More Data Locality for Static Control Programs on NUMA Architectures

Adilla Susungi¹, Albert Cohen², Claude Tadonki¹

¹MINES ParisTech, PSL Research University ²Inria and DI, Ecole Normale Supérieure

7th International Workshop on Polyhedral Compilation Techniques (IMPACT'17) Stockholm, Sweden, January 23, 2017

Introduction •••• Prototype implementation

Experimental Results

Conclusion

Motivations

Data locality

- Interest in any kind of technique that can produce data locality
- Combining several types
 - Loop transformations
 - Layout transformations
 - Data placement on NUMA architectures

Introduction •••• Prototype implementation

Experimental Results

Conclusion

Motivations

Data locality

- Interest in any kind of technique that can produce data locality
- Combining several types
 - Loop transformations
 - Layout transformations
 - Data placement on NUMA architectures

Automatic polyhedral parallelizers

• Current tools do not consider the integration of control, data flow, memory mapping and placement optimizations

Prototype implementation

Experimental Results

Conclusion

Example

- Pluto¹: for multicore CPUs
 - \rightarrow Optimizations using loop transformations only

¹U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral program optimization system. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008.

Prototype implementation

Experimental Results

Conclusion

Example

- Pluto¹: for multicore CPUs
 - \rightarrow Optimizations using loop transformations only

- 16 cores: 3x
- 36 cores: 2.6x

¹U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral program optimization system. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008.

Prototype implementation

Experimental Results

Conclusion

Example

- Pluto¹: for multicore CPUs
 - \rightarrow Optimizations using loop transformations only

- 16 cores: 3x
- 36 cores: 2.6x

How to provide more data locality thanks to additional transpositions and NUMA placements?

¹U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral program optimization system. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2008.

Prototype implementation

Experimental Results

Conclusion

NUMA architectures Traffic contention and remote accesses issues

Can be dealt with:

- At the programming level using an API (Libnuma, hwloc)
- Using extended programming languages²

• At execution time using environment variables (GOMP_CPU_AFFINITY, KMP_AFFINITY) or runtime solutions (e.g, MPC³)

²A. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems and Manycore Processors. Scientific Programming, 2015.

³M. Pérache, H. Hourdren, R. Namyst. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. Euro-Par 2008.

Prototype implementation

Experimental Results

Conclusion

NUMA architectures Traffic contention and remote accesses issues

Can be dealt with:

- At the programming level using an API (Libnuma, hwloc)
- Using extended programming languages²

• At execution time using environment variables (GOMP_CPU_AFFINITY, KMP_AFFINITY) or runtime solutions (e.g, MPC³)

What is the most convenient way to explore NUMA placement decisions at compile-time?

²A. Muddukrishna, P. A. Jonsson, and M. Brorsson. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems and Manycore Processors. Scientific Programming, 2015.

³M. Pérache, H. Hourdren, R. Namyst. MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. Euro-Par 2008.

Introduction	
0000	

Prototype implementation

Experimental Results

Conclusion

Roadmap

Goals

- 1. Transpositions and NUMA placements in Pluto outputs for more locality
- 2. A convenient way to explore optimizations decisions at compile-time

Prototype implementation

Experimental Results

Conclusion

Roadmap

Goals

- 1. Transpositions and NUMA placements in Pluto outputs for more locality
- 2. A convenient way to explore optimizations decisions at compile-time

Our solution

• Proposing a parallel intermediate language: lvie

- \rightarrow Manipulate meta-programs for space exploration
- \rightarrow Makes prototyping easier than using unified polyhedral approach
- ightarrow Future use beyond SCoPs
- Prototyping an extension of Pluto tool flow involving the PIL
 - \rightarrow Case studies on PolyBench programs: Gemver, Gesummv, Covariance, Gemm

Prototype implementation

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Prototype implementation ●○○○○○○○○

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Design

• Declarative/functional

Prototype implementation

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Design

- Declarative/functional
- Decoupled manipulation of array characteristics

Prototype implementation

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Design

- Declarative/functional
- Decoupled manipulation of array characteristics
- Physical and virtual memory abstraction

