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In recent years, there has been a proliferation of par-
allel programming models and runtime systems [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. These runtimes provide
a number of abstractions and features such as isola-
tion and atomicity, seamless execution on shared and
distributed-memory platforms, dependence aware sche-
duling, load balancing, work-stealing and pushing, and
usually, one or more runtime scheduling policies. Fur-
thermore, it is widely accepted that the parallel software
for the upcoming and future generation of computing
applications will be massively parallel and asynchronous
[13, 14], while trying to achieve new performance lim-
its under stringent power budgets on extremely hetero-
geneous platforms. Targeting these runtimes has also
been the subject of more recent research efforts [15, 16,
17, 18, 19, 20, 21] which aim to automatically generate
(optimized) code for the OpenStream runtime [2], the
Open Community RunTime (OCR) [1] or any of the
different Concurrent Collections implementations (e.g.,
[12, 4]).

In this talk, we will discuss the problem of generating
bounded task-parallel schedules via compiler transforma-
tions. Our definition of bounded refers to the number of
live tasks (created, but not necessarily in a run state) at
a given point in time. Our approach builds on the no-
tion of Degrees of Freedom (DoF) and runtime policies.
Specifically, we define two DoF, and combine them to
generate four different runtime scheduling policies. The
benefits of our techniques are multi-fold. First, it ad-
dresses the limitation of several runtimes that create the
program’s dynamic DAG (at runtime) in a serial fash-
ion. Second, it bounds the number of tasks in flight, as
not all tasks are created right at the original task cre-
ation points identified by the programmer. This has the
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secondary effect of reducing runtime bookkeeping bot-
tlenecks, which translates into potentially higher per-
formance when using a large number of processors and
smaller amounts of memory per core. Thirdly, using the
graph structure of the program to drive the prescription
and scheduling policy, some locality improvements are
also possible. Lastly, our approach does not require
modifying the runtime’s underlying scheduler, since it
is designed to be implemented as a compiler optimiza-
tion pass. To the best of our knowledge, our work is the
first to use compiler optimizations to bound the number
of tasks created in task-parallel runtime systems.

The goal of our work is to show that by leverag-
ing the dynamic task spawning abilities of a runtime
such as Intel’s CnC, we can improve the consumption
of critical resources such as memory, without degrad-
ing performance. For instance, in an implementation
of the Johnson matrix multiply algorithm in our frame-
work, for an 80003 problem size using single precision,
we can reduce its dynamic memory consumption by up
to 43% (in a runtime which implements the dynamic
single assignment rule, DSA) or improve the execution
time without utilizing additional memory resources.

To better understand the problem that we attempt to
solve, as well as our tentative solution, the first part of
the talk will present and explain the Concurrent Collec-
tions execution model. Next, we will give a high-level
overview of the PIPES compiler and the representation
of the task graph used in it. Then, we will introduce
the notion of degrees of freedom (DoF) and scheduling
policies and describe their effect on the task graph as
well as on the execution of the program. Finally, we
will show the impact of the derived scheduling policies
in terms of execution time, bookkeeping and memory
consumption.

1. REFERENCES
[1] Tim Mattson, R Cledat, Zoran Budimlic, Vincent

Cave, Sanjay Chatterjee, B Seshasayee, R van der
Wijngaart, and Vivek Sarkar. Ocr: The open
community runtime interface. Technical report,
Tech. Rep., June 2015.[Online]. Available:
https://xstack. exascale-tech. com/git/public,



2015.

[2] Antoniu Pop and Albert Cohen. Openstream:
Expressiveness and data-flow compilation of
openmp streaming programs. ACM Trans. Archit.
Code Optim., 9(4):53:1–53:25, January 2013.

[3] Zoran Budimlić, Michael Burke, Vincent Cavé,
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