2S-­‐par##on”	
  
of	
  CDAG	
  

§ Change	
  from	
  reasoning	
  about	
  
all	
  valid	
  schedules	
  to	
  all	
  valid	
  
2S-­‐par##ons	
  of	
  graph	
  

§ (+)	
  Generality	
  
§ (-­‐)	
  Manual	
  CDAG-­‐specific	
  
reasoning	
  =>	
  challenge	
  to	
  
automate	
  

Lower	
  Bounds:	
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  Reasoning	
  with	
  Data	
  Footprints	
  

Prior	
  Work:	
  Data	
  Movement	
  Lower	
  Bounds	
   Lower	
  Bounds	
  for	
  CDAGs:	
  Geometric	
  Reasoning	
  

Lower	
  Bounds:	
  Research	
  Direc?ons	
  

CDAG	
  Lower	
  Bounds:	
  Hong/Kung	
  S-­‐Par??oning	
  
for	
  (i=0;	
  i<N;	
  i++)	
  
	
  	
  for	
  (j=0;j<N;j++)	
  
	
  	
  	
  	
  if	
  (i	
  <>	
  j)	
  	
  force[i]	
  +=	
  	
  
	
  	
  	
  	
  func(pos[i],pos[j])	
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  2D	
  Loomis-­‐Whitney	
  Inequality	
  	
  	
  	
  	
  	
  	
  
|E|	
  <=	
  |Ei|*|Ej|	
  	
  

o Loomis-­‐Whitney	
  inequality	
  (2D):	
  
bounds	
  #points	
  in	
  a	
  set	
  by	
  product	
  of	
  
#	
  projected	
  points	
  on	
  coordinate	
  axes	
  

o Prior	
  work:	
  Uses	
  Loomis-­‐Whitney	
  
inequality	
  &	
  generaliza#on	
  (Holder-­‐
Brascamp-­‐Lieb)	
  for	
  lower	
  bounds	
  for	
  
linear-­‐algebra-­‐like	
  computa#ons	
  
§ Projec#ons	
  of	
  itera#on-­‐space	
  
points	
  <==>	
  Data	
  footprint	
  	
  

§ Geometric	
  inequality:	
  Bound	
  max.	
  
#of	
  ops	
  for	
  a	
  given	
  #	
  of	
  data	
  moves	
  

o Divide	
  execu#on	
  trace	
  into	
  segments	
  with	
  
S	
  load/stores	
  (3	
  in	
  ex.)	
  

o Within	
  each	
  segment,	
  #dis#nct	
  elements	
  
of	
  pos[]	
  <=	
  2S	
  (up	
  to	
  S	
  coming	
  into	
  
segment	
  in	
  scratchpad	
  and	
  another	
  S	
  
explicitly	
  loaded)	
  

o For	
  code	
  example,	
  projec#on	
  of	
  Stmt(i,j)	
  
onto	
  i-­‐axis	
  maps	
  to	
  data	
  element	
  pos[i];	
  
similarly	
  for	
  j-­‐axis	
  Max.	
  #	
  dis#nct	
  elts	
  of	
  
pos[i]	
  or	
  pos[j]	
  read	
  in	
  any	
  segment	
  <=	
  2S	
  

o By	
  Loomis-­‐Whitney,	
  max.	
  #	
  itera#on	
  
points	
  in	
  any	
  segment,	
  |P|	
  <=	
  2S*2S	
  

o Min.	
  #segments	
  >=	
  N2/4S2;	
  each	
  seg.	
  (but	
  
last)	
  has	
  S	
  load/stores	
  

o #load/stores	
  >=	
  (N2/4S2-­‐1)*S	
  =	
  Ω(N2/S)	
  

Geometric	
  Reasoning	
  with	
  Data	
  Footprints:	
  Limita?ons	
  
for (i=0; i<N; i++) 
  for (j=0;j<N;j++) 
     for (k=0;k<N;k++) 
       C[i][j] += A[i][k]*B[k][j]; 

for (i=0; i<N; i++) 
  for (j=0;j<N;j++) 
     for (k=0;k<N;k++) { 
       C[i][j]  += 1; 
       A[i][k] += 1; 
       B[k][j] += 1; 
    } 

Same access functions 
⇒ same analysis result 
LB = Ω(N3/√S) 

for (i,j,k) C[i][j]  += 1; 
for (i,j,k) A[i][k] += 1; 
for (i,j,k) B[k][j] += 1; 

Loop Distribution	
  

Semantically equivalent 
code after loop distribution: 
but different IO lower bound 
LB = Ω(N2) 

o Cannot	
  handle	
  mul#-­‐
statement	
  programs	
  
§ Computa#ons	
  with	
  very	
  
different	
  data	
  mvmt.	
  
