MANCHESTER

The University of Manchester @

1824

Beyond Polyhedral Analysis of OpenStream Programs

Nuno Miguel Nobre nunomiguel.nobre@manchester.ac.uk

Joint work with: Andi Drebes, Graham Riley and Antoniu Pop

IMPACT 2019: January 23, 2019 | Valencia, Spain

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

. Point-to-point synchronization

» Hide latency

- Numerous opportunities for parallelism

« Task, data and pipeline
- Scheduling is the runtime’s job

- Provide functional determinism

2/15

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

. Point-to-point synchronization But also disadvantages:

= Hide latency . Manually specified tasks

- Numerous opportunities for parallelism . Challenging dependency specification
« Task, data and pipeline « Hard debugging
- Scheduling is the runtime’s job « What’s the right granularity?

- Provide functional determinism - Memory footprint: no in-place writes

2/15

How to exploit today’s machines efficiently?

Task-parallel streaming dataflow models
have strong assets:

. Point-to-point synchronization But also disadvantages:

= Hide latency . Manually specified tasks

- Numerous opportunities for parallelism . Challenging dependency specification
« Task, data and pipeline « Hard debugging
- Scheduling is the runtime’s job « What's the right granularity?

. Provide functional determinism - Memory footprint: no in-place writes

2/15

Why the polyhedral model?

. Arbitrarily compose loop transformations inc. tiling — granularity control
- Static program analysis — streams memory footprint/bounding

- Multi-objective: parallelism, vectorization, multi-level cache reuse

- Compact program representation unlike graph algorithms

.- Despite restrictions: stencils, dense linear algebra and image filters

1) Manual granularity tuning

- Motivating example: Gauss-Seidel stencil

2) Stream bounding & automatic granularity tuning
.« The polynomial indexing problem

. Future work solutions

OpenStream: a (very) short overview

Data-flow extension to OpenMP

created dynamically

. Tasks: units of work spawned as concurrent coroutines
at runtime

. Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

.

task ?
) task

?

task ..

stream

OpenStream: a (very) short overview

Data-flow extension to OpenMP

. Tasks: units of work spawned as concurrent coroutines created dynamically
at runtime

. Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

N
1 HE

[:lnput

task : ? |1 window
= task

as

: ? 11
=i

i 2l
N\ —— |

task :

stream

OpenStream: a (very) short overview

Data-flow extension to OpenMP

created dynamically

at runtime

. Tasks: units of work spawned as concurrent coroutines
. Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

output
window ff "I\
a .
|t___.': input
| .
task i |} Window ; Stream accesses dictate the
t .
1 ! % dependencies between tasks
|
|
i 2l
task -1

stream

OpenStream: a (very) short overview

Data-flow extension to OpenMP

created dynamically

at runtime

. Tasks: units of work spawned as concurrent coroutines
. Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

output
window "I\
a .
|>_____# input
| .
task W b g window k Stream accesses dictate the
| T .
- I % dependencies between tasks
Dagn
T |
St
task

stream

OpenStream: a (very) short overview

Data-flow extension to OpenMP

created dynamically

at runtime

. Tasks: units of work spawned as concurrent coroutines
. Streams: unbounded channels for communication between tasks

Tasks access stream elements through sliding windows:

output PES
window =% m
I|t___.l||nput
task I:: b .HW'“dOW |< Stream accesses dictate the
I tas

- il dependencies between tasks
i

Ol 1 NGy
Rt oo

1D Gauss-Seidel: stencil code granularity tuning

ofoto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofeto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofeto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

oS

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofoto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofeto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofeto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofoto

Sequential C [SeqC]

E for (j =1; j < N - 1; ++j) i

J >
OO OO0O0OOOO O Prrevious iteration
COOOO0000O0 (O Current iteration
i OCO0OO0OOHOOO00OO0
v O @0 O®O®®® O current grid point
00000000
000000000 @ Not yet computed
Q00000 Q0QOQ®OO \L El'ow dependence
000000000 1stance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

ofoto

OpenStream: Fine-grained tasks [OS-FG]
Sequential C [SeqC]

for (1 =0; 1 < I; ++1i)

o for (3 =15 3 < N - 1; +4]) 5 for (j = 1; < N - 1; ++j)

___ . task { |
i read once from S[j]; // phi[j] (discarded)
i . peek once from S[j - 1]; // phi[]j - 1] |
> i peek once from S[j + 1]; // phi[]j + 1] i
OO OOOO0OOO QO Previous iteration i write once into S[j].; // phi[j] i
O0000000O0 o | |
| 000 00000 (O Current iteration i // work function: i
v OO0 ®®®® O Curentgrid point . // phi[3] = (phi[j - 1] + phi[j + 1]) / 2; |
YXYXYXYXYx) i
000000000 () Not yet computed T T T T
0 000O0QOQQOGO \J/ Flow dependence
000000000 distance vector
00000000

1D Gauss-Seidel: stencil code granularity tuning

1) Semantically equivalent C code (SA)
2) Pluto source-to-source compiler
3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT]

j

>
000000000 o LTI,
so000000O i,
|l 090 @ 00090 Pluto-tiled task
z,, 0.9 ﬁ ORCR KO Flow dependence
soe0s000e ¥ I
0000600000
00000000
00000000 0C
0000600000

1D Gauss-Seidel: stencil code granularity tuning

1) Semantically equivalent C code (SA)
2) Pluto source-to-source compiler

3) OpenMP parallel code [OMP-PT]

4) OpenStream: Pluto-tiled tasks [OS-PT] OpenStream: Spatially tiled tasks [OS-ST]
/Y j»
Loop iteration/ .)

