Liveness Analysis in Explicitly-Parallel Programs

Alain Darte Alexandre Isoard Tomofumi Yuki

Compsys, LIP, Lyon

6th International Workshop on
Polyhedral Compilation Techniques
January 19, 2016
Prague, Czech Republic

I . —

informatics, : 7 mathematics — - . —
“2’752 -
ENS DE LYON

OL'?O Lyon 1 UNIVERSIT:

@

T\

D= LYoN

am

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016

1/19

Use of liveness analysis

Necessary for memory reuse:
@ Register allocation: interference graph
@ Array contraction: conflicting relation

@ Wire usage: bitwidth analysis

Important information for:
e Communication: live-in/live-out sets (inlining, offloading)
@ Memory footprint: cache prediction

@ Lower/upper bounds on memory usage

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 2 /19

Why revisit liveness analysis?

Several variants:
@ Value-based or memory-based analysis
@ Liveness sets or interference graphs

@ Control flow graphs: basic blocks, SSA, SSI, etc...

What about task graphs? Or parallel specifications in general?
Alpha, OpenStream

CUDA/OpenCL

OpenMP (loop parallelism), OpenMP 4.0 (dependent tasks)
X10 (async, finish, clocks)

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 3/19

Key contribution

Liveness analysis based on “happens-before” relations.]

Key remarks:
@ No global notion of time
o Polyhedral fragments of OpenMP, X10, ... can be handled

@ Room for approximations

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 4/19

Outline

Introduction

Recap of sequential case

Direct extensions

Using happens-before relation

Some properties

Conclusion

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 5/19

Register allocation

]
<

X | write x
| read x
Y writey
| read y

Alexandre Isoard (Compsys, LIP, Lyon)

]
i

X | write x
read x
X | write x

read x

Liveness Analysis in Parallel Programs

Array folding

cl[o] = ...; c=...;
for(i=0; i<m; ++i) for(i=0; i<n; ++i)
c[i+1] = c[i] + .3 c=c+ .3
cli-1] write ¢;_1 Cc| write ¢
| read ¢;_1 | read ¢
cli] | write ¢; c | write ¢
read ¢; read ¢
cl[i+1] | write ¢;41 c | write ¢

read ¢;y1 read ¢

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 7 /19

Jacobi-1D: Sequential

for(i=0; j<n; ++i)
for(j=0; j<n; ++j)
ATi+11[3] = A[i1[j-11 + A[i1[3j] + A[il[j+11;

¢
XX

N
AN

(X

AN

CHH

ATi1[] — ALGG-1) % (n+1)]

?

()

u}
)
I
il
tht
n
5

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs

Simultaneously live: “Crossproduct”

Definition (Conflict)

Two memory cells x and y conflicts iff there exists a time step t where they
are both live.

W, write of x \ /
R, read of x /v \

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 9 /19

Liveness at a given time step with iscc

Inputs

Params := [n] -> { : n >= 0 };

Domain := [n] -> { S[i,j] : 0 <= i, j<n}

Read := [n] -> { S[i,j] -> A[i-1,j-11; S[i,j]l -> A[i-1,j];
S[i,j] -> A[i-1,j+1] } * Domain;

[n] -> { S[i,j]l -> A[i,j] } * Domain;

[n] -> { sli,j] > [i,3]1 };

Operators

Prev := { [i,j]1->[k,1]: i<k or (i=k and j<1) };

Preveq := { [i,j]1->[k,1]: i<k or (i=k and j<=1) };

WriteBeforeTStep := (Prev”™-1).(Sched™-1).Write;

ReadAfterTStep := Preveq.(Sched™-1) .Read;

Write :
Sched :

Liveness and conflicts

Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live™-1).Live;

Delta := deltas Conflict;

Delta(n) = {(1,h) | A <0,n>3, i >1—n}U
- {(O,h)|i1217ﬂ,ﬁ22,i1§71+n}U
{(—1,i1) | ih>0,n>3 i S—l—i—n}

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016

10 / 19

Simultaneously live: “Triangle” (Register allocation)

Definition (Conflict) J

Two memory cells x and y conflicts iff one is live at a write of the other.

W, write of x \ /

t < >
Ry read of x ” Vsym Xy

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 1 /19

“Crossproduct” vs “Triangle”

if ...
true ;alse

) X\ write x writey ;¥
if(...) x = ...
else Vo= oo \ /

if
if(...) ce. = X, true false
else e T read x read y

N/

Crossproduct Will detect a conflict
Triangle Will not detect a conflict

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 12 /19

“Crossproduct” vs “Triangle”

if ...
true ;alse

) X\ write x writey ;¥
if(...) x = ...
else Vo= oo \ /

if
if(...) ce. = X, true false
else e T read x read y

N/

Crossproduct Will detect a conflict
Triangle Will not detect a conflict

@ \alid because no legal trace are affected

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 12 /19

Jacobi-1D: Parallel

for(i=0; j<n; ++i)
#pragma omp parallel for
for(j=0; j<n; ++j)
Ali+11[31 = A[i1[j-11 + A[i1[j] + A[i1[j+11;

SRR

A[i1[3] — A[i%2][3]

X
%
%

<
G

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs

How general?

Inner parallelism Almost the same as sequential.

Series parallel Can use a careful hierarchical approach.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 /19

How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time".

2i 2i+1 2i+2 2i+3 i—-1 i i+1

iterations

iterations

time step time step

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 /19

How general?

Inner parallelism Almost the same as sequential.
Series parallel Can use a careful hierarchical approach.

