
Compiler Optimizations for generating bounded
Schedules on Task-based Runtimes

Yuhan Peng
Rice University

yp10@rice.edu

Martin Kong
Rice University

mkong@rice.edu

Vivek Sarkar
Rice University

vsarkar@rice.edu

In recent years, there has been a proliferation of par-
allel programming models and runtime systems [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. These runtimes provide
a number of abstractions and features such as isola-
tion and atomicity, seamless execution on shared and
distributed-memory platforms, dependence aware sche-
duling, load balancing, work-stealing and pushing, and
usually, one or more runtime scheduling policies. Fur-
thermore, it is widely accepted that the parallel software
for the upcoming and future generation of computing
applications will be massively parallel and asynchronous
[13, 14], while trying to achieve new performance lim-
its under stringent power budgets on extremely hetero-
geneous platforms. Targeting these runtimes has also
been the subject of more recent research efforts [15, 16,
17, 18, 19, 20, 21] which aim to automatically generate
(optimized) code for the OpenStream runtime [2], the
Open Community RunTime (OCR) [1] or any of the
different Concurrent Collections implementations (e.g.,
[12, 4]).

In this talk, we will discuss the problem of generating
bounded task-parallel schedules via compiler transforma-
tions. Our definition of bounded refers to the number of
live tasks (created, but not necessarily in a run state) at
a given point in time. Our approach builds on the no-
tion of Degrees of Freedom (DoF) and runtime policies.
Specifically, we define two DoF, and combine them to
generate four different runtime scheduling policies. The
benefits of our techniques are multi-fold. First, it ad-
dresses the limitation of several runtimes that create the
program’s dynamic DAG (at runtime) in a serial fash-
ion. Second, it bounds the number of tasks in flight, as
not all tasks are created right at the original task cre-
ation points identified by the programmer. This has the

IMPACT 2017
Seventh International Workshop on Polyhedral Compilation
Techniques
Jan 23, 2017, Stockholm, Sweden
In conjunction with HiPEAC 2017.
http://impact.gforge.inria.fr/impact2017

secondary effect of reducing runtime bookkeeping bot-
tlenecks, which translates into potentially higher per-
formance when using a large number of processors and
smaller amounts of memory per core. Thirdly, using the
graph structure of the program to drive the prescription
and scheduling policy, some locality improvements are
also possible. Lastly, our approach does not require
modifying the runtime’s underlying scheduler, since it
is designed to be implemented as a compiler optimiza-
tion pass. To the best of our knowledge, our work is the
first to use compiler optimizations to bound the number
of tasks created in task-parallel runtime systems.

The goal of our work is to show that by leverag-
ing the dynamic task spawning abilities of a runtime
such as Intel’s CnC, we can improve the consumption
of critical resources such as memory, without degrad-
ing performance. For instance, in an implementation
of the Johnson matrix multiply algorithm in our frame-
work, for an 80003 problem size using single precision,
we can reduce its dynamic memory consumption by up
to 43% (in a runtime which implements the dynamic
single assignment rule, DSA) or improve the execution
time without utilizing additional memory resources.

To better understand the problem that we attempt to
solve, as well as our tentative solution, the first part of
the talk will present and explain the Concurrent Collec-
tions execution model. Next, we will give a high-level
overview of the PIPES compiler and the representation
of the task graph used in it. Then, we will introduce
the notion of degrees of freedom (DoF) and scheduling
policies and describe their effect on the task graph as
well as on the execution of the program. Finally, we
will show the impact of the derived scheduling policies
in terms of execution time, bookkeeping and memory
consumption.

1. REFERENCES
[1] Tim Mattson, R Cledat, Zoran Budimlic, Vincent

Cave, Sanjay Chatterjee, B Seshasayee, R van der
Wijngaart, and Vivek Sarkar. Ocr: The open
community runtime interface. Technical report,
Tech. Rep., June 2015.[Online]. Available:
https://xstack. exascale-tech. com/git/public,



2015.

[2] Antoniu Pop and Albert Cohen. Openstream:
Expressiveness and data-flow compilation of
openmp streaming programs. ACM Trans. Archit.
Code Optim., 9(4):53:1–53:25, January 2013.

[3] Zoran Budimlić, Michael Burke, Vincent Cavé,
Kathleen Knobe, Geoff Lowney, Ryan Newton,
Jens Palsberg, David Peixotto, Vivek Sarkar,
Frank Schlimbach, and SaÄ§nak TaÅ§Äśrlar.
Concurrent collections. Scientific Programming,
18(3-4):203–217, 2010.

[4] Frank Schlimbach, James C Brodman, and Kath
Knobe. Concurrent collections on distributed
memory theory put into practice. In 2013 21st
Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages
225–232. IEEE, Feb 2013.