90000000 Q® ® ;i 000 000 000 O [Firhy
0000000 O Loop tile/ Q00000000 Spatiallv tiled task

| o000 00 0.0 Pluto-tiled task patially tiled tas

'y 0.0 ﬁ Q00 O Flow dependence i : :_:_:l':z : : Flow dependence
——> 1, distance vector v distance vector
00000000 OC between tiles Q00000 0CG0 between tiles
00000000 Q00000000
00000000 Q000000 QG0
00000000 OC Q000000 CG0
0090000000 Q00000000

7/15

1D Gauss-Seidel: results

3950 - 3180.89
67

2950 - 2712.80 = mll
H2650 - : N = 32769, I = 32768 DlT/SA
50 = [0S-PT] | [0S-ST] | [OMP-PT]
E 113]: 13.33 2T 26 > 26 213 22 > 22 -2T
A, B AT | 27 % 27 912 92 3 92 4T
8‘ ﬁ B 8T | 28 x 28 11 23 % 23 8T
5 10 -
v)
g 8 - 7.41
=< 7 -
S 6 |
=
% 5 - 4.30
< 4 - 3.56
% 3 - 9.61 2.74

0 :
[SeqC] [OS—FG_ [OS—PT] [OS—ST] [OMP-PT]

2D Gauss-Seidel: a visual picture

OpenStream: Fine-grained tasks [OS-FG]

Previous iteration
Current iteration
Current grid point

Not yet computed

Flow dependence
distance vector

«~ ®@ O O O

Q
| -
-
4+
R
Q.
©
>
D
>
qV)
[
O
Q
i
%)
%)
>
qV)
O
)
@\

OpenStream: Pluto-tiled tasks [OS-PT]

2
% S &
52 £°
O O
L * o
mn.lt/
o (eD]
8% 33 =
.lro)
pg.lep
ou 25 o
S g & S
A5 S
—_E A O

@
@

0
oNe
-
Gy
05

)
OOO
0
~%a
O5
O
OOO

0
o
o
O
o

OOOQ
OOOQ
OOOQ
OOOQ
O Q

OOO
©o
0
oFe
©0
0

Pluto-tiled task

Q
S
D)
i)
A
Q.
(©
D)
D
>
qu

2D Gauss-Seidel

OpenStream: Spatially tiled tasks [OS-ST]

OpenStream: Pluto-tiled tasks [OS-PT]

2D Gauss-Seidel: results

T 6.70 N x N = 2049 x 2049, I = 2048 —
0.0]
~ [0S-PT] | [0S-ST] | [OMP-PT] o
Q 6 - 2T | 22 x 259 % 2° | 28 x 28 | 22 x 22 x 92 AT
—5.b - AT | 25 x 25 x 25 | 8 x 28 | 22 x 22 x 22
5 8T | 2 x 25 x 2° | 27 x 27 | 22x 25 x 28 8T
75
45 -
S 4
.g 3.5 3.48
= 3 2.73 2.78
295
= 2 189
< 1.44 : 1.48
E 1.5) 1.22
& 1 .00
N
0.5 -
0

SeqC] [OS-PT] [OS-ST] [OMP-PT]

The polynomial problem

= e.g. parametric tiling

The polynomial problem

= e.g. parametric tiling

- Deadlock undecidability

» Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

The polynomial problem

= e.g. parametric tiling

- Deadlock undecidability

» Albert Cohen, Alain Darte, and Paul Feautrier. 2016. Static Analysis of OpenStream Programs

- Schedule found: no deadlock

= Paul Feautrier and Albert Cohen. 2018. On Polynomial Code Generation

Future work: bounding streams

output | - Dataflow task graph

window "I\
a k.
@ i M input
Ir--\l .
task i b M window
task

3:
|
] 0
Yarurad?

task

stream

Future work: bounding streams

3-element stream:

output | - Dataflow task graph deadlock
window (€ "\
i,l input
task :=r b |wmdow
[c :: task
I
i < <
\\.l-l.l-l!'
task
stream

Dataflow task graph: new edges (cycle)
Back-pressure dependencies

| (o:

Poly. model: “just” new schedule restrictions (no schedule)

Future work: bounding streams

3-element stream:

output | - Dataflow task graph deadlock
window (€ "\
i,l input
task :=r b |wmdow
[c :: task
I
i < <
\\.l-l.l-l!'
task
stream

Dataflow task graph: new edges (cycle)
Back-pressure dependencies
Poly. model: “just” new schedule restrictions (no schedule)

If schedule found: OpenStream’s runtime can schedule the program

Future work: coarsening task graphs

Dataflow task graph

Future work: coarsening task graphs

Arbitrary coarsening:
Dataflow task graph deadlock

Future work: coarsening task graphs

Arbitrary coarsening: e.g. coalescing instances of
Dataflow task graph deadlock the same task

Loop strip-mining, facilitated by stream mushing

Future work: coarsening task graphs

Arbitrary coarsening: e.g. coalescing instances of
Dataflow task graph deadlock the same task

Loop strip-mining, facilitated by stream mushing

If schedule found: OpenStream’s runtime can schedule the program

. Task-parallel dataflow programs can benefit from polyhedral transformations
- Analyses and transformations are hindered by polynomials
- Bounding streams: adding back-pressure dependencies and finding a schedule

- Granularity control: loop strip-mining? how do we align this w/ current techniques?

