Live-Range Reordering

Sven Verdoolaege ${ }^{1} \quad$ Albert Cohen ${ }^{2}$

${ }^{1}$ Polly Labs and KU Leuven
${ }^{2}$ INRIA and École Normale Supérieure

January 19, 2016

Outline

(1) Introduction

- Example
- Schedule Constraints
(2) Live Range Reordering
- Related Work
- Scheduling
- Relaxed Permutability Criterion
- Conditional Validity Constraints
(3) Conclusion

Outline

(1) Introduction

- Example
- Schedule Constraints
(2) Live Range Reordering
- Related Work
- Scheduling
- Relaxed Permutability Criterion
- Conditional Validity Constraints
(3) Conclusion

Tiling Intuition

Assume reuse along rows and columns
\longrightarrow : execution order

Tiling Intuition

Assume reuse along rows and columns
\longrightarrow : execution order

Tiling Intuition

Assume reuse along rows and columns
\longrightarrow : execution order

Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
    }
    C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
    }
    C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
After tiling:
for (int CO = 0; CO < m; cQ += 32)
    for (int c1 = 0; c1 < n; c1 += 32)
        for (int c2 = 0; c2 <= min(31, m - c0 - 1); c2 += 1)
        for (int c3 = 0; c3 <= min(31, n - c1 - 1); c3 += 1) {
            temp2 = 0;
        for (int c4 = 0; c4 < c0 + c2; c4 += 1) {
            C[c4][c1 + c3] += ((alpha * B[c0 + c2][c1 + c3]) * A[c0 + c2][c4
            temp2 += (B[c4][c1 + c3] * A[c0 + c2][c4]);
        }
        C[c0 + c2][c1 + c3] = (((beta * C[c0 + c2][c1 + c3]) + ((alpha *
        }
```


Schedule Constraints

Tiling is a form of restructuring loop transformation
\Rightarrow changes execution order of statement instances
\Rightarrow needs to preserve semantics
\Rightarrow impose schedule constraints of the form
statement instance a needs to be executed before instance b

Schedule Constraints

Tiling is a form of restructuring loop transformation
\Rightarrow changes execution order of statement instances
\Rightarrow needs to preserve semantics
\Rightarrow impose schedule constraints of the form
statement instance a needs to be executed before instance b

In particular, any statement instance writing a value should be executed before any statement instance reading that value
\Rightarrow flow dependences aka live ranges

Schedule Constraints

Tiling is a form of restructuring loop transformation
\Rightarrow changes execution order of statement instances
\Rightarrow needs to preserve semantics
\Rightarrow impose schedule constraints of the form
statement instance a needs to be executed before instance b

In particular, any statement instance writing a value should be executed before any statement instance reading that value
\Rightarrow flow dependences aka live ranges
Moreover, no write from before or after the live-range should be moved inside the live-range
\Rightarrow traditionally,

- output dependences between two writes to same location
- anti-dependences between reads and subsequent writes to same location

Schedule Constraints Example

```
avg = 0.f;
for (i=0; i<N; ++i)
    avg += A[i];
avg /= N;
for (i=0; i<N; ++i) {
    tmp = A[i] - avg;
    A[i] = tmp;
}
for (i=0; i<N; ++i) {
        tmp = A[N - 1 - i];
        B[i] = tmp;
}
```


Schedule Constraints Example

$\operatorname{avg}=0 . \mathrm{f}$;
flow
for (i=0; i<N; ++i)
avg += A[i];
$\operatorname{avg} /=\mathrm{N}$;
for ($i=0 ; i<N ;++i)$ \{
$\operatorname{tmp}=A[i]-a v g ;$
$\mathrm{A}[\mathrm{i}]=\mathrm{tmp}$;
\}
for $(i=0 ; i<N ;++i) \quad\{$
$\operatorname{tmp}=A[N-1-i] ;$
$B[i]=\operatorname{tmp}$;
\}

Schedule Constraints Example

Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
    }
    C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
    }
    C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
    anti-dependence between every instance of statement reading temp2
    and every later instance writing to temp2
\(\Rightarrow\) serialized execution order
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
\(\Rightarrow\) anti-dependence between every instance of statement reading temp2 and every later instance writing to temp2
\(\Rightarrow\) serialized execution order
```

