Liveness Analysis in Explicitly-Parallel Programs

Alain Darte Alexandre Isoard Tomofumi Yuki

Compsys, LIP, Lyon

6th International Workshop on Polyhedral Compilation Techniques January 19, 2016 Prague, Czech Republic

1= 200

Use of liveness analysis

Necessary for memory reuse:

- Register allocation: interference graph
- Array contraction: conflicting relation
- Wire usage: bitwidth analysis

Important information for:

- Communication: live-in/live-out sets (inlining, offloading)
- Memory footprint: cache prediction
- Lower/upper bounds on memory usage

Why revisit liveness analysis?

Several variants:

- Value-based or memory-based analysis
- Liveness sets or interference graphs
- Control flow graphs: basic blocks, SSA, SSI, etc...

What about task graphs? Or parallel specifications in general?

- Alpha, OpenStream
- CUDA/OpenCL
- OpenMP (loop parallelism), OpenMP 4.0 (dependent tasks)
- X10 (async, finish, clocks)

• ...

Liveness analysis based on "happens-before" relations.

Key remarks:

- No global notion of time
- Polyhedral fragments of OpenMP, X10, ... can be handled
- Room for approximations

Outline

- Introduction
- Recap of sequential case
- Direct extensions
- Using happens-before relation
- Some properties
- Conclusion

Register allocation

IMPACT 2016 6 / 19

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 - のへの

Array folding

<pre>c[0] =; for(i=0; i<n; ++i)<br="">c[i+1] = c[i] +;</n;></pre>	<pre>c =; for(i=0; i<n; ++i)<br="">c = c +;</n;></pre>		
÷	:		
$c[i-1]$ write c_{i-1}	c write c		
$c[i]$ write c_i	c_1 write c		
read c_i	read c		
$\begin{bmatrix} c_{i+1} \\ c_{i+1} \end{bmatrix} \begin{bmatrix} c_{i+1} \\ c_{i+1} \end{bmatrix}$	$\begin{bmatrix} w_{\text{read}} \\ c \end{bmatrix}$		
•	:		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Jacobi-1D: Sequential

```
for(i=0; j<n; ++i)
    for(j=0; j<n; ++j)
        A[i+1][j] = A[i][j-1] + A[i][j] + A[i][j+1];</pre>
```


 $A[i][j] \mapsto A[(j-i)\%(n+1)]$

Simultaneously live: "Crossproduct"

Definition (Conflict)

Two memory cells x and y conflicts iff there exists a time step t where they are both live.

 W_x write of x R_x read of x

Liveness at a given time step with iscc

```
# Inputs
Params := [n] \rightarrow \{ : n \ge 0 \};
Domain := [n] -> { S[i,j] : 0 <= i, j < n };
Read := [n] \rightarrow \{ S[i,j] \rightarrow A[i-1,j-1]; S[i,j] \rightarrow A[i-1,j]; \}
                     S[i,j] \rightarrow A[i-1,j+1] \} * Domain;
Write := [n] \rightarrow \{ S[i,j] \rightarrow A[i,j] \} * Domain;
Sched := [n] \rightarrow \{ S[i,j] \rightarrow [i,j] \};
# Operators
Prev := { [i,j]->[k,1]: i<k or (i=k and i<l) };</pre>
Preveq := { [i,j]->[k,1]: i<k or (i=k and j<=1) };</pre>
WriteBeforeTStep := (Prev^-1).(Sched^-1).Write;
ReadAfterTStep := Preveq.(Sched^-1).Read;
# Liveness and conflicts
Live := WriteBeforeTStep * ReadAfterTStep;
Conflict := (Live^-1).Live:
Delta := deltas Conflict;
     Delta(n) = \{(1, i_1) \mid i_1 < 0, n > 3, i_1 > 1 - n\} \cup
                  \{(0, i_1) \mid i_1 > 1 - n, n > 2, i_1 < -1 + n\} \cup
                  \{(-1, i_1) \mid i_1 > 0, n > 3, i_1 < -1 + n\}
                                                                 ▲■▶ ▲ ■▶ ▲ ■▶ ■|■ の Q @
```

Simultaneously live: "Triangle" (Register allocation)

Definition (Conflict)

Two memory cells x and y conflicts iff one is live at a write of the other.

"Crossproduct" vs "Triangle"

Crossproduct Will detect a conflict Triangle Will not detect a conflict

ELE SQC

"Crossproduct" vs "Triangle"

Crossproduct Will detect a conflict Triangle Will not detect a conflict

```
Jacobi-1D: Parallel
```


 $A[i][j] \mapsto A[i\%2][j]$

= 900

How general?

Inner parallelism Almost the same as sequential. Series parallel Can use a careful hierarchical approach.

How general?

Inner parallelism Almost the same as sequential. Series parallel Can use a careful hierarchical approach. Software pipelining Harder to get a concept of "time".

How general?

Inner parallelism Almost the same as sequential. Series parallel Can use a careful hierarchical approach. Software pipelining Harder to get a concept of "time".

 $S(i-1) \bowtie C(i)$ and $C(i) \bowtie L(i+1)$ but not $S(i-1) \bowtie L(i+1)$. • Not a clique!

Potentially simultaneously live

Definition (Conflict)

Two memory cells x and y conflicts iff there exists a trace where one is live at a write of the other.

Definition (Happens-before)

a happens-before b iff, in all traces where a and b are executed, a is executed before b.

lf:

- A trace is assumed possible iff it is allowed by happens-before
- Happens-before is a partial order (transitive closure)

then:

Potentially simultaneously live

Definition (Conflict)

Two memory cells x and y conflicts iff there exists a trace where one is live at a write of the other.

