
1

Delivering and generalising domain-specific

program optimisations

Paul H J Kelly

Group Leader, Software Performance Optimisation

Co-Director, Centre for Computational Methods in Science and Engineering

Department of Computing, Imperial College London
Joint work with :

David Ham (Imperial Computing/Maths/Grantham Inst for Climate Change)

Gerard Gorman, Michael Lange (Imperial Earth Science Engineering – Applied Modelling and Computation Group)

Mike Giles, Gihan Mudalige, Istvan Reguly (Mathematical Inst, Oxford)

Doru Bercea, Fabio Luporini, Graham Markall, Lawrence Mitchell, Florian Rathgeber, Francis Russell, George Rokos,

Paul Colea (Software Perf Opt Group, Imperial Computing)

Spencer Sherwin (Aeronautics, Imperial), Chris Cantwell (Cardio-mathematics group, Mathematics, Imperial)

Michelle Mills Strout, Chris Krieger, Cathie Olschanowsky (Colorado State University)

Carlo Bertolli (IBM Research), Ram Ramanujam (Louisiana State University)

Doru Thom Popovici, Franz Franchetti (CMU), Karl Wilkinson (Capetown), Chris–Kriton Skylaris (Southampton) 1

Analysis is not always the interesting part....

It’s more fun the higher you start!

Syntax

Points-to

Class-hierarchy

Dependence

Shape

.....

Types

Call-graph

Polyhedra

Register allocation

Instruction selection/scheduling

Storage layout

Tiling

Parallelisation

Mapping

Loop nest ordering

….

h
tt
p
:/
/w

w
w

.n
ik

k
ie

m
c
d

a
d
e

.c
o

m
/s

u
b

F
ile

s
/2

D
E

x
a

m
p

le
s
.h

tm
l

h
tt
p
:/
/w

w
w

.g
in

z
.c

o
m

/n
e
w

_
z
e

a
la

n
d
/s

k
i_

n
e
w

_
z
e

a
la

n
d

_
w

a
n
a
k
a

_
c
a

d
ro

n
a

Compilation is like skiing

3

http://www.nikkiemcdade.com/subFiles/2DExamples.html

5

Have your cake and eat it too

This talk is about the
following idea:

can we simultaneously

raise the level at which
programmers can
reason about code,

provide the compiler
with a model of the
computation that
enables it to generate
faster code than you
could reasonably write
by hand?

5

What we

are

doing….

PyOP2/OP2

Unstructured-
mesh stencils

GiMMiK

Small-matrix
multiplication

Firedrake

Finite-
element
assembly

SLAMBench

Dense SLAM
– 3D vision

PRAgMaTIc

Dynamic
mesh
adaptation

TINTL

Fourier
interpolation

Unsteady
CFD - higher-
order flux-
reconstruction

Finite
difference

Real-time 3D
scene
understanding

Adaptive-
mesh CFD

Ab-initio
computational
chemistry
(ONETEP)

Finite-element

Formula-1,
UAVs

Aeroengine
turbo-
machinery

Domestic
robotics,
augmented
reality

Tidal turbines

Solar energy,
drug design

Weather and
climate

ProjectsContexts Applications

Massive
common sub-
expressions

Vectorisation,
parametric
polyhedral tiling

Lazy, data-
driven compute-
communicate

Multicore graph
worklists

Optimisation of
composite
transforms

Tiling for
unstructured-
mesh stencils

Technologies

Targetting

MPI, OpenMP,

OpenCL,

Dataflow/

FPGA, from

HPC to

mobile,

embedded

and wearable

Runtime code
generation

6

Finite-volume

7 7

This talk

What compilers can do

What stops the compiler from doing what it can do

What you might hope the compiler might do

Domain-specific optimisations

Getting the abstraction right

Delivering

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

No problem: each iteration is independent

Can the iterations
of this loop be
executed in
parallel?

8

Easy parallelism

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Oh no: not all the iterations are independent!
You want to re-use piece of code in different contexts

Whether it’s parallel depends on context!

Can the iterations
of this loop be
executed in
parallel?

9

Example:

for (i=0; i<N; ++i) {

points[i]->x += 1;

}

Easy parallelism

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Can the iterations
of this loop be
executed in
parallel?

