
IMPACT 2017 APOLLO

APOLLO
Automatic speculative POLyhedral Loop Optimizer
Juan Manuel Martinez Caamaño, Aravind Sukumaran-Rajam,
Artiom Baloian, Manuel Selva, Philippe Clauss

INRIA CAMUS, ICube lab., CNRS
University of Strasbourg, France

Summary

DCoP: Dynamic Control Parts

TLS: Thread-Level Speculation

APOLLO

Polyhedral Challenges

Conclusions

APOLLO - IMPACT 2017 Jan 23 - 2/36

DCoP: Dynamic Control Parts

Sparse matrix product:

for(row = 1; row <= left->Size; row++) {

pElem = left->FirstInRow[row];

while(pElem) {

for(col = 1; col <= cols; col++) {

result[row][col] +=

pElem->Real * right[pElem->Col][col];

}

pElem = pElem->NextInRow;

}

}
I cannot be handled statically (at compile-time)

APOLLO - IMPACT 2017 Jan 23 - 3/36

DCoP: Dynamic Control Parts
I Linear memory references at runtime!

 0 1 2 3 4 5 6 7

 0
 1

 2

 3
 4

 5
 6

 7

 3.245x108
 3.246x108
 3.247x108
 3.248x108
 3.249x108
 3.25x10 8

 3.251x108
 3.252x108
 3.253x108
 3.254x108

profiled memory accesses

interpolated plane

outermost loop iteration

second loop iteration

memory address

APOLLO - IMPACT 2017 Jan 23 - 4/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

TLS: Thread-Level Speculation

APOLLO - IMPACT 2017 Jan 23 - 5/36

The Limits of Traditional Thread-Level Speculation

I Many missed parallelization opportunities

I No optimizing transformations (data locality!)

I Costly data race detection
(centralized, high communication traffic, large shadow
memory)

I Weak performance

APOLLO - IMPACT 2017 Jan 23 - 6/36

When TLS meets the Polyhedral Model: APOLLO

APOLLO - IMPACT 2017 Jan 23 - 7/36

APOLLO: Pragma

apolloc -O3 source.c -o myexecutable

apolloc++ -O3 source.cpp -o myexecutable

APOLLO - IMPACT 2017 Jan 23 - 8/36

APOLLO: Virtual Iterators

Handling any kind of loop consistently
I inserted at each level of the target loop nest

I starting at zero with step one

I basis for building the prediction model and for reasoning
about code transformations

APOLLO - IMPACT 2017 Jan 23 - 9/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Runtime

APOLLO - IMPACT 2017 Jan 23 - 10/36

APOLLO: Prediction of Memory Accesses

I Static analysis
I target addresses whose values can be defined as linear

combinations of induction variables (scalar evolution)

I Runtime analysis
I get the base address for static linear accesses
I profiling of memory instruction that cannot be analyzed at

compile-time
I build a prediction model: linear or tube

APOLLO - IMPACT 2017 Jan 23 - 11/36

APOLLO: Prediction of Loop Bounds

I Static analysis:
I get the loop bounds when possible

I Runtime analysis:
I get the loop trip counts
I build a prediction model: linear or tube

APOLLO - IMPACT 2017 Jan 23 - 12/36

APOLLO: Prediction of Basic Scalars

I Scalar variables defined as φ-nodes in the LLVM SSA form
init:

v.0 = ...

loop: v.1 = φ(v.0,v.2)
...
v.2 = v.1 + x
...
goto loop

I Carry flow dependencies that may hamper any optimization

APOLLO - IMPACT 2017 Jan 23 - 13/36

APOLLO: Prediction of Basic Scalars

I Scalar variables defined as φ-nodes in the LLVM SSA form
init:

v.0 = ...

loop: v.1 = value prediction(i,j)
...
v.2 = v.1 + x
...
goto loop

I Carry flow dependencies that may hamper any optimization
I Use predicted values to remove such dependencies

APOLLO - IMPACT 2017 Jan 23 - 13/36

APOLLO: Prediction of Basic Scalars

I Static analysis:
I get scalars evolution when possible

I Runtime analysis:
I get the sequence of values for each basic scalar
I build a prediction model: linear

APOLLO - IMPACT 2017 Jan 23 - 14/36

APOLLO: Usage of Prediction Model

I Build a polyhedral representation of the loop nest
I compute a polyhedral optimizing and parallelizing

transformation

I Verify the speculation easily and efficiently
I compare actual reached values against prediction
I done while running the optimized code
I each thread perform its own verification independently

APOLLO - IMPACT 2017 Jan 23 - 15/36

APOLLO: Linear Prediction

I Linear functions obtained from linear interpolation

value prediction(i , j) = 1024i + 512j + 12356

I Verification code
if (&(p->field) != value prediction(i , j))
then rollback();

