
Towards Scalable and Efficient FPGA

Stencil Accelerators

Gaël Deest1 Nicolas Estibals1 Tomofumi Yuki2

Steven Derrien1 Sanjay Rajopadhye3

1IRISA / Université de Rennes 1 / Cairn 2INRIA / LIP / ENS Lyon
3Colorado State University

January 19th, 2016

1 / 30

Stencil Computations

Important class of algorithms

I Iterative grid update.

I Uniform dependences.

Examples:

I Solving partial differential equations

I Computer simulations (physics, seismology, etc.)

I (Realtime) image/video processing

Strong need for efficient hardware implementations.

2 / 30

Application Domains

Two main application types with vastly 6= goals:

HPC

I “Be as fast as possible”

I No realtime constraints

Embedded Systems

I “Be fast enough”

I Realtime constraints

For now, we focus on FPGAs from the HPC perspective.

3 / 30

FPGA As Stencil Accelerators ?

CPU: ≈ 10 cores

Cache

Control ALUs

DDR

≈ 10GB/s

GPU: ≈ 100 cores

GDDR

≈ 100GB/s

FPGA: ≈ 1000 cores

DDR

≈ 1GB/s

Features:

I Large on-chip bandwidth

I Fine-grained pipelining

I Customizable datapath /
arithmetic

Drawbacks:

I Small off-chip bandwidth

I Difficult to program

I Lower clock frequencies

4 / 30

Design Challenges

At least two problems:

I Increase throughput with parallelization.
Examples:

I Multiple PEs.
I Pipelining.

I Decrease bandwidth occupation
I Use onchip memory to maximize reuse
I Choose memory mapping carefully to enable burst

accesses

5 / 30

Stencils “Done Right” for FPGAs

Observation:

I Many different strategies exist:
I Multiple-level tiling
I Deep pipelining
I Time skewing
I . . .

I No papers put them all together.

Key features:

I Target one large deeply pipelined PE...
I ...instead of many small PEs

I Manage throughput/bandwidth with two-level tiling

6 / 30

Multiple-Level Tiling

Composition of 2+ tiling transformations to account for:

I Memory hierarchies and locality
I Register, caches, RAM, disks, . . .

I Multiple level of parallelism
I Instruction-Level, Thread-Level, . . .

In this work:

1. Inner tiling level: parallelism.

2. Outer tiling level: communication.

7 / 30

Overview of Our Approach

Core ideas:

1. Execute inner, Datapath-Level tiles on a single,
pipelined “macro-operator”.

I Fire a new tile execution each cycle.
I Delegate operator pipelining to HLS.

2. Group DL-tiles into Communication-Level Tiles to
decrease bandwidth requirements.

I Store intermediary results on chip.

8 / 30

Outline

Introduction

Approach

Evaluation

Related Work and Comparison

Future Work & Conclusion

9 / 30

Running Example: Jacobi (3-point, 1D-data)

Simplified code:

f o r (t =1; t<T ; t++)
f o r (x =1; x<N−1; x++)

f [t] [x] = (f [t −1] [x−1] + f [t −1] [x] + f [t −1] [x + 1]) / 3 ;

Dependence vectors:

(−1,−1), (−1, 0), (−1, 1)

10 / 30

Datapath-Level Tiling

t

x

t

x

t, x 7→ t, x + t

11 / 30

Datapath-Level Tiling

t

x

t

x

t, x 7→ t, x + t

11 / 30

Datapath-Level Tiling

t

x

t

x

t, x 7→ t, x + t

11 / 30

Datapath-Level Tile Operator

f o r (t = . . .) {
#pragma HLS PIPELINE I I =1
f o r (x = . . .) {

#pragma HLS UNROLL
f o r (t t = . . .) {

#pragma HLS UNROLL
f o r (xx = . . .) {

i n t t = t+t t , x = x+xx−t ;
f [t] [x] =

(f [t −1] [x −1] + f [t −1] [x] + f [t −1] [x + 1]) / 3 ;
}

}

}}

Types of parallelism:

I Operation-Level parallelism (exposed by unrolling).

I Temporal parallelism (through pipelined tile executions).

12 / 30

Pipelined Execution

Pipelined execution requires inter-tile parallelism.

Original dependences Tile-level dependences

Gauss-Seidel dependences

13 / 30

Wavefronts of Datapath-Level Tiles

Skewing: t, x 7→ t + x , xWavefronts

14 / 30

Wavefronts of Datapath-Level Tiles

Skewing: t, x 7→ t + x , x

Wavefronts

14 / 30

Wavefronts of Datapath-Level Tiles

Skewing: t, x 7→ t + x , x

Wavefronts

14 / 30

Managing Compute/IO Ratio

Problem

Suppose direct pipelining of 2× 2 DL-tiles.
At each clock cycle:

I A new tile enters the pipeline.

I Six 32-bit values are fetched from off-chip memory.

At 100 MHz, bandwidth usage are 19.2 GBps !

Solution

Use a second tiling level to decrease bandwidth
requirements.