Sergio Almeida’s 1998 PhD thesis:

“Balloon types” ensure that each cell is reached only by its
owner pointer – see also ownership in Rust

10

Points-to analysis

Goal: for each pointer variable (p,q,r,s), find
the set of objects it might point to at runtime

Variable s of
function g might
point to variable
p of function g

R might point to
anything s might

point to

f’s p might point
to anything r
might point to

q might point to
anything f

returns

2006 PhD thesis work of David Pearce,
(based on Andersen’94)

11

Unstructured meshes require pointers/indirection because
adjacency lists have to be represented explicitly

A controlled form of pointers (actually a general graph)

OP2 is a C++ and Fortran library for parallel loops over the
mesh implemented by source-to-source transformation

PyOP2 is an major extension implemented in Python using
runtime code generation

Generates highly-optimised CUDA, OpenMP and MPI code

15

PyOP2 – an active library

for unstructured mesh computations

declare sets, maps, and datasets

nodes = op2.Set(nnode)

edges = op2.Set(nedge)

ppedge = op2.Map(edges, nodes, 2, pp)

p_A = op2.Dat(edges, data=A)

p_r = op2.Dat(nodes, data=r)

p_u = op2.Dat(nodes, data=u)

p_du = op2.Dat(nodes, data=du)

global variables and constants declarations

alpha = op2.Const(1, data=1.0, np.float32)

beta = op2.Global(1, data=1.0, np.float32)

Example – Jacobi solver

h
tt

p
s
:/

/g
it
h
u

b
.c

o
m

/O
P

2
/P

y
O

P
2

/b
lo

b
/m

a
s
te

r/
d

e
m

o
/j
a

c
o

b
i.
p

y

Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

Ar,u,du r,u.du

A
r,u,du r,u.du

A A A

PyOP2: “decoupled access-execute”

void res(float *A, float *u, float *du,

const float *beta) {

*du += (*beta) * (*A) * (*u);

}

void update(float *r, float *du, float *u, float

*u_sum, float *u_max) {

*u += *du + alpha * (*r);

*du = 0.0f;

*u_sum += (*u) * (*u);

*u_max = *u_max > *u ? *u_max : *u;

}

for iter in xrange(0, NITER):

u_sum = op2.Global(1, data=0.0, np.float32)

u_max = op2.Global(1, data=0.0, np.float32)

op2.par_loop(res, edges,

p_A(op2.READ),

p_u(op2.READ, ppedge[1]),

p_du(op2.INC, ppedge[0]),

beta(op2.READ))

op2.par_loop(update, nodes,

p_r(op2.READ),

p_du(op2.RW),

p_u(op2.INC),

u_sum(op2.INC),

u_max(op2.MAX))

Access

descriptors

specify how

to feed the

kernel from

the mesh

• Parallel loops, over sets (nodes, edges etc)

• Access descriptors specify how to pass data to and
from the C kernel

• The kernel operates only on local data

6

op_par_loop (incrVertices, edges,

 op_arg_dat (edgeWeight, -1, OP_ID, OP_READ),

 op_arg_dat (vertexDat, 0, edges2vertices, OP_INC),

 op_arg_dat (vertexDat, 1, edges2vertices, OP_INC));

void incrVertices (

 double* e,

 double* v1,

 double* v2) {

 *v1 += *e;

 *v2 += *e;

}

Coloring used for avoiding race conditions in shared memory parallel execution

Each partition assigned!
 to a Thread Block and!

further colored

Implementation of an op_par_loop in CUDA

Code generation for indirect loops in OP2

Edges

Vertices

Cross-partition
edges

Supports
diverse code
generation
schemes

For MPI,
OpenMP,
GPU, and in
prototype
form for
FPGA

Key idea:
inspector-
executor

Eg for
CUDA/OpenCL
we can work with
micro-partitions
that we stage into
GPU scratchpad
memory, colour
by colour

Code generation for indirect loops in PyOP2
For MPI we
precompute
partitions & haloes

Derived from
PyOP2 access
descriptors,
implemented
using PetSC
DMPlex

At partition
boundaries, the
entities (vertices,
edges, cells) form
layered halo
region

F
lo

ri
a
n
 R

a
th

g
e
b
e
r

P
h
D

 t
h
e
s
is

,
P

ro
d
u
c
ti
v
e
 a

n
d
 E

ff
ic

ie
n
t
C

o
m

p
u
ta

ti
o
n
a
l
S

c
ie

n
c
e
 T

h
ro

u
g
h
 D

o
m

a
in

-s
p
e
c
if
ic

 A
b
s
tr

a
c
ti
o
n
s

Core: entities owned which can be processed without accessing halo data.