Such serializing anti-dependences are very common in practice
\Rightarrow occur in nearly all experiments of Baghdadi, Beaugnon, et al. (2015)
\Rightarrow no optimization possible without alternative to anti-dependences

Outline

(1) Introduction

- Example
- Schedule Constraints
(2) Live Range Reordering
- Related Work
- Scheduling
- Relaxed Permutability Criterion
- Conditional Validity Constraints

Alternatives to Anti-Dependences

- Conversion to single assignment through expansion (possibly followed by contraction)
+ full scheduling freedom
(-) may increase memory requirements

Note: choice also has effect on scheduling time

Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
    }
    C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```

After expansion:

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2[i][j][0] = 0;
        for (k = 0; k < i; k++) {
            C[k][j] += alpha*B[i][j] * A[i][k];
            temp2[i][j][k+1] = temp[i][j][k] + B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2[i][j][i]
}
```


Alternatives to Anti-Dependences

- Conversion to single assignment through expansion (possibly followed by contraction)
+ full scheduling freedom
(-) may increase memory requirements

Note: choice also has effect on scheduling time

Alternatives to Anti-Dependences

- Conversion to single assignment through expansion (possibly followed by contraction)
+ full scheduling freedom
(-) may increase memory requirements
- Cluster live-range statements Note:
- in general, clustering is partial scheduling
- simple clusterings lead to coarse statements
+ no increase in memory requirements
- significant loss of scheduling freedom

Note: choice also has effect on scheduling time

Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
        temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
}
(symm.c from PolyBench/C 4.1)
```