APOLLO - IMPACT 2017 Jan 23 - 16/36

APOLLO: Tube Prediction

I Linear functions obtained from linear regression if correlation
coefficient ≥ 0.9

1024i + 512j + 1222 ≤ value prediction(i , j)
1024i + 512j + 1235 ≥ value prediction(i , j)

I Verification code
if &(p->field) /∈ [1024i + 512j + 1222, 1024i + 512j + 1235]
then rollback();

APOLLO - IMPACT 2017 Jan 23 - 17/36

APOLLO: Polyhedral Representation

I We have a model made of
I Linear and tube memory accesses
I Linear and tube loop bounds
I Linear basic scalars

I We can build a polyhedral representation

What should be a polyhedral statement ?
I Single memory instruction
I Basic block
I Code-Bone

APOLLO - IMPACT 2017 Jan 23 - 18/36

APOLLO: Polyhedral Representation

I We have a model made of
I Linear and tube memory accesses
I Linear and tube loop bounds
I Linear basic scalars

I We can build a polyhedral representation

What should be a polyhedral statement ?
I Single memory instruction
I Basic block

I Code-Bone

APOLLO - IMPACT 2017 Jan 23 - 18/36

APOLLO: Polyhedral Representation

I We have a model made of
I Linear and tube memory accesses
I Linear and tube loop bounds
I Linear basic scalars

I We can build a polyhedral representation

What should be a polyhedral statement ?
I Single memory instruction
I Basic block
I Code-Bone

APOLLO - IMPACT 2017 Jan 23 - 18/36

APOLLO: Code-Bones - Compile-time Creation
for.i.header:

i = phi [0,entry], [i.inc,for.i.latch]

br for.j.header

for.j.header:

j = phi [0,for.i.header], [j.inc,for.j.header]

idx = load B[j]

old = load A[idx]

add = i + j + old

store add,A[idx]

j.inc = j + 1

exit.j = j.inc == 900

br exit.j,for.i.latch,for.j.header

T F

for.i.latch:

i.inc = i + 1

exit.i = i.inc == 900

br exit.i,for.i.header,exit

F T

exit:

ret void

I Computation-Bones: backward static slice of each memory
write instruction

I Verification-Bones: verification code for each memory
instruction, basic scalar and loop bound

I Embedded in the binary file in LLVM intermediate form

APOLLO - IMPACT 2017 Jan 23 - 19/36

APOLLO: Code-Bones - Runtime Optimization

I Encoding of the Code-Bones and the prediction model in a
polyhedral representation

I Passing of the representation to Pluto and CLooG
I Generation of the optimized code

APOLLO - IMPACT 2017 Jan 23 - 20/36

APOLLO: Code-Bones - Benefits

I More freedom for the polyhedral optimizer than basic blocks
I Verification-bones that do not participate in dependences can

be run in advance (inspector-executor)
I Verification-bones can take advantage of their own

optimizations
I Computation-bones using the predicting linear functions take

advantage of better compiler optimizations

APOLLO - IMPACT 2017 Jan 23 - 21/36

APOLLO: Memory Backup

I Memory locations predicted to be updated during the run
of the next chunk

I Early detection of misspredictions (segfault)
I Performed using our own implementation of memcpy()
I Not always necessary (inspector-executor)

APOLLO - IMPACT 2017 Jan 23 - 22/36

APOLLO: Experiments

Characteristics of each benchmark

Has Has Unpredict. Unpredict.
Benchmark ind. pointers bounds scalars
Mri-q X
Needle X
SOR X X
Backprop X X
PCG X X X X
DMatmat X X
ISPMatmat X X X X
SPMatmat X X X X

APOLLO - IMPACT 2017 Jan 23 - 23/36

APOLLO: Experiments

Transformations performed at runtime

Benchmark Selected Optimization
Mri-q Interchange
Needle Skewing + Interchange + Tiling
SOR Skewing + Tiling
Backprop Interchange
PCG Identity
DMatmat Tiling
ISPMatmat Tiling
SPMatmat Tiling

APOLLO - IMPACT 2017 Jan 23 - 24/36

APOLLO: Experiments

back
pro

p

dmatm
at

isp
matm

at
mri-q

need
le pcg

SOR

spmatm
at-

diag

spmatm
at-

square

spmatm
at-

tube
0

4

8

12

16

20

back
pro

p

dmatm
at

isp
matm

at
mri-q

need
le pcg

SOR

spmatm
at-

diag

spmatm
at-

square

spmatm
at-

tube
0

4

8

12

16

20

8
th

re
ad

s
sp

ee
du

p
vs

se
qu

en
tia

l

ARM Cortex A53 8-cores
AMD Opteron 6172 12-cores

APOLLO - IMPACT 2017 Jan 23 - 25/36

Polyhedral Challenges

I Runtime usage of (static) polyhedral tools!