Rqmts.	
  but	
  same	
  array	
  
access	
  footprint	
  =>	
  same	
  LB	
  

§ Seman#cs	
  preserving	
  loop	
  
transforma#ons	
  can	
  result	
  
in	
  change	
  to	
  lower	
  bound	
  

o Cannot	
  model	
  effect	
  of	
  data	
  
dependences	
  
§ Dependences	
  may	
  impose	
  	
  
constraints	
  =>	
  higher	
  data	
  
movement	
  cost	
  than	
  
footprint	
  analysis	
  reveals	
  

§ Example:	
  1D	
  Jacobi	
  –	
  
footprint	
  based	
  geometric	
  
analysis	
  cannot	
  derive	
  
known	
  LB	
  of	
  Ω(NT/S)	
  	
  

for (t=1; t<T; t++) { 
 for (i=1; i<N-1; i++) 
   B[i] = A[i-1]+A[i]+A[i+1]; 
 for (i=1; i<N-1; i++)  
   A[i] = B[i]; 
} 

Contributions: POPL 2015

Affine computations

Can be represented as (union of) Z-polyhedra:

I Space: d-dimensional integer lattice (Zd).
I Points: Each instance of the statement.
I Arrows: True data dependencies.

for (i=0; i<N; i++)
S1: A[i] = I[i];
for (t=1; t<T; t++)
{

for (i=1; i<N -1; i++)
S2: B[i] = A[i-1]+A[i]+A[i+1];

for (i=1; i<N -1; i++)
S3: A[i] = B[i];
}

· Apply geometric reasoning on Z-polyhedra to bound |P|
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Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.
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Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2014.

Store	
  

Load	
  

….	
  

1	
  

1	
  

2	
  

2	
  

3	
  

3	
  

4	
  

4	
  

5	
  

6	
  

7	
  

5	
  

6	
  

7	
  

VS1	
  

VS2	
  

VS3	
  

Total	
  of	
  NS	
  Segments	
  

Se
gm

en
t 1

 
Se

gm
en

t 2
 

Se
gm

en
t 3

 

o Any	
  valid	
  schedule	
  using	
  S	
  registers	
  is	
  
associated	
  with	
  a	
  2S-­‐par##on	
  of	
  CDAG	
  
§ Divide	
  trace	
  into	
  segments	
  incurring	
  
exactly	
  S	
  load/stores	
  

§ Ops	
  executed	
  in	
  segment-­‐i	
  form	
  a	
  
convex	
  vertex	
  set	
  VSi	
  

§ |In(VSi)|	
  <=	
  2S	
  (up	
  to	
  S	
  from	
  prev.	
  
segment	
  and	
  up	
  to	
  S	
  new	
  loads)	
  

§ Each	
  segment	
  (except	
  last)	
  has	
  S	
  loads/
stores	
  =>	
  S*NS	
  >=	
  Total	
  I/O	
  >=S*(NS-­‐1)	
  

§ Reasoning	
  about	
  minimum	
  #vertex	
  sets	
  
for	
  any	
  valid	
  2S-­‐par##on	
  =>	
  Lower	
  
bound	
  on	
  #	
  loads/stores	
  

0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
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the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.
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o Analyze	
  	
  CDAG	
  structure	
  
§ Establish	
  Max	
  |VSi|	
  <=	
  VSmax(S)	
  
§ =>	
  Min.	
  #	
  vertex	
  sets	
  =	
  NSmin(S)	
  =	
  	
  
Nver#ces/VSmax(S)	
  

§ =>	
  IOmin(S)	
  >=	
  (NSmin-­‐1)*S	
  
§ In	
  example:	
  S=2,	
  	
  Nver#ces=16	
  
§ VSmax(S)	
  =	
  4	
  	
  =>	
  	
  NSmin=	
  16/4	
  =	
  4	
  
§ IOmin	
  >=	
  2*(4-­‐1)	
  =	
  6	
  

Background

Hong & Kung’s S-partitioning

I/O lower bounding technique based on graph partitioning.

Valid with and without re-computation.

Definition (SNR-partitioning – Recomputation prohibited)

Given a CDAG C, an SNR-partitioning of C is a collection of h subsets of V \ I
such that:

P1 8i 6= j, Vi \Vj = /0, and
Sh

i=1 Vi = V \ I

P2 there is no cyclic dependence between subsets

P3 8i, |In(Vi)| S

P4 8i, |Out(Vi)| S

In(Vi): set of vertices of V \Vi that have at least one successor in Vi.