Tiling Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++) {
            temp2 = 0;
        for (k = 0; k < i; k++) {
        C[k][j] += alpha*B[i][j] * A[i][k];
        temp2 += B[k][j] * A[i][k];
        }
        C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;
```

\}
(symm.c from PolyBench/C 4.1)

Alternatives to Anti-Dependences

- Conversion to single assignment through expansion (possibly followed by contraction)
+ full scheduling freedom
(-) may increase memory requirements
- Cluster live-range statements Note:
- in general, clustering is partial scheduling
- simple clusterings lead to coarse statements
+ no increase in memory requirements
- significant loss of scheduling freedom

Note: choice also has effect on scheduling time

Alternatives to Anti-Dependences

- Conversion to single assignment through expansion (possibly followed by contraction)
+ full scheduling freedom
(-) may increase memory requirements
- Cluster live-range statements Note:
- in general, clustering is partial scheduling
- simple clusterings lead to coarse statements
+ no increase in memory requirements
- significant loss of scheduling freedom
- Live-range reordering
+ no increase in memory requirements
(-) limited loss of scheduling freedom

Note: choice also has effect on scheduling time

Live-Range Reordering

Basic idea:

allow live-ranges to be reordered with respect to each other as long as they do not overlap

Schedule Constraints Example

Schedule Constraints Example

Live-Range Reordering

Basic idea:

allow live-ranges to be reordered with respect to each other as long as they do not overlap

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other as long as they do not overlap

- encode disjunction in scheduling problem (Baghdadi 2011)
- relaxed permutability criterion (Baghdadi, Cohen, et al. 2013) application by Baghdadi, Cohen, et al. (2013):
- use standard scheduling algorithm
- reinterpret results
- variable liberalization (Mehta 2014)
- removes specific patterns of anti-dependences
- conditional validity constraints

Live-Range Reordering

Basic idea:
allow live-ranges to be reordered with respect to each other as long as they do not overlap

- encode disjunction in scheduling problem (Baghdadi 2011)
- relaxed permutability criterion (Baghdadi, Cohen, et al. 2013) application by Baghdadi, Cohen, et al. (2013):
- use standard scheduling algorithm
- reinterpret results
- variable liberalization (Mehta 2014)
- removes specific patterns of anti-dependences
- conditional validity constraints

Scheduling

A schedule determines the execution order of statement instances and is expressed using a (recursive) combination of

- affine functions f

$$
f(\mathbf{i})<f(\mathbf{j}) \quad \Rightarrow \mathbf{i} \text { executed before } \mathbf{j}
$$

- finite sequence $S_{1}, S_{2}, \ldots, S_{n}$
$\mathbf{i} \in S_{k_{1}} \wedge \mathbf{j} \in S_{k_{2}} \wedge k_{1}<k_{2} \Rightarrow \mathbf{i}$ executed before \mathbf{j}

Scheduling

A schedule determines the execution order of statement instances and is expressed using a (recursive) combination of

- affine functions f

$$
f(\mathbf{i})<f(\mathrm{j}) \quad \Rightarrow \mathbf{i} \text { executed before } \mathbf{j}
$$

- finite sequence $S_{1}, S_{2}, \ldots, S_{n}$
$\mathbf{i} \in S_{k_{1}} \wedge \mathbf{j} \in S_{k_{2}} \wedge k_{1}<k_{2} \Rightarrow \mathbf{i}$ executed before \mathbf{j}

Scheduling determines schedule compatible with schedule constraints
statement instance a needs to be executed before instance \mathbf{b}
\Rightarrow there is some node with

$$
f(\mathbf{a})<f(\mathbf{b}) \quad \text { or } \quad \mathbf{a} \in S_{k_{1}} \wedge \mathbf{b} \in S_{k_{2}} \wedge k_{1}<k_{2}
$$

\Rightarrow for all outer nodes

$$