Prototype implementation

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Design

- Declarative/functional
- Decoupled manipulation of array characteristics
- Physical and virtual memory abstraction
- Meta-language embedded in Python
 - \rightarrow Possible interfacing with islpy for affine transformations

Prototype implementation

Experimental Results

Conclusion

About our PIL: Ivie

Main idea \rightarrow Manipulate arrays in parallel programs

- Transpositions: data transposition, index permutation
- NUMA placements: interleaved allocation, replications

Design

- Declarative/functional
- Decoupled manipulation of array characteristics
- Physical and virtual memory abstraction
- Meta-language embedded in Python
 - \rightarrow Possible interfacing with islpy for affine transformations

What Ivie is not

• A new programming language/domain-specific language

Prototype implementation

Experimental Results

Conclusion

Implementation

Prototype implementation

Experimental Results

Conclusion

Implementation

No more control flow optimization after Pluto!

Prototype implementation

Experimental Results

Conclusion

Loop abstraction

- Implicit loop bounds
- Anonymous functions performing element-wise operations
- Accumulations made explicit
- Arrays follow either physical or virtual memory abstraction

Prototype implementation

Experimental Results

Conclusion

Array declarations Using default declaration construct

Declaration of array A

A = array(2, double, [N,N])

Parameters

- Number of dimensions
- Type
- Dimension sizes

• Used when generating code from input source

Input C code

```
int A[N][N];
int B[N](N];
int C[N][N];
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
C[i][j] = A[i][j] + B[i][j];
```

Output

```
A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])
with i as siter:
   with j as siter:
   C[i][j] = f(A[i][j], B[i][j])
```

Prototype implementation

Experimental Results

Conclusion

Array declarations Via data replication

Replication of array A

A = array(2, double, [N,N])
Ar = replicate(A)

• Replication of read-only arrays

- Ar inherits all characteristics of A
 - Shape
 - Content
- Used when meta-programming

Replicating A and B

```
A = array(2, int, [N,N])
B = array(2, int, [N,N])
C = array(2, int, [N,N])
Ar = replicate(A)
Br = replicate(B)
```

Resulting C code

```
int A[N][N], B[N][N], C[N][N];
int Ar[N][N];
int Br[N][N];
for (i = 0; i < N; i++) {
   memcpy(Ar[i], A[i], N * sizeof(int));
   memcpy(Br[i], B[i], N * sizeof(int));
}
```

Prototype implementation

Experimental Results

Conclusion

Array declarations Via explicit transposition

Transposition of array A

```
A = array(2, double, [N,N])
Atp = transpose(A, 1, 2)
```

Parameters

- Array of origin
- Dimension ranks to be permuted
- Atp inherits from A
 - Content
 - Transposed shape
- Atp is physical
- Used when meta-programming

Transposing A

```
A = array(2, int, [N,N])
Atp = transpose(A, 1, 2)
with i as siter:
    with j as siter:
        ... = f(Atp[i][j], ...)
```

Resulting C code

```
int A[N][N];
int Atp[N][N];
/* Initialization of A */
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
Atp[i][j] = A[j][i];
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
... = Atp[i][j];
```

Prototype implementation

Experimental Results

Conclusion

Transposition of array A

Array declarations

```
A = array(2, double, [N,N])
Atv = vtranspose(A, 1, 2)
```

Parameters

- Array of origin
- Dimension ranks to be permuted
- Atv inherits from A
 - Content
 - Transposed shape
- Atv is virtual
- Used when meta-programming

Transposing A

```
A = array(2, int, [N,N])
Atv = vtranspose(A, 1, 2)
```

```
with i as siter:
  with j as siter:
    ... = f(Atv[i][j], ...)
```

Resulting C code

```
int A[N][N];
/* Initialization of A */
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
    ... = A[j][i];</pre>
```

Prototype implementation ○○○○○○○●○ Experimental Results

Conclusion

Array declarations For concise abstraction of several arrays

Abstracting arrays A and Ar

Parameters

• Pairs of condition and arrays

- As is virtual
- Allows explicit control in partitioning
- For NUMA management

```
A = array(2, double, [N,N])
Ar = replicate(A)
As = select([({it} <= val), A],
        [({it} > val), Ar])
with i as piter:
    with j as siter:
    ... = f(As[i][j])
```