1. APOLLO’s internal solutions

2. The need for dynamic polyhedral kernels
(schedulers, code generators, calculators, ...)

APOLLO - IMPACT 2017 Jan 23 - 26/36

Polyhedral Challenges: APOLLO’s internal solutions

I Time overhead vs. Quality of optimizations

I Performance of a runtime optimizer
= performance of the optimized code
+ time spent in generating and monitoring it

⇒ Trade-off

APOLLO - IMPACT 2017 Jan 23 - 27/36

Polyhedral Challenges: APOLLO’s internal solutions

I Time overhead vs. Quality of optimizations

I Granularity of the schedule:

• Memory instructions (LLVM IR) ⇒ exponential complexity
• Basic blocks (Polly’s approach) ⇒ too coarse
• Code-Bones ⇒ good trade-off

APOLLO - IMPACT 2017 Jan 23 - 28/36

Polyhedral Challenges: APOLLO’s internal solutions
I Time overhead vs. Quality of optimizations

I Pluto’s multiple options: is a set of options beneficial for most
cases?
-intratileopt ⇒ activated (loop interchanges for locality)
-parallel ⇒ activated
-unroll ⇒ activated (factor 2, code size → LLVM JIT)
-nofuse ⇒ activated (best perf., CLooG + JIT overhead)
-tile ⇒ dynamically activated/deactivated

(simple heuristic: if reuses in multiple directions)
-l2tile ⇒ deactivated (not profitable, CLooG overhead)
other options ⇒ default

I CLooG: control optimization ⇒ deactivated (overhead, size)

APOLLO - IMPACT 2017 Jan 23 - 29/36

Polyhedral Challenges: APOLLO’s internal solutions
I Integer overflows
• GMP library ⇒ excessive time-overhead

• interpolation+regression ⇒ one-dimensional access functions
addressing bytes

⇒ large integer coefficients
⇒ crash of polyhedral tools

⇒ identification of aliasing groups of memory instructions
+ Maslov’s delinearization technique

V. Maslov. Delinearization: An efficient way to break multiloop dependence
equations. PLDI’92.

APOLLO - IMPACT 2017 Jan 23 - 30/36

Polyhedral Challenges: Dynamic Polyhedral Kernels
I Required: polyhedral kernels adapted to a runtime usage
= interesting perspectives for many new research developments

I Pluto’s inconveniences:
I some parameters cannot be set through the library interface:

tile sizes, additional transformation constraints
I tubes or ranges of memory references are not handled
⇒ handled by APOLLO thanks to Candl!

APOLLO - IMPACT 2017 Jan 23 - 31/36

Polyhedral Challenges: Dynamic Polyhedral Kernels

I Sub-optimal solutions may be enough!
⇒ generated with a smaller time-overhead
⇒ better global performance of the runtime optimizer

I Possible directions:
⇒ incremental polyhedral scheduler
⇒ heuristics: assisted and strengthened by runtime analysis

(control complexity)
⇒ runtime evaluation of solutions

APOLLO - IMPACT 2017 Jan 23 - 32/36

Polyhedral Challenges: Dynamic Polyhedral Kernels
I Schedule granularity

I traditionally: source code statements
I data dependencies related to memory references!

= elementary memory instructions in compilers’ IR
⇒ would be the best schedule granularity

(e.g. stencil computations)
I exponential complexity
⇒ adjusted schedule granularity according to the memory and
computing costs of the statements

I Polyhedral code generators
I useless and time-consuming: addressing code optimizations

already handled by lower-level JIT compilers

APOLLO - IMPACT 2017 Jan 23 - 33/36

Conclusions

I APOLLO ⇒ polyhedral techniques are effective at runtime on
more general loops than fortran-like loops

I Polyhedral model = the most accurate and efficient model of
program analysis and optimization

I important goal: extend its scope to general-purpose programs,
to be used in “modern applications”

I thanks to new behavior modelings and runtime (speculative)
techniques

I thanks to polyhedral tools adapted to a runtime usage

APOLLO - IMPACT 2017 Jan 23 - 34/36

Conclusions

We expect you to contribute in further
developments related to runtime polyhe-
dral techniques!

APOLLO has been released
I BSD 3-Clause Open Source License
I http://apollo.gforge.inria.fr

APOLLO - IMPACT 2017 Jan 23 - 35/36

http://apollo.gforge.inria.fr

THANK YOU

University of Strasbourg
INRIA, ICube lab., CNRS

http://team.inria.fr/camus