Owned: entities owned which access halo data when processed

Exec halo: off-processor entities which are redundantly executed over because

they touch owned entities

Non-exec halo: off-processor entities which are not processed, but read when
computing the exec halo

Unmodified Fortran OP2 source code
exploits inter-node parallelism using MPI,
and intra-node parallelism using OpenMP
and CUDA

Application is a proprietary, full-scale, in-
production fluids dynamics package

Developed by Rolls Royce plc and used
for simulation of aeroplane engines

(joint work with Mike Giles, Istvan Reguly, Gihan Mudalige at Oxford)

“Performance
portability”

HYDRA: Full-scale industrial CFD using OP2

R
e
g
u
ly

,
M

u
d
a
lig

e
e

t
a

l,
 I
E

E
E

 T
ra

n
s
 P

ll
&

 D
is

t
S

y
s
te

m
s
 2

0
1
5

Sparse split tiling on an unstructured mesh, for locality

How can we fuse two loops, when there is a “halo”
dependence?

I.e. load a block of mesh and do the iterations of loop 1, then
the iterations of loop 2, before moving to the next block

If we could, we could dramatically improve the memory access
behaviour!

Loop 2

Loop 1
Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u
t,

 L
u
p
o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

Tiling a structured mesh for locality

To understand sparse split tiling, we
need to first understand split tiling

Consider a 1D stencil loop, iterated a
number of times

for (t=0; t<N; ++t)

for (i=1; i<M-1; ++i)

U[t+1][i] = U[t][i-1] + U[t][i+1]

t

i

Tiling a structured mesh for locality

To understand sparse split tiling, we
need to first understand split tiling

Consider a 1D stencil loop, iterated a
number of times

for (t=0; t<N; ++t)

for (i=1; i<M-1; ++i)

U[t+1][i] = U[t][i-1] + U[t][i+1]

t

i

Lots of
parallelism –
but lots of
data
movement

t

iBlock of U Block of U Block of U

t

i

Block of U Block of U

t

iBlock of U Block of U Block of U

Skewed

Overlap

Split

Loop 2

Loop 1

Sparse split tiling

Partition the iteration space of loop 1

Colour the partitions, execute the colours in order

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

S
tr

o
u
t,

 L
u
p
o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

Partition the iteration space of loop 1

Colour the partitions

Project the tiles, using the knowledge that colour n can use
data produced by colour n-1

Thus, the tile coloured #1 grows where it meets colour #0

And shrinks where it meets colours #2 and #3

Sparse split tiling

S
tr

o
u
t,

 L
u
p
o
ri
n

i
e

t
a

l,
 I
P

D
P

S
’1

4

Inspector-executor:
derive tasks and
task graph from
the mesh, at
runtime

Loop 2

Loop 1

0

2

1

3
2

0

0

2

1

3
2

0

Visits edges

Increments nodes

Visits nodes

Depends on edges

OP2 loop fusion in practice

Mesh size = 1.5M edges

Loop chain = 6 loops

No inspector/plans overhead

Airfoil test problem

Unstructured-mesh finite-
volume

Intel Sandy Bridge (dual-socket 8-core Intel
Xeon E5-2680 2.00Ghz, 20MB of shared
L3 cache per socket); Intel icc 2013 (-O3, -
xSSE4.2/-xAVX).

Breaking news: >30% performance
improvement on full-scale Firedrake
seismic inversion code

Sparse split tiling

S
tr

o
u
t,

 L
u
p

o
ri
n

i
e
t
a
l
IP

D
P

S
 2

0
1
4

L
u
p
o
ri
n
i
P

h
D

 t
h
e
s
is

,
fo

rt
h
c
o
m

in
g

Where did the domain-specific advantage come
from?

OP2’s access descriptors provide precise dependence
iteration-to-iteration information

Could easily be delivered in a lambda-based parallel
loop framework

We “know” that we will iterate many times over the same
mesh – so it’s worth investing in an expensive “inspector-
executor” scheme

We capture chains of loops over the mesh

We could get our compiler to find adjacent loops

We could extend the OP2 API with “loop chains”

What we actually do?