Prototype implementation

Experimental Results

Conclusion

Data placement on NUMA

• Constructs based on API functions available in libnuma

Interleaved allocation

A = numa_alloc_interleaved(size)

Allocation on node

A = numa_alloc_onnode(size, node_id)

A.map_interleaved(1)

A.map_onnode(node_id)

Prototype implementation

Experimental Results

Conclusion

Experimental setup

Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores
gcc -03 -march=native (enables vectorization)
OMP_PROC_BIND
Tiling for L1 cache, parallelization, vectorization

Prototype implementation

Experimental Results

Conclusion

Experimental setup

Machine	Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores
Compilation	gcc -03 -march=native (enables vectorization)
Thread binding	OMP_PROC_BIND
Default Pluto options	Tiling for L1 cache, parallelization, vectorization

Possible loop fusion heuristics:

- No loop fusion (no fuse)
- Maximum fusion (max fuse)
- In-between fusion (smart fuse)

Prototype implementation

Experimental Results

Conclusion

Experimental setup

Machine	Intel Xeon E5-2697 v4 (Broadwell), 4 nodes, 36 cores
Compilation	gcc -03 -march=native (enables vectorization)
Thread binding	OMP_PROC_BIND
Default Pluto options	Tiling for L1 cache, parallelization, vectorization

Possible loop fusion heuristics:

- No loop fusion (no fuse)
- Maximum fusion (max fuse)
- In-between fusion (smart fuse)

Different program versions:

- Default Pluto output (default)
- Pluto output + NUMA only (NUMA)
- Pluto output + transposition only (Layout)
- Pluto output + NUMA + transposition (NUMA-Layout)

Prototype implementation

Experimental Results

Conclusion

Gemver

Code snippet

```
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
x[i] = x[i] + beta * A[j][i] * y[j];
/* ... */
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; i++)
w[i] = w[i] + alpha * A[i][j] * x[j];</pre>
```

Interesting properties

- Permutation profitable with loop fusions
- Several choices: need to find best permutation
- May loose some parallelism depending on chosen loop fusion
- Bandwidth-bound

Prototype implementation

Experimental Results

Conclusion

Gemver

Meta-programs example: smart fuse vs no fuse

```
A = array(2, DATA_TYPE, [n, n])
u1 = array(1, DATA_TYPE, [n])
v1 = array(1, DATA_TYPE, [n])
A_v = vtranspose(A, 1, 2)
u1_1 = replicate(u1)
u1_2 = replicate(u1)
u1_3 = replicate(u1)
A.map_interleaved(1)
u1.map onnode(0)
u1_1.map_onnode(1)
u1_2.map_onnode(2)
u1_3.map_onnode(3)
u1_s = select([0 <= {it} <= 8, u1],
              [9 <= {it} <= 17. u1 1].
              /*...*/)
with i as siter:
  with j as siter:
    A_v[i][j] = init()
```

Smart fuse

Prototype implementation

Experimental Results

Conclusion

Gemver Different Pluto versions with no loop fusion

- ✓ More speed-up with NUMA
- \times Much less speed-up with transposition
- \times No added value with thread binding

Prototype implementation

Experimental Results

Conclusion

Gemver Different Pluto versions with smart loop fusion

- ✓ More speed-up with NUMA
- \checkmark More speed-up with transposition
- $\times\,$ No added value with thread binding

Prototype implementation

Experimental Results

Conclusion

Gesummv

Pluto with no fuse. Speedups over Default on 1 core (2.44 s).

Gesummv

Prototype implementation

Experimental Results 0000000000

Conclusion

Pluto with no fuse. Speedups over Default on 1 core (2.44 s).

