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Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….
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Compilation is like skiing
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http://www.nikkiemcdade.com/subFiles/2DExamples.html
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Have your cake and eat it too

This talk is about the 
following idea: 

can we simultaneously 

raise the level at which 
programmers can 
reason about code, 

provide the compiler 
with a model of the 
computation that 
enables it to generate 
faster code than you 
could reasonably write 
by hand?
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What we 

are 

doing….

PyOP2/OP2

Unstructured-
mesh stencils

GiMMiK

Small-matrix 
multiplication

Firedrake

Finite-
element 
assembly

SLAMBench

Dense SLAM 
– 3D vision

PRAgMaTIc

Dynamic 
mesh 
adaptation

TINTL

Fourier 
interpolation 

Unsteady 
CFD - higher-
order flux-
reconstruction

Finite 
difference

Real-time 3D 
scene 
understanding

Adaptive-
mesh CFD

Ab-initio 
computational 
chemistry 
(ONETEP)

Finite-element

Formula-1, 
UAVs

Aeroengine
turbo-
machinery

Domestic 
robotics, 
augmented 
reality

Tidal turbines

Solar energy, 
drug design

Weather and 
climate

ProjectsContexts Applications

Massive 
common sub-
expressions

Vectorisation, 
parametric 
polyhedral tiling

Lazy, data-
driven compute-
communicate

Multicore graph 
worklists

Optimisation of 
composite 
transforms

Tiling for 
unstructured-
mesh stencils

Technologies

Targetting

MPI, OpenMP, 

OpenCL, 

Dataflow/

FPGA, from 

HPC to 

mobile, 

embedded 

and wearable

Runtime code 
generation

6

Finite-volume 
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This talk

What compilers can do

What stops the compiler from doing what it can do

What you might hope the compiler might do

Domain-specific optimisations

Getting the abstraction right

Delivering 



Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism
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No problem: each iteration is independent

Can the iterations 
of this loop be 
executed in 
parallel?
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Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}
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Oh no: not all the iterations are independent! 
You want to re-use piece of code in different contexts

Whether it’s parallel depends on context!

Can the iterations 
of this loop be 
executed in 
parallel?
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Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism
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Can the iterations 
of this loop be 
executed in 
parallel?

Sergio Almeida’s 1998 PhD thesis:

“Balloon types” ensure that each cell is reached only by its 
owner pointer – see also ownership in Rust
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Points-to analysis

Goal: for each pointer variable (p,q,r,s), find 
the set of objects it might point to at runtime

Variable s of 
function g might 
point to variable 
p of function g

R might point to 
anything s might 

point to

f’s p might point 
to anything r 
might point to

q might point to 
anything f 

returns

2006 PhD thesis work of David Pearce, 
(based on Andersen’94)
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Unstructured meshes require pointers/indirection because 
adjacency lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the 
mesh implemented by source-to-source transformation

PyOP2 is an major extension implemented in Python using 
runtime code generation

Generates highly-optimised CUDA, OpenMP and MPI code
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PyOP2 – an active library 

for unstructured mesh computations 

# declare sets, maps, and datasets

nodes = op2.Set(nnode)

edges = op2.Set(nedge)

ppedge = op2.Map(edges, nodes, 2, pp)

p_A = op2.Dat(edges, data=A)

p_r = op2.Dat(nodes, data=r)

p_u = op2.Dat(nodes, data=u)

p_du = op2.Dat(nodes, data=du)

# global variables and constants declarations

alpha = op2.Const(1, data=1.0, np.float32)

beta = op2.Global(1, data=1.0, np.float32)

Example – Jacobi solver
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Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

PyOP2: “decoupled access-execute”

void res(float *A, float *u, float *du, 

const float *beta) {

*du += (*beta) * (*A) * (*u);

}

void update(float *r, float *du, float *u, float 

*u_sum, float *u_max) {

*u += *du + alpha * (*r);

*du = 0.0f;

*u_sum += (*u) * (*u);

*u_max = *u_max > *u ? *u_max : *u;