f(\mathbf{a})=f(\mathbf{b}) \quad \text { or } \quad \exists k:\{\mathbf{a}, \mathbf{b}\} \subseteq S_{k}
$$

Scheduling

A schedule determines the execution order of statement instances and is expressed using a (recursive) combination of

- affine functions f a.k.a. band members

$$
f(\mathbf{i})<f(\mathbf{j}) \quad \Rightarrow \mathbf{i} \text { executed before } \mathbf{j}
$$

- finite sequence $S_{1}, S_{2}, \ldots, S_{n}$
$\mathbf{i} \in S_{k_{1}} \wedge \mathbf{j} \in S_{k_{2}} \wedge k_{1}<k_{2} \Rightarrow \mathbf{i}$ executed before \mathbf{j}

Scheduling determines schedule compatible with schedule constraints
statement instance a needs to be executed before instance b
\Rightarrow there is some node with

$$
f(\mathbf{a})<f(\mathbf{b}) \quad \text { or } \quad \mathbf{a} \in S_{k_{1}} \wedge \mathbf{b} \in S_{k_{2}} \wedge k_{1}<k_{2}
$$

\Rightarrow for all outer nodes

$$
f(\mathbf{a})=f(\mathbf{b}) \quad \text { or } \quad \exists k:\{\mathbf{a}, \mathbf{b}\} \subseteq S_{k}
$$

Band: nested sequence of affine functions that can be freely reordered

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule

Schedule constraints

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] \\
& \mathrm{B}[i] \rightarrow \mathrm{C}[0, i] \\
& \mathrm{C}[i, j] \rightarrow \mathrm{C}[i+1, j] \\
& \mathrm{C}[i, j] \rightarrow \mathrm{C}[i, j+1]
\end{aligned}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule
$\mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i$

Schedule constraints

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] \\
& \mathrm{B}[i] \rightarrow \mathrm{C}[0, i] \\
& \mathrm{C}[i, j] \rightarrow \mathrm{C}[i+1, j] \\
& \mathrm{C}[i, j] \rightarrow \mathrm{C}[i, j+1]
\end{aligned}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule
$\mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i$

Schedule constraints

$$
\begin{array}{ll}
\mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] & i \rightarrow i \\
\mathrm{~B}[i] \rightarrow \mathrm{C}[0, i] & 0 \rightarrow 0 \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i+1, j] & i \rightarrow i+1 \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i, j+1] & i \rightarrow i
\end{array}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i \\
& \mathrm{~A}[i] \rightarrow 0 ; \mathrm{B}[i] \rightarrow i ; \mathrm{C}[i, j] \rightarrow j
\end{aligned}
$$

Schedule constraints

$$
\begin{array}{ll}
\mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] & i \rightarrow i \\
\mathrm{~B}[i] \rightarrow \mathrm{C}[0, i] & 0 \rightarrow 0 \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i+1, j] & i \rightarrow i+1 \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i, j+1] & i \rightarrow i
\end{array}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i \\
& \mathrm{~A}[i] \rightarrow 0 ; \mathrm{B}[i] \rightarrow i ; \mathrm{C}[i, j] \rightarrow j
\end{aligned}
$$

Schedule constraints

$$
\begin{array}{lll}
\mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] & i \rightarrow i & 0 \rightarrow 0 \\
\mathrm{~B}[i] \rightarrow \mathrm{C}[0, i] & 0 \rightarrow 0 & i \rightarrow i \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i+1, j] & i \rightarrow i+1 & j \rightarrow j \\
\mathrm{C}[i, j] \rightarrow \mathrm{C}[i, j+1] & i \rightarrow i & j \rightarrow j+1
\end{array}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i \\
& \mathrm{~A}[i] \rightarrow 0 ; \mathrm{B}[i] \rightarrow i ; \mathrm{C}[i, j] \rightarrow j
\end{aligned}
$$

Schedule constraints

$$
\begin{array}{lll}
\mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] & i \rightarrow i & 0 \rightarrow 0 \\
\mathrm{~B}[i] \rightarrow \mathrm{C}[0, i] & 0 \rightarrow 0 & i \rightarrow i
\end{array}
$$

Scheduling Example 1