Data Locality for SCoPs on NUMA 19 / 25

Prototype implementation

Experimental Results

Conclusion

Gemm Different naive versions

Interesting property

• Column-major access to B

Modifications

- Transposed initialization of B
- NUMA placement: interleaved allocation only

```
# Default declarations
C = array(2, DATA_TYPE, [ni, nj])
A = array(2, DATA_TYPE, [ni, nk])
B = array(2, DATA_TYPE, [nk, nj])
# Meta-programmed declaration
B v = vtranspose(B, 1, 2)
# Initializations
with i as siter:
  with j as siter:
    B_v[i][j] = init()
# ... other initializations
with t2 as piter:
  with t3 as siter:
    with t4 as siter:
      with t5 as siter:
        with t7 as siter:
          with t6 as siter:
            C[t5][t6] = f9(C[t5][t6],
                    A[t5][t7], B[t6][t7])
```

Prototype implementation

Experimental Results

Conclusion

Gemm Different naive versions

Naive. Speedups sequential version (2.25 s).

✓ Some speed-up with transposition but loop interchange is better
 × No speed-up with NUMA

Prototype implementation

Experimental Results

Conclusion

Gemm Different Pluto versions

Pluto's solution: loop interchange

Prototype implementation

Experimental Results

Conclusion

Gemm Different Pluto versions

Pluto's solution: loop interchange

Pluto. Speedups over Default on 1 core (0.54 s).

- × No speed-up with NUMA
- × Transposition makes things worse

Prototype implementation

Experimental Results

Conclusion

Covariance

Data Locality for SCoPs on NUMA 23 / 25

Prototype implementation

Experimental Results

Conclusion ●○

Balance sheet

Advantages

- NUMA placements help bandwidth-bound programs
- More speed-up with transpositions
- New opportunities with transpositions
 - \rightarrow Wider space exploration for combining different types of optimizations

Prototype implementation

Experimental Results

Conclusion ●○

Balance sheet

Advantages

- NUMA placements help bandwidth-bound programs
- More speed-up with transpositions
- New opportunities with transpositions
 - \rightarrow Wider space exploration for combining different types of optimizations

Disadvantages

- Multiple conditional branching
- Copy overheads

Prototype implementation

Experimental Results

Conclusion ●○

Balance sheet

Advantages

- NUMA placements help bandwidth-bound programs
- More speed-up with transpositions
- New opportunities with transpositions
 - \rightarrow Wider space exploration for combining different types of optimizations

Disadvantages

- Multiple conditional branching
- Copy overheads

No more control flow optimization after Pluto! Ok, we definitely still need some.

Prototype implementation

Experimental Results

Conclusion ○●

Some future work

Deeper investigation

- For case studies
- More experiments (other SCoPS, non-SCoPs)

Prototype implementation

Experimental Results

Conclusion ○●

Some future work

Deeper investigation

- For case studies
- More experiments (other SCoPS, non-SCoPs)

PIL design and implementation

- Revisit or extend some constructs
- Interfacing with islpy
- Memory and control flow optimizations: more integrated composition

Prototype implementation

Experimental Results

Conclusion ○●

Some future work

Deeper investigation

- For case studies
- More experiments (other SCoPS, non-SCoPs)

PIL design and implementation

- Revisit or extend some constructs
- Interfacing with islpy
- Memory and control flow optimizations: more integrated composition

Polyhedral analysis to help:

- determine interleaving granularity
- generate different schedules for transpositions

Prototype implementation

Experimental Results

Conclusion ○●

Some future work

Deeper investigation

- For case studies
- More experiments (other SCoPS, non-SCoPs)

PIL design and implementation

- Revisit or extend some constructs
- Interfacing with islpy
- Memory and control flow optimizations: more integrated composition

Polyhedral analysis to help:

- determine interleaving granularity
- generate different schedules for transpositions

A parallel intermediate language in Pluto's framework?

• Pure post-processing is difficult: Pluto outputs may be (very) complex.

Prototype implementation

Experimental Results

Conclusion ○●

Some future work

Deeper investigation

- For case studies
- More experiments (other SCoPS, non-SCoPs)

PIL design and implementation

- Revisit or extend some constructs
- Interfacing with islpy
- Memory and control flow optimizations: more integrated composition

Polyhedral analysis to help:

- determine interleaving granularity
- generate different schedules for transpositions

A parallel intermediate language in Pluto's framework?

- Pure post-processing is difficult: Pluto outputs may be (very) complex.
- Ad hoc implementation probably the best solution for Pluto.
 - \rightarrow But intermediate language necessary for space exploration of optimizations