We delay evaluation of parallel loops

We build a chain (DAG) of parallel loops at runtime

We generate code at runtime for the traces that occur

56

The finite element method in outline

do element = 1,N

assemble(element):

end do

i

j
k

ii

i

jj

j

kk

k

Ax = b

Key data structures: Mesh, dense local assembly
matrices, sparse global system matrix, and RHS vector

l
l

l l

i j k l
i
j
k
l

57

Multilayered abstractions for FE

Local assembly:

Specified using the FEniCS project’s DSL, UFL
(the “Unified Form Language”)

Computes local assembly matrix

Key operation is evaluation of expressions over
basis function representation of the element

Mesh traversal:

PyOP2

Loops over the mesh

Key is orchestration of data movement

Solver:

Interfaces to standard solvers, such as PetSc

Distributed MPI-parallel PyOP2
implementation

Firedrake: a finite-element framework
An alternative implementation of the FEniCS language

Using PyOP2 as an intermediate representation of parallel loops

All embedded in Python using runtime code generation

Stencil DSL for unstructured-mesh

Explicit access descriptors
characterise access footprint of
kernels

The FEniCS project’s UFL – DSL
for finite element discretisation

Compiler generates PyOP2
kernels and access descriptors

PyOP2

Non-FE loops
over the mesh

UFL “Two-
stage” Form

Compiler

Unified Form
Language

COFFEE kernel
optimiser/vectoriser

Multicore
Manycore

/GPU

Future/

other

R
a
th

g
e
b
e
r,
 H

a
m

,
M

it
c
h
e
ll

e
t

a
l,
 A

C
M

 T
O

M
S

 2
0
1
6

Domain-specific loop optimizer

For finite-element assembly and
similar loop nests

Vectorisation and flop-minimisation

15 of 20

Advection-diffusion UFL source
t=state.scalar_fields["Tracer"] # Extract fields
u=state.vector_fields["Velocity"] # from Fluidity

p=TrialFunction(t) # Setup test and
q=TestFunction(t) # trial functions

M=p*q*dx # Mass matrix
d=-dt*dfsvty*dot(grad(q),grad(p))*dx # Diffusion term
D=M-0.5*d # Diffusion matrix

adv = (q*t+dt*dot(grad(q),u)*t)*dx # Advection RHS
diff = action(M+0.5*d,t) # Diffusion RHS

solve(M == adv, t) # Solve advection
solve(D == diff, t) # Solve diffusion

This is the
entire
specification
for a solver for
an advection-
diffusion test
problem

Same model
implemented
in
FEniCS/Dolfin,
and also in
Fluidity –
hand-coded
Fortran

Weak form:

The advection-
diffusion problem:

61

Here we compare
performance against
two production
codes solving the
same problem on the
same mesh:

Fluidity:
Fortran/C++

DOLFIN: the
FEniCS project’s
implementation
of UFL

Graph shows speedup over Fluidity on one core
of a 12-core Westmere node

Fermi M2050

Firedrake – single-node performance

M
a

rk
a

ll,
 R

a
th

g
e

b
e

r
e
t
a
l,
 I
C

S
’1

3

These results are preliminary
and are presented for
discussion purposes – see
Rathgeber, Ham, Mitchell et
al,
http://arxiv.org/abs/1501.01809

for more systematic and up to
date evaluation

http://arxiv.org/abs/1501.01809

Firedrake

R
a
th

g
e
b
e
r,
 H

a
m

,
M

it
c
h
e
ll

e
t

a
l,
 h

tt
p
:/

/a
rx

iv
.o

rg
/a

b
s
/1

5
0

1
.0

1
8

0
9

Where did the domain-specific advantage come
from?

UFL (the Unified Form Language, inherited from the
FEniCS Project)

Delivers spectacular expressive power

Reduces scope for coding errors

Supports flexible exploration of different models,
different PDEs, different solution schemes

Building on PyOP2

Handles MPI, OpenMP, CUDA, OpenCL

Completely transparently

PyOP2 uses runtime code generation

So we don’t need to do static analysis

So the layers above can freely exploit unlimited
abstraction

69

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

COFFEE: Optimisation of kernels

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
M

 T
A

C
O

/H
iP

E
A

C
2
0
1
5

70

COFFEE: Optimisation of kernels

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

Local assembly code generated by Firedrake for a Helmholtz
problem on a 2D triangular mesh using Lagrange p = 1 elements.

The local assembly operation computes a small dense submatrix

These are combined to form a global system of simultaneous
equations capturing the discretised conservation laws expressed by
the PDE

71

COFFEE: Optimisation of kernels

Local assembly code
for the Helmholtz
problem after
application of

padding,

data alignment,

Loop-invariant
code motion

In this example, sub-
expressions invariant
to j are identical to
those invariant to k, so
they can be
precomputed once in
the r loop

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

72

Kernels are often a lot more complicated

Local assembly code
generated by Firedrake
for a Burgers problem
on a 3D tetrahedral
mesh using Lagrange p
= 1 elements

Somewhat more
complicated!

