
Liveness Analysis in Explicitly-Parallel Programs

Alain Darte Alexandre Isoard Tomofumi Yuki

Compsys, LIP, Lyon

6th International Workshop on
Polyhedral Compilation Techniques

January 19, 2016
Prague, Czech Republic

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 1 / 19

Use of liveness analysis

Necessary for memory reuse:
Register allocation: interference graph
Array contraction: conflicting relation
Wire usage: bitwidth analysis

Important information for:
Communication: live-in/live-out sets (inlining, offloading)
Memory footprint: cache prediction
Lower/upper bounds on memory usage

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 2 / 19

Why revisit liveness analysis?

Several variants:
Value-based or memory-based analysis
Liveness sets or interference graphs
Control flow graphs: basic blocks, SSA, SSI, etc...

What about task graphs? Or parallel specifications in general?

Alpha, OpenStream
CUDA/OpenCL
OpenMP (loop parallelism), OpenMP 4.0 (dependent tasks)
X10 (async, finish, clocks)
...

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 3 / 19

Key contribution

Liveness analysis based on “happens-before” relations.

Key remarks:
No global notion of time
Polyhedral fragments of OpenMP, X10, ... can be handled
Room for approximations

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 4 / 19

Outline

Introduction
Recap of sequential case
Direct extensions
Using happens-before relation
Some properties
Conclusion

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 5 / 19

Register allocation

x = ...;
y = x + ...;
... = y;

write x

read x

write y

read y

x

y

x = ...;
x = x + ...;
... = x;

write x

read x

write x

read x

x

x

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 6 / 19

Array folding

c[0] = ...;
for(i=0; i<n; ++i)

c[i+1] = c[i] + ...;

...

write ci−1

read ci−1

write ci

read ci

write ci+1

read ci+1...

c[i-1]

c[i]

c[i+1]

c = ...;
for(i=0; i<n; ++i)

c = c + ...;

...

write c

read c

write c

read c

write c

read c
...

c

c

c

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 7 / 19

Jacobi-1D: Sequential

for(i=0; j<n; ++i)
for(j=0; j<n; ++j)

A[i+1][j] = A[i][j-1] + A[i][j] + A[i][j+1];

j

i

A[i][j] 7→ A[(j-i)%(n+1)]

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 8 / 19

Simultaneously live: “Crossproduct”

Definition (Conflict)
Two memory cells x and y conflicts iff there exists a time step t where they
are both live.

Wx write of x
Rx read of x

Wx Rx

t

Wy Ry

⇐⇒ x ./ y

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 9 / 19

Liveness at a given time step with iscc
Inputs
Params := [n] -> { : n >= 0 };
Domain := [n] -> { S[i,j] : 0 <= i, j < n };
Read := [n] -> { S[i,j] -> A[i-1,j-1]; S[i,j] -> A[i-1,j];

S[i,j] -> A[i-1,j+1] } * Domain;
Write := [n] -> { S[i,j] -> A[i,j] } * Domain;
Sched := [n] -> { S[i,j] -> [i,j] };

Operators
Prev := { [i,j]->[k,l]: i<k or (i=k and j<l) };
Preveq := { [i,j]->[k,l]: i<k or (i=k and j<=l) };
WriteBeforeTStep := (Prev^-1).(Sched^-1).Write;
ReadAfterTStep := Preveq.(Sched^-1).Read;

Liveness and conflicts
Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live^-1).Live;
Delta := deltas Conflict;

*
Delta(n) = {(1, i1) | i1 ≤ 0, n ≥ 3, i1 ≥ 1− n}∪

{(0, i1) | i1 ≥ 1− n, n ≥ 2, i1 ≤ −1 + n}∪
{(−1, i1) | i1 ≥ 0, n ≥ 3, i1 ≤ −1 + n}

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 10 / 19

Simultaneously live: “Triangle” (Register allocation)

Definition (Conflict)
Two memory cells x and y conflicts iff one is live at a write of the other.

Wx write of x
Rx read of x

Wx Rx

t

Wy

∨ sym ⇐⇒ x ./ y

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 11 / 19

“Crossproduct” vs “Triangle”

if(...) x = ...;
else y = ...;

if(...) ... = x;
else ... = y;

if ...

write x write y

if ...

read x read y

true

true

false

false

x y

Crossproduct Will detect a conflict
Triangle Will not detect a conflict

* Valid because no legal trace are affected

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 12 / 19

“Crossproduct” vs “Triangle”

if(...) x = ...;
else y = ...;

if(...) ... = x;
else ... = y;

if ...

write x write y

if ...

read x read y

true

true

false

false

x y

Crossproduct Will detect a conflict
Triangle Will not detect a conflict

* Valid because no legal trace are affected

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 12 / 19

Jacobi-1D: Parallel

for(i=0; j<n; ++i)
#pragma omp parallel for

for(j=0; j<n; ++j)
A[i+1][j] = A[i][j-1] + A[i][j] + A[i][j+1];

j

i

A[i][j] 7→ A[i%2][j]

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 13 / 19

How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time”.

time step

L

L

L

L

S

S

C

C

C

2i 2i + 1 2i + 2 2i + 3

iterations

time step

S

C

C

L

L

S

C

i − 1 i i + 1

iterations

S(i − 1) ./ C(i) and C(i) ./ L(i + 1) but not S(i − 1) ./ L(i + 1).
* Not a clique!