}

for iter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)

u_max = op2.Global(1, data=0.0, np.float32)

op2.par_loop(res, edges,

p_A(op2.READ),

p_u(op2.READ, ppedge[1]),

p_du(op2.INC, ppedge[0]),

beta(op2.READ))

op2.par_loop(update, nodes,

p_r(op2.READ),

p_du(op2.RW),

p_u(op2.INC),

u_sum(op2.INC),

u_max(op2.MAX))

Access 

descriptors 

specify how 

to feed the 

kernel from 

the mesh

• Parallel loops, over sets (nodes, edges etc)

• Access descriptors specify how to pass data to and 
from the C kernel

• The kernel operates only on local data
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op_par_loop (incrVertices, edges, 

  op_arg_dat (edgeWeight, -1, OP_ID,        OP_READ), 

  op_arg_dat (vertexDat, 0, edges2vertices, OP_INC),  

  op_arg_dat (vertexDat, 1, edges2vertices, OP_INC));

void incrVertices ( 

  double* e,  

  double* v1,  

  double* v2) { 

  *v1 += *e; 

  *v2 += *e; 

} 

Coloring used for avoiding race conditions in shared memory parallel execution

Each partition assigned!
 to a Thread Block and!

further colored

Implementation of an op_par_loop in CUDA

Code generation for indirect loops in OP2

Edges

Vertices

Cross-partition 
edges

Supports 
diverse code 
generation 
schemes

For MPI, 
OpenMP, 
GPU, and in 
prototype 
form for 
FPGA

Key idea: 
inspector-
executor

Eg for 
CUDA/OpenCL 
we can work with 
micro-partitions 
that we stage into 
GPU scratchpad 
memory, colour 
by colour



Code generation for indirect loops in PyOP2
For MPI we 
precompute 
partitions & haloes

Derived from 
PyOP2 access 
descriptors, 
implemented 
using PetSC
DMPlex

At partition 
boundaries, the 
entities (vertices, 
edges, cells) form 
layered halo 
region
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Core: entities owned which can be processed without accessing halo data.

Owned: entities owned which access halo data when processed

Exec halo: off-processor entities which are redundantly executed over because

they touch owned entities

Non-exec halo: off-processor entities which are not processed, but read when 
computing the exec halo



Unmodified Fortran OP2 source code 
exploits inter-node parallelism using MPI, 
and intra-node parallelism using OpenMP
and CUDA

Application is a proprietary, full-scale, in-
production fluids dynamics package

Developed by Rolls Royce plc and used 
for simulation of aeroplane engines 

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford)

“Performance 
portability”

HYDRA: Full-scale industrial CFD using OP2 
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Sparse split tiling on an unstructured mesh, for locality

How can we fuse two loops, when there is a “halo” 
dependence?

I.e. load a block of mesh and do the iterations of loop 1, then 
the iterations of loop 2, before moving to the next block

If we could, we could dramatically improve the memory access 
behaviour!

Loop 2

Loop 1
Visits edges

Increments nodes 

Visits nodes

Depends on edges
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Tiling a structured mesh for locality

To understand sparse split tiling, we 
need to first understand split tiling

Consider a 1D stencil loop, iterated a 
number of times

for (t=0; t<N; ++t) 

for (i=1; i<M-1; ++i)

U[t+1][i] = U[t][i-1] + U[t][i+1]

t

i



Tiling a structured mesh for locality

To understand sparse split tiling, we 
need to first understand split tiling

Consider a 1D stencil loop, iterated a 
number of times

for (t=0; t<N; ++t) 

for (i=1; i<M-1; ++i)

U[t+1][i] = U[t][i-1] + U[t][i+1]

t

i

Lots of 
parallelism –
but lots of 
data 
movement
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Loop 2

Loop 1

Sparse split tiling

Partition the iteration space of loop 1

Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use 
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3 
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Visits edges

Increments nodes 

Visits nodes

Depends on edges
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Partition the iteration space of loop 1

Colour the partitions

Project the tiles, using the knowledge that colour n can use 
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3 

Sparse split tiling
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Inspector-executor: 
derive tasks and 
task graph from 
the mesh, at 
runtime

Loop 2

Loop 1
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Visits edges

Increments nodes 

Visits nodes

Depends on edges



OP2 loop fusion in practice

Mesh size = 1.5M edges

# Loop chain = 6 loops

No inspector/plans overhead

Airfoil test problem

Unstructured-mesh finite-
volume

Intel Sandy Bridge (dual-socket 8-core Intel 
Xeon E5-2680 2.00Ghz, 20MB of shared 
L3 cache per socket); Intel icc 2013 (-O3, -
xSSE4.2/-xAVX).