```
for (i = 1; i < n; ++i)
A:M[i, 0] = f();
for (i = 1; i < n; ++i)
B:M[0, i] = g();
for (i = 1; i < n; ++i)
    for (j = 1; j < n; ++j)
C: M[i][j] = h(M[i-1][j], M[i][j-1]);
```


Schedule

$$
\begin{aligned}
& \mathrm{A}[i] \rightarrow i ; \mathrm{B}[i] \rightarrow 0 ; \mathrm{C}[i, j] \rightarrow i \\
& \mathrm{~A}[i] \rightarrow 0 ; \mathrm{B}[i] \rightarrow i ; \mathrm{C}[i, j] \rightarrow j
\end{aligned}
$$

$$
\{\mathrm{A}[i]\},\{\mathrm{B}[i]\},\{\mathrm{C}[i, j]\}
$$

Schedule constraints

$$
\begin{array}{lll}
\mathrm{A}[i] \rightarrow \mathrm{C}[i, 0] & i \rightarrow i & 0 \rightarrow 0 \\
\mathrm{~B}[i] \rightarrow \mathrm{C}[0, i] & 0 \rightarrow 0 & i \rightarrow i
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule
Schedule constraints

$$
\begin{aligned}
& \mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] \\
& \mathrm{S}[i, n-1] \rightarrow \mathrm{S}[i+1,0]
\end{aligned}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{s}[i, j] \rightarrow i$

Schedule constraints

$$
\begin{aligned}
& \mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] \\
& \mathrm{S}[i, n-1] \rightarrow \mathrm{S}[i+1,0]
\end{aligned}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{s}[i, j] \rightarrow i$

Schedule constraints

$$
\begin{array}{ll}
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] & i \rightarrow i \\
\mathrm{~S}[i, n-1] \rightarrow \mathrm{S}[i+1,0] & i \rightarrow i+1
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{S}[i, j] \rightarrow i, \mathrm{~S}[i, j] \rightarrow j$

Schedule constraints

$$
\begin{array}{ll}
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] & i \rightarrow i \\
\mathrm{~S}[i, n-1] \rightarrow \mathrm{S}[i+1,0] & i \rightarrow i+1
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{S}[i, j] \rightarrow i, \mathrm{~S}[i, j] \rightarrow j$

Schedule constraints

$$
\begin{array}{lll}
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] & i \rightarrow i & j \rightarrow j+1 \\
\mathrm{~S}[i, n-1] \rightarrow \mathrm{S}[i+1,0] & i \rightarrow i+1 & n-1 \rightarrow 0
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{S}[i, j] \rightarrow i, \mathrm{~S}[i, j] \rightarrow j$

Schedule constraints

$$
\begin{array}{lll}
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] & i \rightarrow i & j \rightarrow j+1 \\
\mathrm{~S}[i, n-1] \rightarrow \mathrm{S}[i+1,0] & i \rightarrow i+1 & n-1 \rightarrow 0
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{s}[i, j] \rightarrow i$

Schedule constraints

$$
\begin{array}{ll}
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] & i \rightarrow i \\
\mathrm{~S}[i, n-1] \rightarrow \mathrm{S}[i+1,0] & i \rightarrow i+1
\end{array}
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule $\mathrm{s}[i, j] \rightarrow i$

Schedule constraints

$$
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] \quad i \rightarrow i
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule
$\mathrm{S}[i, j] \rightarrow i$
Schedule constraints

$$
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] \quad i \rightarrow i
$$

$$
\mathrm{s}[i, j] \rightarrow j
$$

Scheduling Example 2

