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Use of liveness analysis

Necessary for memory reuse:
Register allocation: interference graph
Array contraction: conflicting relation
Wire usage: bitwidth analysis

Important information for:
Communication: live-in/live-out sets (inlining, offloading)
Memory footprint: cache prediction
Lower/upper bounds on memory usage
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Why revisit liveness analysis?

Several variants:
Value-based or memory-based analysis
Liveness sets or interference graphs
Control flow graphs: basic blocks, SSA, SSI, etc...

What about task graphs? Or parallel specifications in general?

Alpha, OpenStream
CUDA/OpenCL
OpenMP (loop parallelism), OpenMP 4.0 (dependent tasks)
X10 (async, finish, clocks)
...
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Key contribution

Liveness analysis based on “happens-before” relations.

Key remarks:
No global notion of time
Polyhedral fragments of OpenMP, X10, ... can be handled
Room for approximations
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Outline

Introduction
Recap of sequential case
Direct extensions
Using happens-before relation
Some properties
Conclusion
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Register allocation

x = ...;
y = x + ...;
... = y;

write x

read x

write y

read y

x

y

x = ...;
x = x + ...;
... = x;

write x

read x

write x

read x

x

x
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Array folding

c[0] = ...;
for(i=0; i<n; ++i)

c[i+1] = c[i] + ...;

...

write ci−1

read ci−1

write ci

read ci

write ci+1

read ci+1...

c[i-1]

c[i]

c[i+1]

c = ...;
for(i=0; i<n; ++i)

c = c + ...;

...

write c

read c

write c

read c

write c

read c
...

c

c

c
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Jacobi-1D: Sequential

for(i=0; j<n; ++i)
for(j=0; j<n; ++j)

A[i+1][j] = A[i][j-1] + A[i][j] + A[i][j+1];

j

i

A[i][j] 7→ A[(j-i)%(n+1)]

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 8 / 19



Simultaneously live: “Crossproduct”

Definition (Conflict)
Two memory cells x and y conflicts iff there exists a time step t where they
are both live.

Wx write of x
Rx read of x

Wx Rx

t

Wy Ry

⇐⇒ x ./ y
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Liveness at a given time step with iscc
# Inputs
Params := [n] -> { : n >= 0 };
Domain := [n] -> { S[i,j] : 0 <= i, j < n };
Read := [n] -> { S[i,j] -> A[i-1,j-1]; S[i,j] -> A[i-1,j];

S[i,j] -> A[i-1,j+1] } * Domain;
Write := [n] -> { S[i,j] -> A[i,j] } * Domain;
Sched := [n] -> { S[i,j] -> [i,j] };

# Operators
Prev := { [i,j]->[k,l]: i<k or (i=k and j<l) };
Preveq := { [i,j]->[k,l]: i<k or (i=k and j<=l) };
WriteBeforeTStep := (Prev^-1).(Sched^-1).Write;
ReadAfterTStep := Preveq.(Sched^-1).Read;

# Liveness and conflicts
Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live^-1).Live;
Delta := deltas Conflict;

*
Delta(n) = {(1, i1) | i1 ≤ 0, n ≥ 3, i1 ≥ 1− n}∪

{(0, i1) | i1 ≥ 1− n, n ≥ 2, i1 ≤ −1 + n}∪
{(−1, i1) | i1 ≥ 0, n ≥ 3, i1 ≤ −1 + n}
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Simultaneously live: “Triangle” (Register allocation)

Definition (Conflict)
Two memory cells x and y conflicts iff one is live at a write of the other.

Wx write of x
Rx read of x

Wx Rx

t

Wy

∨ sym ⇐⇒ x ./ y
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“Crossproduct” vs “Triangle”

if(...) x = ...;
else y = ...;

if(...) ... = x;
else ... = y;

if ...

write x write y

if ...

read x read y

true

true

false

false

x y

Crossproduct Will detect a conflict
Triangle Will not detect a conflict

* Valid because no legal trace are affected
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Jacobi-1D: Parallel

for(i=0; j<n; ++i)
#pragma omp parallel for

for(j=0; j<n; ++j)
A[i+1][j] = A[i][j-1] + A[i][j] + A[i][j+1];

j

i

A[i][j] 7→ A[i%2][j]
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How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time”.

time step

L

L

L

L

S

S

C

C

C

2i 2i + 1 2i + 2 2i + 3

iterations

time step

S

C

C

L

L

S

C

i − 1 i i + 1

iterations

S(i − 1) ./ C(i) and C(i) ./ L(i + 1) but not S(i − 1) ./ L(i + 1).
* Not a clique!
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Potentially simultaneously live
Definition (Conflict)
Two memory cells x and y conflicts iff there exists a trace where one is live
at a write of the other.

Definition (Happens-before)
a happens-before b iff, in all traces where a and b are executed, a is
executed before b.

If:
A trace is assumed possible iff it is allowed by happens-before
Happens-before is a partial order (transitive closure)

then:

Wx Rx

Wy

6

6 6

⇐⇒

∃t : trace

Wx Rx

Wy

t

t t

⇐⇒ x ./ y
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Folk corollary

Corollary (when happens-before is a partial order)
A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if(b) x = ...;
if(not b) y = ...;
if(c) ... = x;
if(not c) ... = y;

=
if(b) x = ...;
if(c) ... = x;
if(not b) y = ...;
if(not c) ... = y;

traces:
Wx

Rx

Wx

Ry

Wy

Rx

Wy

Ry

happens-before:
Wx Wy

Rx Ry
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Theorem

Theorem (when happens-before is a partial order)
If no dead code, no undefined read, but possibly races, the interference
graph is the complement of a comparability graph: the reuse graph.

Consequences:
Perfect graph: max color = max clique;
Dilworth theorem: coloring polynomially computable;
Link with “reuse graph” of work on (Q)UOV.

But not particularly useful in the polyhedral framework: would require
enumeration of iterations.
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Wrap-up

Trace-independent: if allocation respects ./ it is valid for any trace.

Happens-before: quite general, handle if conditions (conservatively), do
not handle critical sections (will assume possible conflict).

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization).

Source-to-source transformation: contraction can be expressed in the
same specification model, without constraining parallelism further.
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Conclusion

Possible future work:
Critical sections are not captured by happens-before
* hierarchical happens-before?
Explicit handling of control * directly exploiting CFG?
Code generation from happens-before relation?

* Towards a better understanding of parallel languages: semantics, static
analysis, and links with the runtime.
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Buffer Sizes

Sequential Memory Size Pipelined Memory Size
jacobi-1d-imper

A[2s1 + s2]
B[2s1 + s2 − 1]

A[2s1 + 2s2]
B[2s1 + 2s2 − 2]

jacobi-2d-imper
A[2s1 + s2,min(2s1, s2 + 1) + s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + s3 − 1]

A[2s1 + s2,min(2s1, s2 + 1) + 2s3]
B[2s1 + s2 − 1,min(2s1, s2 + 1) + 2s3 − 2]

seidel-2d

A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + s3

]
A
[

s1 + s2 + 1,
min(2s1 + 2, s1 + s2, 2s2 + 2) + 2s3

]
gemm

A[s1, s3]
B[s3, s2]
C[s1, s2]

A[s1, 2s3]
B[2s3, s2]
C[s1, s2]

floyd-warshall

path
[
max(k + 1, n − k),
max(k + 1, n − k)

]
path

[
max(k + 1, n − k),
max(k + 1, n − k, 2s2)

]
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