Out(Vi): set of vertices of Vi that are also part of the output set O or that
have at least one successor outside of Vi.
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S-­‐Par??on	
  of	
  CDAG	
  
sa?sfies	
  4	
  proper?es	
  

o How	
  to	
  upper-­‐bound	
  |VSi|for	
  any	
  
valid	
  2S-­‐par##on?	
  

o Key	
  Idea:	
  Use	
  geometric	
  inequality,	
  
but	
  relate	
  itera#on	
  points	
  to	
  In(VSi)	
  
and	
  not	
  data	
  footprint	
  
§ Find	
  rays	
  corresponding	
  to	
  
dependence	
  chains	
  =>	
  projec#ons	
  

§ Projected	
  points	
  from	
  VSi	
  must	
  be	
  
subset	
  of	
  In(VSi)	
  	
  

§ Transform	
  itera#on	
  space	
  so	
  that	
  
rays	
  are	
  along	
  coordinate	
  axes	
  

for (t=1; t<T; t++) { 
 for (i=1; i<N-1; i++) 
   B[i] = A[i-1]+A[i]+A[i+1]; 
 for (i=1; i<N-1; i++)  
   A[i] = B[i]; 
} 

Parameters:	
  N,	
  T	
  
Inputs:	
  In[N];	
  Outputs:	
  A[N]	
  
for	
  (i=0;	
  i<N;	
  i++)	
  	
  
	
  	
  	
  A[i]	
  =	
  In[i];	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  S1	
  	
  
for	
  (t=0;t<T;t++)	
  {	
  
	
  	
  for(i=1;i<N-­‐1;i++)	
  
	
  	
  	
  	
  B[i]	
  =	
  A[i-­‐1]+A[i]+A[i+1];	
  	
  S2	
  
	
  	
  for(i=1;i<N-­‐1;i++)	
  
	
  	
  	
  	
  A[i]	
  =	
  B[i];	
  }	
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5.3 Automated I/O Lower Bound Computation

We present a static analysis algorithm for automated derivation
of expressions for parametric asymptotic I/O lower bounds for
programs. We use two illustrative examples to explain the various
steps in the algorithm before providing the detailed pseudo-code
for the full algorithm.

Illustrative example 1: Consider the following example of Jacobi
1D stencil computation.

Parameters: N, T
Inputs: I[N]
Outputs: A[N]

for (i=0; i<N; i++)
S1: A[i] = I[i];

for (t=1; t<T; t++)
{
for (i=1; i<N-1; i++)

S2: B[i] = A[i-1] + A[i] + A[i+1];

for (i=1; i<N-1; i++)
S3: A[i] = B[i];

}

I

S1

�e1�

S2

�e2� �e3� �e4� �e5� �e6�

S3

�e7� �e8��e9� �e10�

Figure 6: Data-flow graph for Jacobi 1D

Fig. 6 shows the static data-flow graph GF =(VF ,EF ) for Jacobi
1D. GF contains a vertex for each statement in the code. The input
I is also explicitly represented in GF by node I (shaded in black in
Fig. 6). Each vertex has an associated domain as shown below:
• DI =[N]->{I[i]:0<=i<N}
• DS1 =[N]->{S1[i]:0<=i<N}
• DS2 =[T,N]->{S2[t,i]:1<=t<T and 1<=i<N-1}
• DS3 =[T,N]->{S3[t,i]:1<=t<T and 1<=i<N-1}

The edges represent the true (read-after-write) data dependences
between the statements. Each edge has an associated affine depen-
dence relation as shown below:
• Edge e1: This edge corresponds to the dependence due to copy-

ing the inputs I to array A at statement S1 and has the following
relation.
[N]->{I[i]->S1[i]:0<=i<N}

• Edges e2, e3 and e4: The use of array elements A[i-1], A[i]
and A[i+1] at statement S2 are captured by edges e2, e3 and
e4, respectively.

[T,N]->{S1[i]->S2[1,i+1]:1<=i<N-2}
[T,N]->{S1[i]->S2[1,i]:1<=i<N-1}
[T,N]->{S1[i]->S2[1,i-1]:2<=i<N-1}

• Edges e5 and e6: Multiple uses of the boundary elements
I[0] and I[N-1] by A[t][1] and A[t][N-2], respectively,
for 1<=t<T are represented by the following relations.
[T,N]->{S1[0]->S2[t,1]:1<=t<T}
[T,N]->{S1[N-1]->S2[t,N-2]:1<=t<T}

• Edge e7: The use of array B in statement S3 corresponds to edge
e7 with the following relation.
[T,N]->{S2[t,i]->S3[t,i]:1<=t<T and 1<=i<N-1}