Definition (Happens-before)

a happens-before b iff, in all traces where a and b are executed, a is executed before b.

If:

• A trace is assumed possible iff it is allowed by happens-before

then:

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts preserves <u>all</u> the parallelism captured by the happens-before relation.

if(b)	x =;		if(b)	x =;
<pre>if(not b)</pre>	y =;	=	if(c)	= x;
if(c)	= x;		<pre>if(not b)</pre>	y =;
<pre>if(not c)</pre>	= y;		<pre>if(not c)</pre>	= y;

ELE SQC

• • = • • = •

t

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts preserves <u>all</u> the parallelism captured by the happens-before relation.

if(l	c)		х =	;		
if(not	b)	у =	;		:
if(c)		• • •	= x;		
if(1	not	c)	• • •	= y;		
	W,	<	W_{x}	W_y	W_y	
races:	↓		\downarrow	\downarrow	\downarrow	
	R_{x}		R_y	R_{x}	R_y	

if(b)	х =	;
if(c)	• • •	= x;
<pre>if(not b)</pre>	у =	;
<pre>if(not c)</pre>		= y;

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts preserves <u>all</u> the parallelism captured by the happens-before relation.

if(b)	x =	;	
if(not b)	у =	;	
if(c)	•••	- x;	
<pre>if(not c)</pre>	•••	- y;	
$W_{\!x}$	W_{x}	W_y	W_y
traces: 🛛 🗎	\downarrow	Ļ	Ļ
R_{x}	R_y	R_x	R_y
	W	$'_x \leftrightarrow I$	N_{v}
happens-before	e: ↓		Ļ
	R	$x \leftrightarrow 1$	R_y

if(b)	x =	;
<pre>if(c)</pre>	= x	:;
<pre>if(not b)</pre>	y =	;
if(not c)	· · · = y	, ;

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Corollary (when happens-before is a partial order)

A source-to-source memory transformation that respects the conflicts preserves <u>all</u> the parallelism captured by the happens-before relation.

≠

if(b)	x =	;		
if(not b)	х =	;		
if(c)	••••	x;		
if(not c)	••••	x;		
	W_{x}	W_{x}	W_y	W_y	
traces:	\downarrow	\downarrow	\downarrow	↓	
	R_{x}	R_y	R_{x}	R_y	
		W	$V_{x} \leftrightarrow V$	$N_{\rm v}$	
happens	-before	: ↓	\times	Ļ	
		R,	$_{\chi} \leftrightarrow l$	R _y	

if(b)		х =	;
if(c)			= x;
<pre>if(not</pre>	b)	x =	;
if(not	c)		= x;

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Theorem

Theorem (when happens-before is a partial order)

If no dead code, no undefined read, but possibly races, the interference graph is the complement of a comparability graph: the reuse graph.

Consequences:

- Perfect graph: max color = max clique;
- Dilworth theorem: coloring polynomially computable;
- Link with "reuse graph" of work on (Q)UOV.

But not particularly useful in the polyhedral framework: would require enumeration of iterations.

Wrap-up

Trace-independent: if allocation respects \bowtie it is valid for any trace.

Happens-before: quite general, handle if conditions (conservatively), do not handle critical sections (will assume possible conflict).

Optimality: size = max clique, polynomially computable (Dilworth) if graph is given in extension (unlike polyhedral optimization).

Source-to-source transformation: contraction can be expressed in the same specification model, without constraining parallelism further.

Conclusion

Possible future work:

- Critical sections are not captured by happens-before
 hierarchical happens-before?
- Explicit handling of control 🖝 directly exploiting CFG?
- Code generation from happens-before relation?

 Towards a better understanding of parallel languages: semantics, static analysis, and links with the runtime.

Buffer Sizes

Sequential Memory Size	Pipelined Memory Size	
jacobi-:	1d-imper	
$A[2s_1 + s_2]$	$A[2s_1 + 2s_2]$	
$B[2s_1 + s_2 - 1]$	$B[2s_1 + 2s_2 - 2]$	
jacobi-2	2d-imper	
$A[2s_1 + s_2, \min(2s_1, s_2 + 1) + s_3]$	$A[2s_1 + s_2, \min(2s_1, s_2 + 1) + 2s_3]$	
$B[2s_1 + s_2 - 1, \min(2s_1, s_2 + 1) + s_3 - 1]$	$B[2s_1 + s_2 - 1, \min(2s_1, s_2 + 1) + 2s_3 - 2]$	
seidel-2d		
$ \begin{bmatrix} s_1 + s_2 + 1, \\ \min(2s_1 + 2, s_1 + s_2, 2s_2 + 2) + s_3 \end{bmatrix} $	$A\begin{bmatrix} s_1 + s_2 + 1, \\ min(2s_1 + 2, s_1 + s_2, 2s_2 + 2) + 2s_3 \end{bmatrix}$	
gemm		
$\mathbb{A}[s_1, s_3]$	$A[s_1, 2s_3]$	
$B[s_3, s_2]$	$B[2s_3, s_2]$	
$C[s_1, s_2]$	$C[s_1, s_2]$	
floyd-v	warshall	
$\left[\begin{array}{c} \texttt{path} \left[\max(k+1,n-k), \\ \max(k+1,n-k) \right] \end{array} \right]$	$path \begin{bmatrix} \max(k+1, n-k), \\ \max(k+1, n-k, 2s_2) \end{bmatrix}$	