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 / 19

How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.
Software pipelining Harder to get a concept of “time”.

time step

L

L

L

L

S

S

C

C

C

2i 2i + 1 2i + 2 2i + 3

iterations

time step

S

C

C

L

L

S

C

i − 1 i i + 1

iterations

S(i − 1) ./ C(i) and C(i) ./ L(i + 1) but not S(i − 1) ./ L(i + 1).
* Not a clique!

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 / 19

How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.
Software pipelining Harder to get a concept of “time”.

time step

L

L

L

L

S

S

C

C

C

2i 2i + 1 2i + 2 2i + 3

iterations

time step

S

C

C

L

L

S

C

i − 1 i i + 1

iterations

S(i − 1) ./ C(i) and C(i) ./ L(i + 1) but not S(i − 1) ./ L(i + 1).
* Not a clique!

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 / 19

Potentially simultaneously live
Definition (Conflict)
Two memory cells x and y conflicts iff there exists a trace where one is live
at a write of the other.

Definition (Happens-before)
a happens-before b iff, in all traces where a and b are executed, a is
executed before b.

If:
A trace is assumed possible iff it is allowed by happens-before
Happens-before is a partial order (transitive closure)

then:

Wx Rx

Wy

6

6 6

⇐⇒

∃t : trace

Wx Rx

Wy

t

t t

⇐⇒ x ./ y

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 15 / 19

Potentially simultaneously live
Definition (Conflict)
Two memory cells x and y conflicts iff there exists a trace where one is live
at a write of the other.

Definition (Happens-before)
a happens-before b iff, in all traces where a and b are executed, a is
executed before b.

If:
A trace is assumed possible iff it is allowed by happens-before

Happens-before is a partial order (transitive closure)

then:

Wx Rx

Wy

6

6 6

⇐=

∃t : trace

Wx Rx

Wy

t

t t

⇐⇒ x ./ y

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 15 / 19

Folk corollary

Corollary (when happens-before is a partial order)
A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if(b) x = ...;
if(not b) y = ...;
if(c) ... = x;
if(not c) ... = y;

=
if(b) x = ...;
if(c) ... = x;
if(not b) y = ...;
if(not c) ... = y;

traces:
Wx

Rx

Wx

Ry

Wy

Rx

Wy

Ry

happens-before:
Wx Wy

Rx Ry

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Folk corollary

Corollary (when happens-before is a partial order)
A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if(b) x = ...;
if(not b) y = ...;
if(c) ... = x;
if(not c) ... = y;

=
if(b) x = ...;
if(c) ... = x;
if(not b) y = ...;
if(not c) ... = y;

traces:
Wx

Rx

Wx

Ry

Wy

Rx

Wy

Ry

happens-before:
Wx Wy

Rx Ry

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Folk corollary

Corollary (when happens-before is a partial order)
A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if(b) x = ...;
if(not b) y = ...;
if(c) ... = x;
if(not c) ... = y;

=
if(b) x = ...;
if(c) ... = x;
if(not b) y = ...;
if(not c) ... = y;

traces:
Wx

Rx

Wx

Ry

Wy

Rx

Wy

Ry

happens-before:
Wx Wy

Rx Ry

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Folk corollary

Corollary (when happens-before is a partial order)
A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if(b) x = ...;
if(not b) x = ...;
if(c) ... = x;
if(not c) ... = x;

6=
if(b) x = ...;
if(c) ... = x;
if(not b) x = ...;
if(not c) ... = x;

traces:
Wx

Rx

Wx

Ry

Wy

Rx

Wy

Ry

happens-before:
Wx Wy

Rx Ry

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Theorem

Theorem (when happens-before is a partial order)
If no dead code, no undefined read, but possibly races, the interference
graph is the complement of a comparability graph: the reuse graph.

Consequences:
Perfect graph: max color = max clique;
Dilworth theorem: coloring polynomially computable;
Link with “reuse graph” of work on (Q)UOV.

But not particularly useful in the polyhedral framework: would require
enumeration of iterations.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 17 / 19

Wrap-up

Trace-independent: if allocation respects ./ it is valid for any trace.

Happens-before: quite general, handle if conditions (conservatively), do
not handle critical sections (will assume possible conflict).

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization).

Source-to-source transformation: contraction can be expressed in the
same specification model, without constraining parallelism further.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 18 / 19

Conclusion

Possible future work:
Critical sections are not captured by happens-before
* hierarchical happens-before?
Explicit handling of control * directly exploiting CFG?
Code generation from happens-before relation?

* Towards a better understanding of parallel languages: semantics, static
analysis, and links with the runtime.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 19 / 19

Buffer Sizes

Sequential Memory Size Pipelined Memory Size
jacobi-1d-imper

A[2s1 + s2]
B[2s1 + s2 − 1]

A[2s1 + 2s2]
B[2s1 + 2s2 − 2]

jacobi-2d-imper
A[2s1 + s2,min(2s1, s2 + 1) + s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + s3 − 1]

A[2s1 + s2,min(2s1, s2 + 1) + 2s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + 2s3 − 2]

seidel-2d

A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + s3

]
A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + 2s3

]
gemm

A[s1, s3]
B[s3, s2]
C[s1, s2]

A[s1, 2s3]
B[2s3, s2]
C[s1, s2]

floyd-warshall

path
[
max(k + 1, n − k),
max(k + 1, n − k)

]
path

[
max(k + 1, n − k),
max(k + 1, n − k, 2s2)

]

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 1 / 1

	Liveness, Conflicts and Reuse
	Register allocation
	Array folding
	Jacobi-1D sequential

	Time is of the essence
	Sequential
	Jacobi-1D parallel
	Double-buffering
	Series-parallel

	Everything is relative
	Conclusion
	Appendix