```
for (i = 0; i < n; ++i)
    for (j = 0; j < n; ++j)
S: t = f(t, A[i][j]);
```


Schedule
$\mathrm{s}[i, j] \rightarrow i$
Schedule constraints

$$
\mathrm{S}[i, j] \rightarrow \mathrm{S}[i, j+1] \quad i \rightarrow i \quad j \rightarrow j+1
$$

$$
\mathrm{s}[i, j] \rightarrow j
$$

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

- Local live-ranges

A live-range is local to a band if its source and sink are assigned the same value by all affine functions in the band

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

- Local live-ranges

A live-range is local to a band if its source and sink are assigned the same value by all affine functions in the band

- Relaxed permutability criterion
 If an anti-dependence is only adjacent to live-ranges that are local to a band, then the anti-dependence can be ignored within the band

Relaxed Permutability Criterion

- Adjacency

An anti-dependence is adjacent to a live-range if the source of one is the sink of the other

- Local live-ranges

A live-range is local to a band if its source and sink are assigned the same value by all affine functions in the band

- Relaxed permutability criterion
 If an anti-dependence is only adjacent to live-ranges that are local to a band, then the anti-dependence can be ignored within the band

Baghdadi, Cohen, et al. (2013) use criterion to reinterpret schedule
\Rightarrow combine nested sequences of bands after schedule construction

Conditional Validity Constraints

- A conditional validity constraint is a pair of
- condition $\quad \rightarrow$ live-ranges
- conditioned validity constraint \rightarrow anti-dependences

Conditional Validity Constraints

- A conditional validity constraint is a pair of
- condition
- conditioned validity constraint
\rightarrow live-ranges
\rightarrow anti-dependences
- A conditional validity constraint is satisfied if
- source and sink of condition \rightarrow local live-ranges are assigned the same value, or
- adjacent conditional validity $\quad \rightarrow$ adjacent anti-dependences constraints are satisfied

Conditional Validity Constraints

- A conditional validity constraint is a pair of
- condition
- conditioned validity constraint $\quad \rightarrow$ anti-dependences
- A conditional validity constraint is satisfied if
- source and sink of condition \rightarrow local live-ranges are assigned the same value,
or
- adjacent conditional validity $\quad \rightarrow$ adjacent anti-dependences constraints are satisfied
- Conditional validity constraints handled during schedule construction
- ignore conditioned validity constraints during band member computation
- compute violated conditioned validity constraints
- compute adjacent conditions
- force adjacent conditions to be local in subsequent band members
- recompute band if not local in current or previous members

Schedule Constraints Example

$$
\begin{aligned}
& \operatorname{avg}=0 . f ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}) \\
& \mathrm{avg}+=\mathrm{A}[\mathrm{i}] ; \\
& \mathrm{avg} /=\mathrm{N} ; \\
& \mathrm{for}(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i})\{ \\
& \operatorname{tmp}=\mathrm{A}[\mathrm{i}]-\mathrm{avg} ; \\
& \mathrm{A}[\mathrm{i}]=\operatorname{tmp} ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i})\{ \\
& \operatorname{tmp}=A[\mathrm{~N}-1-\mathrm{i}] ; \\
& \mathrm{B}[\mathrm{i}]=\operatorname{tmp} ; \\
& \}
\end{aligned}
$$

flow
anti
\square

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg }=0 . f ; \\
& \text { for (i=0; } \mathrm{i}<\mathrm{N} ;++\mathrm{i}) \\
& \text { avg }+=A[\mathrm{i}] ; \\
& \text { avg } /=\mathrm{N} ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ;++\mathrm{i}) \\
& \quad \mathrm{tmp}=\mathrm{A}[\mathrm{i}]-\mathrm{avg} ;
\end{aligned}
$$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) } \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \mathrm{A}[\mathrm{i}]=\mathrm{tmp} \text {; } \\
& \text { \} } \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) \{ } \\
& \text { tmp }=A[N-1 \text { - i]; } \\
& \text { B[i] = tmp; } \\
& \text { \} } \\
& \text { \{ SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} }
\end{aligned}
$$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) } \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \text { \} } \\
& \text { for (i=0; } i<N ;++i) \text { \{ } \\
& \text { tmp = A[N - } 1 \text { - i]; } \\
& B[i]=\operatorname{tmp} ; \\
& \text { \} } \\
& \text { \{ SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} }
\end{aligned}
$$

Schedule Constraints Example

avg = 0.f;
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{ $\mathrm{SO[]} ; \mathrm{S} 1[\mathrm{i}] ; \mathrm{S} 2[]\},\{\mathrm{S} 3[i] ; \mathrm{S} 4[\mathrm{i}] ; \mathrm{S5}[i] ; \mathrm{S6[i]}\}$