• Edges e8, e9 and e10: The uses of array A in statement S2 from
S3 are represented by these edges with the following relations.
[T,N]->{S3[t,i]->S2[t+1,i+1]:1<=t<T-1 and 1<=i<N-2}
[T,N]->{S3[t,i]->S2[t+1,i]:1<=t<T-1 and 1<=i<N-1}
[T,N]->{S3[t,i]->S2[t+1,i-1]:1<=t<T-1 and 2<=i<N-1}

Given a path p=(e1, . . . ,el) with associated edge relations (R1, . . . ,Rl),
the relation associated with p can be computed by composing
the relations of its edges, i.e., relation(p) = Rl ◦ · · · ◦ R1. For
instance, the relation for the path (e7,e8) in the example, ob-
tained through the composition Re8 ◦Re7 , is given by Rp = [T,N]
-> {S2[t,i] -> S2[t+1,i+1]}. Further, the domain and im-
age of a composition are restricted to the points for which the
composition can apply, i.e., domain(R j ◦Ri) = Ri

−1(image(Ri)∩
domain(R j)) and image(R j ◦Ri) = R j(image(Ri)∩domain(R j)).
Hence, domain(Rp) = [T,N] -> {S2[t,i] : 1<=t<T-1 and
1<=i<N-2} and image(Rp) = [T,N] -> {S2[t,i] : 2<=t<T
and 2<=i<N-1}.

Two kinds of paths, namely, injective circuit and broadcast
path, defined below, are of specific importance to the analysis.

DEFINITION 6 (Injective edge and circuit). An injective edge a is
an edge of a data-flow graph whose associated relation Ra is both

affine and injective, i.e., Ra = A.⃗x + b⃗, where A is an invertible
matrix. An injective circuit is a circuit E of a data-flow graph such
that every edge e ∈ E is an injective edge.

DEFINITION 7 (Broadcast edge and path). A broadcast edge b is
an edge of a data-flow graph whose associated relation Rb is affine
and dim(domain(Rb)) < dim(image(Rb)). A broadcast path is a
path (e1, . . . ,en) of a data-flow graph such that e1 is a broadcast
edge and ∀n

i=2ei are injective edges.

Injective circuits and broadcast paths in a data-flow graph essen-
tially indicate multiple uses of same data, and therefore are good
candidates for lower bound analysis. Hence only paths of these two
kinds are considered in the analysis. The current example of Jacobi
1D computation illustrates the use of injective circuits to derive I/O
lower bounds, while the use of broadcast paths for lower bound
analysis is explained in another example that follows.
Injective circuits: In the Jacobi example, we have three circuits
to vertex S2 through S3. The relation for each circuit is computed
by composing the relations of its edges as explained earlier. The
relations, and the dependence vectors they represent, are listed
below.
• Circuit c1 = (e7,e8):

Rc1 = [T,N] -> {S2[t,i]->S2[t+1,i+1] : 1<=t<T-1 and
1<=i<N-2}
b⃗1 = (1,1)T

• Circuit c2 = (e7,e9):
Rc2 = [T,N] -> {S2[t,i]->S2[t+1,i] : 1<=t<T-1 and
1<=i<N-1}
b⃗2 = (1,0)T

• Circuit c3 = (e7,e10):
Rc3 = [T,N] -> {S2[t,i]->S2[t+1,i-1] : 1<=t<T-1 and
2<=i<N-1}
b⃗3 = (1,−1)T
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Background

Loomis-Whitney Inequality

E ⇢ Rd an open subset in the euclidian d-space
f1(E), . . . ,fd(E) its projections on the coordinates hyperplanes

Then,

|E|
d

’
j=1

|fj(E)|1/(d�1)

Application to a 2d-case example (d = 2):

|P| |Pi|⇥ |Pj|.

for(i=0;i<N;i++)
for(j=0;j<N;j++)
if (i <> j) force(i)
+= f(mass(i),mass(j),pos(i),pos(j));

max(|Pi| , |Pj|) |Pi [Pj| |In(P)| 2S
=) |P| 4S2
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Background

Brascamp-Lieb inequality

Generalizes Loomis-Whitney – allows more general linear maps, not
necessarily all mapping onto spaces of the same dimension.
Further generalized by Bennett et al.

|E|
d
’
j=1

|fj(E)|1/(d�1)  |E|
m
’
j=1

|fj(E)|sj s.t., 8i, 1  Âm
j=1 sidi,j

where,
(s1, . . . ,sm) 2 [0,1]m

fj : Rd ! Rdj are orthogonal projections
di,j : dim(fj(span(�!ei ))) – where �!ei , i-th canonical vector.

Example: f1 : (i, j,k)! (i) and f2 : (i, j,k)! (j,k)

We get D =

0

@
1 0
0 1
0 1

1

A

Which leads to |E| |f1(E)|s1 ⇥ |f2(E)|s2 s.t., 1  s1 ^1  s2
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