Breaking news: >30% performance 
improvement on full-scale Firedrake 
seismic inversion code



Sparse split tiling
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Where did the domain-specific advantage come 
from?

OP2’s access descriptors provide precise dependence 
iteration-to-iteration information 

Could easily be delivered in a lambda-based parallel 
loop framework

We “know” that we will iterate many times over the same 
mesh – so it’s worth investing in an expensive “inspector-
executor” scheme

We capture chains of loops over the mesh

We could get our compiler to find adjacent loops

We could extend the OP2 API with “loop chains”

What we actually do?

We delay evaluation of parallel loops

We build a chain (DAG) of parallel loops at runtime

We generate code at runtime for the traces that occur
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The finite element method in outline

do element = 1,N

assemble(element):

end do

i

j
k

ii

i

jj

j

kk

k

Ax = b

Key data structures: Mesh, dense local assembly 
matrices, sparse global system matrix, and RHS vector

l
l

l l

i j k l
i
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k
l
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Multilayered abstractions for FE

Local assembly: 

Specified using the FEniCS project’s DSL, UFL 
(the “Unified Form Language”)

Computes local assembly matrix

Key operation is evaluation of expressions over 
basis function representation of the element 

Mesh traversal: 

PyOP2

Loops over the mesh

Key is orchestration of data movement 

Solver:

Interfaces to standard solvers, such as PetSc



Distributed MPI-parallel PyOP2 
implementation 

Firedrake: a finite-element framework
An alternative implementation of the FEniCS language

Using PyOP2 as an intermediate representation of parallel loops

All embedded in Python using runtime code generation

Stencil DSL for unstructured-mesh

Explicit access descriptors
characterise access footprint of 
kernels

The FEniCS project’s UFL – DSL 
for finite element discretisation

Compiler generates PyOP2 
kernels and access descriptors

PyOP2

Non-FE loops 
over the mesh

UFL “Two-
stage” Form 

Compiler

Unified Form 
Language

COFFEE kernel 
optimiser/vectoriser

Multicore
Manycore

/GPU

Future/

other
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Domain-specific loop optimizer

For finite-element assembly and 
similar loop nests

Vectorisation and flop-minimisation



15 of 20 

Advection-diffusion UFL source 
t=state.scalar_fields["Tracer"]      # Extract fields 
u=state.vector_fields["Velocity"]    # from Fluidity 
 
p=TrialFunction(t)                   # Setup test and 
q=TestFunction(t)                    # trial functions 
 
M=p*q*dx                             # Mass matrix 
d=-dt*dfsvty*dot(grad(q),grad(p))*dx # Diffusion term 
D=M-0.5*d                            # Diffusion matrix 
 
adv = (q*t+dt*dot(grad(q),u)*t)*dx   # Advection RHS 
diff = action(M+0.5*d,t)             # Diffusion RHS 
 
solve(M == adv, t)                   # Solve advection 
solve(D == diff, t)                  # Solve diffusion 
 

This is the 
entire 
specification 
for a solver for 
an advection-
diffusion test 
problem

Same model 
implemented 
in 
FEniCS/Dolfin, 
and also in 
Fluidity –
hand-coded 
Fortran

Weak form:

The advection-
diffusion problem:
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Here we compare 
performance against 
two production 
codes solving the 
same problem on the 
same mesh:

Fluidity: 
Fortran/C++

DOLFIN: the 
FEniCS project’s 
implementation 
of UFL

Graph shows speedup over Fluidity on one core 
of a 12-core Westmere node 

Fermi M2050

Firedrake – single-node performance
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These results are preliminary 
and are presented for 
discussion purposes – see 
Rathgeber, Ham, Mitchell et 
al, 
http://arxiv.org/abs/1501.01809

for more systematic and up to 
date evaluation

http://arxiv.org/abs/1501.01809


Firedrake
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Where did the domain-specific advantage come 
from?