Examples like this
motivate more complex
transformations

Including loop fission

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

73

COFFEE: Performance impact

Fairly serious, realistic example: static linear elasticity, p=2
tetrahedral mesh, 196608 elements

Including both assembly time and solve time

Single core of Intel Sandy Bridge

Compared with Firedrake loop nest compiled with Intel’s icc
compiler version 13.1

At low p, matrix insertion overheads dominate assembly time

At higher p, and with more coefficient functions (f=2), we get up to
1.47x overall application speedup

L
u
p
o
ri
n

i,
 V

a
rb

e
n
e
s
c
u

e
t

a
l,
 A

C
 T

A
C

O
/H

iP
E

A
C

2
0
1
5

COFFEE
Where did the domain-specific advantage come
from?

Finite-element assembly kernels have complex structure

With rich loop-invariant expression structure

And simple dependence structure

COFFEE generates C code that we feed to the best
available compiler

COFFEE’s transformations make this code run faster

COFFEE does not use any semantic information not
available to the C compiler

But it does make better decisions

For the loops we’re interested in

For the linear operators arising in finite-element
assembly we can show that it’s possible to
minimise the inner-loop flop count L

u
p

o
ri

n
i,
 H

a
m

,
K

e
ll
y
:

A
n

 a
lg

o
ri

th
m

 f
o

r
th

e
 o

p
ti

m
iz

a
ti

o
n

 o
f

fi
n

it
e
 e

le
m

e
n

t

in
te

g
ra

ti
o

n
 l

o
o

p
s
,

in
 r

e
v
is

io
n

76

Conclusions (but wait…)

Pointers lead to the compiler making conservative decisions

Idea: capture the key data structures at a higher level of abstraction

Let the tools “own the data” – and control its distribution

“inspector-executor” – take time to derive a schedule from the
specific mesh at runtime

Your compiler doesn’t know things that you know

That you will iterate over the mesh many times without changing it

That the graph is easily-partitionable and colourable

Your compiler won’t do optimisations that we know are good
for your code

Policy vs mechanism – good for your code might not be good in general

Runtime code generation is liberating

We do not try to do static analysis on client code

We encourage client code to use powerful abstractions

77

Challenge 1/3: Domain-specific optimisations

Where do DSO opportunities come from?

Domain semantics (eg in SPIRAL)

Domain expertise (eg we know that inspector-executor will
pay off)

Domain idiosyncracies (eg for GLICM)

Transforming at the right representation

Eg fusing linear algebra ops instead of loops

Data abstraction (eg AoS vs SoA)

Or whether to build the global system matrix (or instead
to use a matrix-free or local-assembly scheme)

How can we engage with the application
specialists to expose and automate domain-
specific optimisations?

78

Challenge: 2/3: PyOP2 layer

The key idea in OP2/PyOP2 is access descriptors

OP2’s access descriptors are declarative specifications
of how each loop iteration is connected to the abstract
mesh

The kernels do not access the mesh

The implementation is responsible for connecting the kernel
to the data

The implementation is free to select layout, stage data,
schedule loops

We can map from data to iterations

What would a programming abstraction for
data locality look like?

79

Challenge: 3/3: Firedrake layer

Dramatically raised level of abstraction

But we still can match or exceed hand-coded, in-
production code

Costs of abstraction are eliminated by dynamic
generation of code specialised to context

Domain-specific optimisations can yield big speedups
over the best available general-purpose compilers

The real payoff lies in supporting the users in
navigating freely to the best way to model their
problem

How can the barriers to adoption of DSLs
be overcome?

80

Acknowledgements

Partly funded by

NERC Doctoral Training Grant (NE/G523512/1)

EPSRC “MAPDES” project (EP/I00677X/1)

EPSRC “PSL” project (EP/I006761/1)

Rolls Royce and the TSB through the SILOET programme

EPSRC “PAMELA” Programme Grant (EP/K008730/1)

EPSRC “PRISM” Platform Grant (EP/I006761/1)

EPSRC “Custom Computing” Platform Grant (EP/I012036/1)

AMD, Codeplay, Maxeler Technologies

Code:

http://www.firedrakeproject.org/

http://op2.github.io/PyOP2/

http://www.firedrakeproject.org/