[5] Kathleen Knobe and Carl D Offner. Tstreams: A
model of parallel computation (preliminary
report). Technical report, Technical Report
HPL-2004-78, HP Labs, 2004.

[6] Stephen T. Heumann, Vikram S. Adve, and
Shengjie Wang. The tasks with effects model for
safe concurrency. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, pages
239–250, New York, NY, USA, 2013. ACM.

[7] Vincent Cavé, Jisheng Zhao, Jun Shirako, and
Vivek Sarkar. Habanero-java: The new adventures
of old x10. In Proceedings of the 9th International
Conference on Principles and Practice of
Programming in Java, PPPJ ’11, pages 51–61,
New York, NY, USA, 2011. ACM.

[8] Rajkishore Barik, Zoran Budimlic, Vincent Cavè,
Sanjay Chatterjee, Yi Guo, David Peixotto,
Raghavan Raman, Jun Shirako, Sagnak Tasirlar,
Yonghong Yan, Yisheng Zhao, and Vivek Sarkar.
The habanero multicore software research project.
In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented
Programming Systems Languages and
Applications, OOPSLA ’09, pages 735–736, New
York, NY, USA, 2009. ACM.

[9] Zoran Budimlic, Aparna Chandramowlishwaran,
Kathleen Knobe, Geoff Lowney, Vivek Sarkar,
and Leo Treggiari. Multi-core implementations of
the concurrent collections programming model. In
14th International Workshop on Compilers for
Parallel Computers (CPC), 2009.

[10] Andi Drebes, Karine Heydemann, Nathalie Drach,
Antoniu Pop, and Albert Cohen. Topology-aware
and dependence-aware scheduling and memory
allocation for task-parallel languages. ACM
Trans. Archit. Code Optim., 11(3):30:1–30:25,
August 2014.

[11] Dounia Khaldi, Pierre Jouvelot, Corinne Ancourt,
and François Irigoin. Task Parallelism and Data

Distribution: An Overview of Explicit Parallel
Programming Languages, pages 174–189. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[12] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. CavÃl’,
M. Chabbi, M. Grossman, V. Sarkar, and Y. Yan.
Integrating asynchronous task parallelism with
mpi. In Parallel Distributed Processing (IPDPS),
2013 IEEE 27th International Symposium on,
pages 712–725, May 2013.

[13] Vivek Sarkar, William Harrod, and Allan E
Snavely. Software challenges in extreme scale
systems. In Journal of Physics: Conference Series,
volume 180, page 012045. IOP Publishing, 2009.

[14] Saman Amarasinghe, Mary Hall, Richard Lethin,
Keshav Pingali, Dan Quinlan, Vivek Sarkar, John
Shalf, Robert Lucas, Katherine Yelick, P Balanji,
et al. Exascale programming challenges. In
Proceedings of the Workshop on Exascale
Programming Challenges, Marina del Rey, CA,
USA. US Department of Energy, Office of
Science, Office of Advanced Scientific Computing
Research (ASCR), 2011.

[15] Benoit Meister, Muthu Baskaran, Benoit Pradelle,
Thomas Henretty, and Richard Lethin. Efficient
compilation to event-driven task programs. arXiv
preprint arXiv:1601.05458, 2016.

[16] Nicolas Vasilache, Muthu Baskaran, Tom
Henretty, Benoit Meister, M Harper Langston,
Sanket Tavarageri, and Richard Lethin. A tale of
three runtimes. arXiv preprint arXiv:1409.1914,
2014.

[17] Martin Kong, Antoniu Pop, Louis-Noël Pouchet,
R. Govindarajan, Albert Cohen, and
P. Sadayappan. Compiler/runtime framework for
dynamic dataflow parallelization of tiled
programs. ACM Trans. Archit. Code Optim.,
11(4):61:1–61:30, January 2015.

[18] Roshan Dathathri, Ravi Teja Mullapudi, and
Uday Bondhugula. Compiling affine loop nests for
a dynamic scheduling runtime on shared and
distributed memory. ACM Trans. Parallel
Comput., 3(2):12:1–12:28, July 2016.

[19] Martin Kong, Louis-Noël Pouchet, P Sadayappan,
and Vivek Sarkar. Pipes: A language and
compiler for distributed memory task parallelism.
SC ’16. IEEE, 2016.

[20] Alina Sbirlea, Louis-Noel Pouchet, and Vivek
Sarkar. Dfgr an intermediate graph representation
for macro-dataflow programs. In Data-Flow
Execution Models for Extreme Scale Computing
(DFM), 2014 Fourth Workshop on, pages 38–45.
IEEE, 2014.

[21] Alina Sb̂ırlea, Jun Shirako, Louis-Noël Pouchet,
and Vivek Sarkar. Polyhedral Optimizations for a
Data-Flow Graph Language, pages 57–72.
Springer International Publishing, Cham, 2016.


	References