UFL (the Unified Form Language, inherited from the 
FEniCS Project)

Delivers spectacular expressive power

Reduces scope for coding errors

Supports flexible exploration of different models, 
different PDEs, different solution schemes

Building on PyOP2

Handles MPI, OpenMP, CUDA, OpenCL

Completely transparently

PyOP2 uses runtime code generation

So we don’t need to do static analysis

So the layers above can freely exploit unlimited 
abstraction
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Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE

COFFEE: Optimisation of kernels
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COFFEE: Optimisation of kernels
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Local assembly code generated by Firedrake for a Helmholtz 
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous 
equations capturing the discretised conservation laws expressed by 
the PDE
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COFFEE: Optimisation of kernels

Local assembly code 
for the Helmholtz 
problem after 
application of 

padding, 

data alignment, 

Loop-invariant 
code motion 

In this example, sub-
expressions invariant 
to j are identical to 
those invariant to k, so 
they can be 
precomputed once in 
the r loop
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Kernels are often a lot more complicated

Local assembly code 
generated by Firedrake 
for a Burgers problem 
on a 3D tetrahedral 
mesh using Lagrange p 
= 1 elements

Somewhat more 
complicated!

Examples like this 
motivate more complex 
transformations

Including loop fission
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COFFEE: Performance impact

Fairly serious, realistic example: static linear elasticity, p=2 
tetrahedral mesh, 196608 elements 

Including both assembly time and solve time

Single core of Intel Sandy Bridge

Compared with Firedrake loop nest compiled with Intel’s icc
compiler version 13.1

At low p, matrix insertion overheads dominate assembly time

At higher p, and with more coefficient functions (f=2), we get up to 
1.47x overall application speedup
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COFFEE
Where did the domain-specific advantage come 
from?

Finite-element assembly kernels have complex structure

With rich loop-invariant expression structure

And simple dependence structure

COFFEE generates C code that we feed to the best 
available compiler

COFFEE’s transformations make this code run faster

COFFEE does not use any semantic information not 
available to the C compiler

But it does make better decisions

For the loops we’re interested in

For the linear operators arising in finite-element 
assembly we can show that it’s possible to 
minimise the inner-loop flop count L
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Conclusions (but wait…)

Pointers lead to the compiler making conservative decisions

Idea: capture the key data structures at a higher level of abstraction

Let the tools “own the data” – and control its distribution

“inspector-executor” – take time to derive a schedule from the 
specific mesh at runtime

Your compiler doesn’t know things that you know

That you will iterate over the mesh many times without changing it

That the graph is easily-partitionable and colourable

Your compiler won’t do optimisations that we know are good 
for your code

Policy vs mechanism – good for your code might not be good in general

Runtime code generation is liberating

We do not try to do static analysis on client code

We encourage client code to use powerful abstractions
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Challenge 1/3: Domain-specific optimisations

Where do DSO opportunities come from?

Domain semantics (eg in SPIRAL)

Domain expertise (eg we know that inspector-executor will 
pay off)

Domain idiosyncracies (eg for GLICM)

Transforming at the right representation

Eg fusing linear algebra ops instead of loops

Data abstraction (eg AoS vs SoA)

Or whether to build the global system matrix (or instead 
to use a matrix-free or local-assembly scheme)

How can we engage with the application 
specialists to expose and automate domain-
specific optimisations?
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Challenge: 2/3: PyOP2 layer 

The key idea in OP2/PyOP2 is access descriptors

OP2’s access descriptors are declarative specifications
of how each loop iteration is connected to the abstract 
mesh

The kernels do not access the mesh

The implementation is responsible for connecting the kernel 
to the data

The implementation is free to select layout, stage data, 
schedule loops

We can map from data to iterations

What would a programming abstraction for 
data locality look like?
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Challenge: 3/3: Firedrake layer 

Dramatically raised level of abstraction

But we still can match or exceed hand-coded, in-
production code

Costs of abstraction are eliminated by dynamic 
generation of code specialised to context

Domain-specific optimisations can yield big speedups 
over the best available general-purpose compilers

The real payoff lies in supporting the users in 
navigating freely to the best way to model their 
problem

How can the barriers to adoption of DSLs 
be overcome?
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