Software pipelining Harder to get a concept of “time".

2i 2i+1 2i+2 2i+3 i-1 i i+1

iterations

iterations

time step

time step

S(i—1)pa C(i) and C(i)pa L(i + 1) but not S(i — 1) > L(i + 1).
@ Not a clique!

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 14 /19

Potentially simultaneously live
Definition (Conflict)

Two memory cells x and y conflicts iff there exists a trace where one is live
at a write of the other.)

Definition (Happens-before)

a happens-before b iff, in all traces where a and b are executed, a is
executed before b.)

If:
@ A trace is assumed possible iff it is allowed by happens-before
@ Happens-before is a partial order (transitive closure)

then:

3t : trace
/7&
Wy > R, t

W, — R
= = x T &= xNXy
Wy

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 15 /19

Potentially simultaneously live
Definition (Conflict)

Two memory cells x and y conflicts iff there exists a trace where one is live
at a write of the other.)

Definition (Happens-before)
a happens-before b iff, in all traces where a and b are executed, a is
executed before b.)

If:
@ A trace is assumed possible iff it is allowed by happens-before

then:
Jt : trace

Wy oo > R, t
)(— Ww\ /Rx < xMXy
t t

Wy

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 15 /19

Folk corollary

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if (b) X = ... if (b) x = ;
if(not b) y = ...; — if (c) = x;
if (c) e. = X3 if(not b) y = ...;
if (not c¢) =y; if (not c) =y;

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Folk corollary

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if (b) X = ... if (b) x = ;
if(not b) y = ...; — if (c) = x;
if (c) e. = X3 if(not b) y = ...;
if (not c¢) =y; if (not c) =y;
We Wi W, W,
traces: | J | |
R« R R« Ry

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 16 / 19

Folk corollary

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if (b) X = ...

if(not b) y = ...;

if (c) e. = X3

if(not ¢) ... = y;

W, W, W,

traces: | J |
R« Ry

X

Ry
happens-before: | >
R

]

Alexandre Isoard (Compsys, LIP, Lyon)

if (b) X = ;
= if(c) = x;
if(not b) y = ...;
if (not ¢) =V
Wy
|
Ry
Wy
l
Ry
Liveness Analysis in Parallel Programs IMPACT 2016

16 / 19

Folk corollary

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts
preserves all the parallelism captured by the happens-before relation.

if (b) X = ...
if(not b) x = ...;
if (c) e. = X3
if(not ¢c) ... = x;

W, W, Wy

traces: | J |
R« Ry

X

Ry
happens-before: | >

R

X

Alexandre Isoard (Compsys, LIP, Lyon)

!

if (b) X = ;
£ if (c) = X;
if(not b) x = ...;
if (not ¢) = X;
Wy
|
Ry
Wy
l
Ry
Liveness Analysis in Parallel Programs IMPACT 2016

16 / 19

Theorem

Theorem (when happens-before is a partial order)

If no dead code, no undefined read, but possibly races, the interference
graph is the complement of a comparability graph: the reuse graph.

Consequences:
@ Perfect graph: max color = max clique;
@ Dilworth theorem: coloring polynomially computable;
e Link with “reuse graph” of work on (Q)UOV.

But not particularly useful in the polyhedral framework: would require
enumeration of iterations.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 17 /19

Wrap-up

Trace-independent: if allocation respects < it is valid for any trace.

Happens-before: quite general, handle if conditions (conservatively), do
not handle critical sections (will assume possible conflict).

Optimality: size = max clique, polynomially computable (Dilworth) if
graph is given in extension (unlike polyhedral optimization).

Source-to-source transformation: contraction can be expressed in the
same specification model, without constraining parallelism further.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 18 /19

Conclusion

Possible future work:

@ Critical sections are not captured by happens-before
@& hierarchical happens-before?

@ Explicit handling of control @ directly exploiting CFG?

@ Code generation from happens-before relation?

@ Towards a better understanding of parallel languages: semantics, static
analysis, and links with the runtime.

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 19 /19

Buffer Sizes

| Sequential Memory Size | Pipelined Memory Size
jacobi-1d-imper
A[2S]_ + 52] A[2Sl + 252]
B[2s; + s, — 1] B[2s1 + 255 — 2]
jacobi-2d-imper
A[2s1 + s, min(2s1, 52 + 1) + s3] A[2s1 + s, min(2s1, 52 + 1) + 2s3]
B[2s; + s, — 1, min(2s1,50 + 1) + 53 — 1] | B[2s1 + 52 — 1, min(2s1, s + 1) + 2s3 — 2]
seidel-2d
s1+s+1, A51+52+1,
min(2s; + 2,51 + 5,25 + 2) + 53 min(2s; + 2,51 + 52,25 + 2) + 2s3
gemm
A[Sl, 53] A[S]_, 253]
B[S3, 52] B[2537 52]
C[Sl, 52] C[Sl, 52]

floyd-warshall

max(k +1,n — k),
Imax(k +1,n— k) |

max(k +1,n— k),
Imax(k+1,n— k,2s)]

path path

Alexandre Isoard (Compsys, LIP, Lyon) Liveness Analysis in Parallel Programs IMPACT 2016 1/1

	Liveness, Conflicts and Reuse
	Register allocation
	Array folding
	Jacobi-1D sequential

	Time is of the essence
	Sequential
	Jacobi-1D parallel
	Double-buffering
	Series-parallel

	Everything is relative
	Conclusion
	Appendix