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S}[] \rightarrow N-1$

Schedule Constraints Example

avg = 0.f;
flow
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
avg += A[i];
avg /= N;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \}
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S}[] \rightarrow N-1$

Schedule Constraints Example

avg = 0.f;
flow

anti
for ($i=0 ; i<N ;++i)$ avg += A[i];
avg /= N;
for ($\mathrm{i}=\mathrm{Q}$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$) tmp = A[i] - avg; A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$) \{ tmp $=A[N$ - 1 - i]; B[i] = tmp;
\}

$$
\text { \{ S0[]; S1[i]; S2[] \}, \{ S3[i]; S4[i]; S5[i]; S6[i] \} }
$$

$$
\mathrm{SQ}[] \rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1
$$

Schedule Constraints Example

avg = 0.f;
flow
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
avg += A[i];
avg /= N;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \}
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S}[] \rightarrow N-1$

Schedule Constraints Example

avg = 0.f;
for (i=0; i<N; ++i)
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{ $\mathrm{SO[]} ; \mathrm{S} 1[\mathrm{i}] ; \mathrm{S} 2[]\},\{\mathrm{S} 3[i] ; \mathrm{S} 4[\mathrm{i}] ; \mathrm{S5}[i] ; \mathrm{S6[i]}\}$
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S}[] \rightarrow N-1$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (i=0; i<N; ++i) } \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \text { \} } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[N - } 1 \text { - i]; } \\
& B[i]=\operatorname{tmp} ; \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S}[[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{aligned}
$$

Schedule Constraints Example

avg = 0.f;
flow
anti
for (i=0; $i<N ;++i)$
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{SO[]; $\mathrm{S1[i]} ; \mathrm{S} 2[]\},\{\mathrm{S} 3[i] ; \mathrm{S} 4[\mathrm{i}] ; \mathrm{S5}[\mathrm{i}] ; \mathrm{S6[i]}\}$
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1$
$\{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}$

Schedule Constraints Example

$$
\begin{align*}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (i=0; } i<N ;++i) \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \text { \} } \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) \{ } \\
& \text { tmp = A[N - } 1 \text { - i]; } \\
& \text { B[i] = tmp; } \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S}[[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \tag{i}\\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{align*}
$$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { for (i=0; i<N; ++i) } \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=Q; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \} \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ; \quad++\mathrm{i} \text {) \{ } \\
& \text { tmp }=A[N \text { - } 1 \text { - i]; } \\
& \text { B[i] = tmp; } \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \\
& \mathrm{~S} 3[i] \rightarrow i ; \mathrm{S}[i] \rightarrow \mathrm{N}-1-i \text {; } \\
& \mathrm{S} 4[i] \rightarrow i ; \mathrm{S}[[i] \rightarrow N-1-i \\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{aligned}
$$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (i=0; } i<N ;++i) \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \} \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) \{ } \\
& \text { tmp }=A[N-1 \text { - i]; } \\
& \text { B[i] = tmp; } \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \\
& \mathrm{~S} 3[i] \rightarrow i ; \mathrm{S}[i] \rightarrow \mathrm{N}-1-i \text {; } \\
& \mathrm{S} 4[i] \rightarrow i ; \mathrm{S}[[i] \rightarrow N-1-i \\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{aligned}
$$

Schedule Constraints Example

avg = 0.f;
flow
anti
for (i=0; $i<N ;++i)$
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{

B[i] = tmp;
\}
\{SO[]; S1[i]; S2[] \}, $\{\mathrm{S} 3[i] ; \mathrm{S4[i]}$; S5[i]; S6[i]\}
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1$
$\mathrm{S} 3[i] \rightarrow i ; \mathrm{S} 5[i] \rightarrow N-1-i ;$
$\mathrm{S} 4[i] \rightarrow i ; \mathrm{S} 6[i] \rightarrow N-1-i$
$\{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}$

Schedule Constraints Example

avg = 0.f;
flow
anti
for (i=0; $i<N ;++i)$
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ; \quad++\mathrm{i}$) \{

B[i] = tmp;
\}
\{SO[]; S1[i]; S2[] \}, $\{\mathrm{S} 3[i] ; \mathrm{S} 4[\mathrm{i}] ; \mathrm{S5}[\mathrm{i}]$; $\mathrm{S}[\mathrm{i}]\}$
SO[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1$
