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Stencil Computations

Important class of algorithms

I Iterative grid update.

I Uniform dependences.

Examples:

I Solving partial differential equations

I Computer simulations (physics, seismology, etc.)

I (Realtime) image/video processing

Strong need for efficient hardware implementations.
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Application Domains

Two main application types with vastly 6= goals:

HPC

I “Be as fast as possible”

I No realtime constraints

Embedded Systems

I “Be fast enough”

I Realtime constraints

For now, we focus on FPGAs from the HPC perspective.
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FPGA As Stencil Accelerators ?

CPU: ≈ 10 cores

Cache

Control ALUs

DDR

≈ 10GB/s

GPU: ≈ 100 cores

GDDR

≈ 100GB/s

FPGA: ≈ 1000 cores

DDR

≈ 1GB/s

Features:

I Large on-chip bandwidth

I Fine-grained pipelining

I Customizable datapath /
arithmetic

Drawbacks:

I Small off-chip bandwidth

I Difficult to program

I Lower clock frequencies
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Design Challenges

At least two problems:

I Increase throughput with parallelization.
Examples:

I Multiple PEs.
I Pipelining.

I Decrease bandwidth occupation
I Use onchip memory to maximize reuse
I Choose memory mapping carefully to enable burst

accesses
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Stencils “Done Right” for FPGAs

Observation:

I Many different strategies exist:
I Multiple-level tiling
I Deep pipelining
I Time skewing
I . . .

I No papers put them all together.

Key features:

I Target one large deeply pipelined PE...
I ...instead of many small PEs

I Manage throughput/bandwidth with two-level tiling
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Multiple-Level Tiling

Composition of 2+ tiling transformations to account for:

I Memory hierarchies and locality
I Register, caches, RAM, disks, . . .

I Multiple level of parallelism
I Instruction-Level, Thread-Level, . . .

In this work:

1. Inner tiling level: parallelism.

2. Outer tiling level: communication.
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Overview of Our Approach

Core ideas:

1. Execute inner, Datapath-Level tiles on a single,
pipelined “macro-operator”.

I Fire a new tile execution each cycle.
I Delegate operator pipelining to HLS.

2. Group DL-tiles into Communication-Level Tiles to
decrease bandwidth requirements.

I Store intermediary results on chip.
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Running Example: Jacobi (3-point, 1D-data)

Simplified code:

f o r ( t =1; t<T ; t++)
f o r ( x =1; x<N−1; x++)

f [ t ] [ x ] = ( f [ t −1] [ x−1] + f [ t −1] [ x ] + f [ t −1] [ x + 1 ] ) / 3 ;

Dependence vectors:

(−1,−1), (−1, 0), (−1, 1)
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Datapath-Level Tiling
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Datapath-Level Tile Operator

f o r ( t = . . . ) {
#pragma HLS PIPELINE I I =1
f o r ( x = . . . ) {

#pragma HLS UNROLL
f o r ( t t = . . . ) {

#pragma HLS UNROLL
f o r ( xx = . . . ) {

i n t t = t+t t , x = x+xx−t ;
f [ t ] [ x ] =

( f [ t −1] [ x −1] + f [ t −1] [ x ] + f [ t −1] [ x + 1 ] ) / 3 ;
}

}

}}

Types of parallelism:

I Operation-Level parallelism (exposed by unrolling).

I Temporal parallelism (through pipelined tile executions).
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Pipelined Execution

Pipelined execution requires inter-tile parallelism.

Original dependences Tile-level dependences

Gauss-Seidel dependences
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Wavefronts of Datapath-Level Tiles

Skewing: t, x 7→ t + x , xWavefronts
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Managing Compute/IO Ratio

Problem

Suppose direct pipelining of 2× 2 DL-tiles.
At each clock cycle:

I A new tile enters the pipeline.

I Six 32-bit values are fetched from off-chip memory.

At 100 MHz, bandwidth usage are 19.2 GBps !

Solution

Use a second tiling level to decrease bandwidth
requirements.
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Communication-Level Tiling
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Communication-Level Tile Shape

Hyperparallelepipedic (rectangular) tiles satisfy all shape
constraints.

skew−1
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Communication

Two aspects:

On-chip Communication

I Between DL-tiles

I Uses FIFOs

Off-chip Communication

I Between CL-tiles

I Uses memory accesses
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On-Chip Communication

We use Canonic Multi-Projections
(Yuki and Rajopadhye, 2011).

Main ideas:

I Communicate along canonical
axes.

I Project diagonal dependences on
canonical directions.

I Some values are redundantly stored. b
uff

t
(i

n)

buff x (in)

b
uff

t
(o

ut
)

buff x (out)
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Off-Chip Communication

Between CL-Tiles (assuming lexicographic ordering):

I Data can be reused along the innermost dimension.

I Data from/to other tiles must be fetched/stored off-chip.

I Complex shape

I Key for performance: use burst
accesses

I Maximize contiguity with clever
memory mapping
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Metrics

I Hardware-related metrics
I Macro-operator pipeline depth
I Area (slices, BRAM & DSP)

I Performance-related metrics (at steady state)
I Throughput
I Required bandwidth
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Preliminary Results: Parallelism scalability
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Choose DL-tile to control:

I Computational throughput

I Computational resource usage

I Macro-operator latency and pipeline depth
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Preliminary Results: Bandwidth Usage Control
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I Does not change throughput

I Reduces bandwidth requirements

I Has a low impact on hardware resources
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Related Work

I Hardware implementations:
I Many ad-hoc / naive architectures
I Systolic architectures (LSGP)
I PolyOpt/HLS (Pouchet et al., 2013)

I Tiling to control compute/IO balance
I Alias et al., 2012

I Single, pipelined operator
I Innermost loop body only

I Tiling method:
I “Jagged Tiling” (Shrestha et al., 2015)
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Future Work

I Finalize implementation

I Beyond Jacobi

I Exploring other number representations:
I Fixed-point
I Block floating-point
I Custom floating-point

I Hardware/software codesign

I . . .
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Conclusion

I Design template for FPGA stencil accelerators

I Two levels of control:
I Throughput
I Bandwidth requirements

I Maximize use of pipeline parallelism

29 / 30



Thank You

Questions ?
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