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How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

. Point-to-point synchronization

» Hide latency

- Numerous opportunities for parallelism

« Task, data and pipeline
- Scheduling is the runtime’s job

- Provide functional determinism
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Why the polyhedral model?

. Arbitrarily compose loop transformations inc. tiling — granularity control
- Static program analysis — streams memory footprint/bounding

- Multi-objective: parallelism, vectorization, multi-level cache reuse

- Compact program representation unlike graph algorithms

.- Despite restrictions: stencils, dense linear algebra and image filters



1) Manual granularity tuning

- Motivating example: Gauss-Seidel stencil

2) Stream bounding & automatic granularity tuning
.« The polynomial indexing problem

. Future work solutions



OpenStream: a (very) short overview

Data-flow extension to OpenMP

created dynamically

. Tasks: units of work spawned as concurrent coroutines
at runtime

. Streams: unbounded channels for communication between tasks
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1D Gauss-Seidel: stencil code granularity tuning
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1D Gauss-Seidel: stencil code granularity tuning

ofoto

OpenStream: Fine-grained tasks [OS-FG]
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1D Gauss-Seidel: stencil code granularity tuning

1) Semantically equivalent C code (SA)
2) Pluto source-to-source compiler
3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT]
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1D Gauss-Seidel: results
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2D Gauss-Seidel: a visual picture

OpenStream: Fine-grained tasks [OS-FG]

Previous iteration
Current iteration
Current grid point

Not yet computed

Flow dependence
distance vector
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2D Gauss-Seidel

OpenStream: Spatially tiled tasks [OS-ST]

OpenStream: Pluto-tiled tasks [OS-PT]




2D Gauss-Seidel: results
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The polynomial problem

= e.g. parametric tiling

- Deadlock undecidability

»  Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

- Schedule found: no deadlock

= Paul Feautrier and Albert Cohen. 2018. On Polynomial Code Generation



Future work: bounding streams
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Future work: bounding streams
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. Task-parallel dataflow programs can benefit from polyhedral transformations
- Analyses and transformations are hindered by polynomials
- Bounding streams: adding back-pressure dependencies and finding a schedule

- Granularity control: loop strip-mining? how do we align this w/ current techniques?