$\mathrm{S} 3[i] \rightarrow i ; \mathrm{S} 5[i] \rightarrow N-1-i ;$
$\mathrm{S} 4[i] \rightarrow i ; \mathrm{S} 6[i] \rightarrow N-1-i$
$\{S 0[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { flow } \\
& \text { anti } \\
& \text { for (i=0; } i<N ;++i) \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \} \\
& \text { for (} \mathrm{i}=0 \text {; } \mathrm{i}<\mathrm{N} ;++\mathrm{i} \text {) \{ } \\
& \text { tmp }=A[N-1 \text { - i]; } \\
& \text { B[i] = tmp; } \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \\
& \mathrm{~S} 3[i] \rightarrow i ; \mathrm{S}[i] \rightarrow \mathrm{N}-1-i \text {; } \\
& \mathrm{S} 4[i] \rightarrow i ; \mathrm{S}[[i] \rightarrow N-1-i \\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{aligned}
$$

Schedule Constraints Example

avg = 0.f;
flow
anti
for (i=0; i<N; ++i)
avg += A[i];
avg /= N;
for (i=0; i<N; ++i) \{
tmp = A[i] - avg;
A[i] = tmp;
\}
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$) \{
tmp $=A[N$ - 1 - i];
B[i] = tmp;
\}
\{SO[]; $\mathrm{S1[i]} ; \mathrm{S} 2[]\},\{\mathrm{S} 3[i] ; \mathrm{S} 4[\mathrm{i}] ; \mathrm{S5}[\mathrm{i}] ; \mathrm{S6[i]}\}$
SQ[]$\rightarrow 0 ; \mathrm{S} 1[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1$
$\mathrm{S} 3[i] \rightarrow i ; \mathrm{S} 5[i] \rightarrow N-1-i ;$
$\mathrm{S} 4[i] \rightarrow i ; \mathrm{S} 6[i] \rightarrow N-1-i$
$\{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}$

Schedule Constraints Example

$$
\begin{aligned}
& \text { avg = 0.f; } \\
& \text { for (i=0; i<N; ++i) } \\
& \text { avg += A[i]; } \\
& \text { avg /= N; } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[i] - avg; } \\
& \text { A[i] = tmp; } \\
& \text { \} } \\
& \text { for (i=0; i<N; ++i) \{ } \\
& \text { tmp = A[N - } 1 \text { - i]; } \\
& B[i]=\text { tmp; } \\
& \text { \} } \\
& \text { \{SO[]; S1[i]; S2[] \}, \{S3[i]; S4[i]; S5[i]; S6[i] \} } \\
& \mathrm{SO}[] \rightarrow 0 ; \mathrm{S}[[i] \rightarrow i ; \mathrm{S} 2[] \rightarrow N-1 \\
& \mathrm{S} 3[i] \rightarrow i ; \mathrm{S}[i] \rightarrow \mathrm{N}-1-i ; \\
& \mathrm{S} 4[i] \rightarrow i ; \mathrm{S} 6[i] \rightarrow N-1-i \\
& \{\mathrm{SO}[]\},\{\mathrm{S} 1[i]\},\{\mathrm{S} 2[]\}
\end{aligned}
$$

External Live-Ranges and Output Dependences

- External live-ranges
- live-in reads
\Rightarrow order before all (later) writes
- live-out writes
\Rightarrow order after all (earlier) reads

External Live-Ranges and Output Dependences

- External live-ranges
- live-in reads
\Rightarrow order before all (later) writes
- live-out writes
\Rightarrow order after all (earlier) reads
- Output dependences
- there is a read between the two writes
\Rightarrow covered by live-range and anti-dependence
- the two writes form live-ranges with the same read
\Rightarrow preserve order of the writes
- first write does not appear in a live-range
\Rightarrow add output dependence to conditioned validity constraints

Outline

(1) Introduction

- Example
- Schedule Constraints
(2) Live Range Reordering
- Related Work
- Scheduling
- Relaxed Permutability Criterion
- Conditional Validity Constraints
(3) Conclusion

Conclusion

- Enforcing anti-dependences limits scheduling freedom
- Live-range reordering
- allows anti-dependences to be partly ignored
- without increasing memory requirements
- with limited loss of scheduling freedom
- Conditional validity constraints
- allow live-range reordering during construction of schedule bands
- available in PPCG since version 0.02 (April 2014)
- crucial for experiments of Baghdadi, Beaugnon, et al. (2015)

Thanks to

- European FP7 project CARP id. 287767
- COPCAMS ARTEMIS project
- Baghdadi, Beaugnon, et al. (2015)

References I

Baghdadi, Riyadh (Sept. 2011). "Using live range non-interference constraints to enable polyhedral loop transformations". MA thesis. University of Pierre et Marie Curie - Paris 6.
Baghdadi, Riyadh, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chandan Reddy, Sven Verdoolaege, Javed Absar, Sven van Haastregt, Alexey Kravets, Anton Lokhmotov, Adam Betts, Alastair F. Donaldson, Jeroen Ketema, Róbert Dávid, and Elnar Hajiyev (Oct. 2015). "PENCIL: A Platform-Neutral Compute Intermediate Language for Accelerator Programming". In: Proc. Parallel Architectures and Compilation Techniques (PACT'15).
Baghdadi, Riyadh, Albert Cohen, Sven Verdoolaege, and
Konrad Trifunovic (2013). "Improved loop tiling based on the removal of spurious false dependences". In: TACO 9.4, p. 52. Doו: 10.1145/2400682. 2400711.

References II

Mehta, Sanyam (Sept. 2014). "Scalable Compiler Optimizations for Improving the Memory System Performance in Multi-and Many-core Processors". PhD thesis. University of Minnesota.