15 / 30

Communication-Level Tiling

1

2

3

4

WF1 WF2

d2

d1

d1 = d2

≥ d

Shape constraints:

I Constant-height wavefronts
I Enables use of simple FIFOs

for intermediary results

Size constraints:

I Tiles per WF ≥ pipeline depth

I BW requirements ≤ chip limit

I Size of FIFOs ≤ chip limit

0 1 2 3 4 5 6

d = 4

16 / 30

Communication-Level Tiling

1

2

3

4

WF1 WF2

d2

d1

d1 = d2

≥ d

Shape constraints:
I Constant-height wavefronts

I Enables use of simple FIFOs
for intermediary results

Size constraints:

I Tiles per WF ≥ pipeline depth

I BW requirements ≤ chip limit

I Size of FIFOs ≤ chip limit

0 1 2 3 4 5 6

d = 4

16 / 30

Communication-Level Tiling

1

2

3

4

WF1 WF2

d2

d1

d1 = d2

≥ d

Shape constraints:
I Constant-height wavefronts

I Enables use of simple FIFOs
for intermediary results

Size constraints:

I Tiles per WF ≥ pipeline depth

I BW requirements ≤ chip limit

I Size of FIFOs ≤ chip limit

0 1 2 3 4 5 6

d = 4

16 / 30

Communication-Level Tiling

1

2

3

4

WF1 WF2

d2

d1

d1 = d2

≥ d

Shape constraints:
I Constant-height wavefronts

I Enables use of simple FIFOs
for intermediary results

Size constraints:

I Tiles per WF ≥ pipeline depth

I BW requirements ≤ chip limit

I Size of FIFOs ≤ chip limit

0 1 2 3 4 5 6

d = 4

16 / 30

Communication-Level Tile Shape

Hyperparallelepipedic (rectangular) tiles satisfy all shape
constraints.

skew−1

17 / 30

Communication

Two aspects:

On-chip Communication

I Between DL-tiles

I Uses FIFOs

Off-chip Communication

I Between CL-tiles

I Uses memory accesses

18 / 30

On-Chip Communication

We use Canonic Multi-Projections
(Yuki and Rajopadhye, 2011).

Main ideas:

I Communicate along canonical
axes.

I Project diagonal dependences on
canonical directions.

I Some values are redundantly stored. b
uff

t
(i

n)

buff x (in)

b
uff

t
(o

ut
)

buff x (out)

19 / 30

Off-Chip Communication

Between CL-Tiles (assuming lexicographic ordering):

I Data can be reused along the innermost dimension.

I Data from/to other tiles must be fetched/stored off-chip.

I Complex shape

I Key for performance: use burst
accesses

I Maximize contiguity with clever
memory mapping

20 / 30

Off-Chip Communication

Between CL-Tiles (assuming lexicographic ordering):

I Data can be reused along the innermost dimension.

I Data from/to other tiles must be fetched/stored off-chip.

I Complex shape

I Key for performance: use burst
accesses

I Maximize contiguity with clever
memory mapping

20 / 30

Outline

Introduction

Approach

Evaluation

Related Work and Comparison

Future Work & Conclusion

21 / 30

Metrics

I Hardware-related metrics
I Macro-operator pipeline depth
I Area (slices, BRAM & DSP)

I Performance-related metrics (at steady state)
I Throughput
I Required bandwidth

22 / 30

Preliminary Results: Parallelism scalability

2×2 2×4 4×2 4×4 8×8 2×2×2 3×3×3 4×4×4

3
.4

G
F

L
o

p
/

s

5
.8

G
F

L
o

p
/

s

5
.8

G
F

L
o

p
/

s

1
1
.5

G
F

L
o

p
/

s 2
8
.2

G
F

L
o

p
/

s

7
.2

G
F

L
o

p
/

s 2
0
.3

G
F

L
o

p
/

s

3
8
.4

G
F

L
o

p
/

s

2
% 5

%

9
%

8
%

3
4

%

1
3

%

2
1

%

4
4

%

6
1

6
1

1
1

7

1
1

7

2
2

9

1
0

0

1
4

8

1
9

6

Datapath-level tile size

S
te

ad
y-

S
ta

te
th

ro
u

gh
p

u
t

C
om

p
u

ta
ti

on
re

so
u

rc
e

u
sa

ge
P

ip
el

in
e

d
ep

th

Choose DL-tile to control:

I Computational throughput

I Computational resource usage

I Macro-operator latency and pipeline depth
23 / 30

Preliminary Results: Bandwidth Usage Control

n×15×14 n×22×22 n×23×23 n×31×32 n×32×32 n×38×39 n×44×45 n×59×59

2
.2

G
B

/
s

1
.4

G
B

/
s

1
.4

G
B

/
s

1
G

B
/

s

1
G

B
/

s

0
.8

G
B

/
s

0
.7

G
B

/
s

0
.5

G
B

/
s

6% 6%

12% 12%

18% 18%

24%

42%

Communication-level tile size
for 4x4x4 DL-tile

S
te

ad
y-

S
ta

te
B

an
d

w
id

th
B

R
A

M
U

sa
ge

Enlarging CL-tiles :

I Does not change throughput

I Reduces bandwidth requirements

I Has a low impact on hardware resources

24 / 30

Outline

Introduction

Approach

Evaluation

Related Work and Comparison

Future Work & Conclusion

25 / 30

Related Work

I Hardware implementations:
I Many ad-hoc / naive architectures
I Systolic architectures (LSGP)
I PolyOpt/HLS (Pouchet et al., 2013)

I Tiling to control compute/IO balance
I Alias et al., 2012

I Single, pipelined operator
I Innermost loop body only

I Tiling method:
I “Jagged Tiling” (Shrestha et al., 2015)

26 / 30

Outline

Introduction

Approach

Evaluation

Related Work and Comparison

Future Work & Conclusion

27 / 30

Future Work

I Finalize implementation

I Beyond Jacobi

I Exploring other number representations:
I Fixed-point
I Block floating-point
I Custom floating-point

I Hardware/software codesign

I . . .

28 / 30

Conclusion

I Design template for FPGA stencil accelerators

I Two levels of control:
I Throughput
I Bandwidth requirements

I Maximize use of pipeline parallelism

29 / 30

Thank You

Questions ?

30 / 30

	Introduction
	Approach
	Evaluation
	Related Work and Comparison
	Future Work & Conclusion

