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Abstract
We consider OpenStream, a streaming dataflow language
which supports the specification of concurrent tasks that
communicate through streams. Streams, in the spirit of clas-
sical process networks, have no restrictions on their size. In
order to deploy an OpenStream program on a chip, however,
the size of the streams has to be bounded. This constricts
the range of runtime behavior by restricting the schedules
to a subset of parallel executions where the required mem-
ory never surpasses the available resources. In this paper
we exploit an approach that, conservatively, certifies that
augmenting the intrinsic dataflow dependencies of the pro-
gram with stream bounding constraints does not deadlock
the program: it cannot show the existence of a deadlock but
can give a certificate for the absence thereof. The aim of
this work is to study the limitations of this stream bounding
strategy and to demonstrate how it can currently be used to
determine if an OpenStream program can execute under the
particular memory constraints of a given architecture.

Keywords Buffer bounding; Dataflow task-parallelism; Open-
Stream

1 Context
The industry is rapidly shifting to many-core architectures
and specialized hardware accelerators, e.g., GPUs, FPGAs
andASICs. The differing capabilities of these devices increase
the pressure on the programmer to develop both scalable
and performance-portable code, hindering the programming
process.

Task-parallel programming models are an answer to these
scalability, performance-portability and productivity issues
[3–8, 15, 18, 21, 24, 26, 28]. In particular, those based on
streaming dataflow principles, e.g., StreamIt [18, 28], ΣC [15],
OpenStream [26], have strong assets to follow this architec-
ture scaling trend. Computations are encapsulated in tasks,
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the program’s work units, that communicate through ex-
plicit, possibly unbounded data channels, or streams1. Task-
parallel dataflow programs can be represented by directed
graphs whose nodes are tasks and whose edges describe the
producer-consumer task dependencies resulting from stream
accesses. Each task’s execution is triggered by the availabil-
ity of its data operands, allowing latency to be naturally
hidden, as well as precise, point-to-point synchronization of
parallel activities. This is in stark contrast to fork-join and
barrier-based synchronization patterns which require expen-
sive global consensuses between workers. Hence, numerous
opportunities for parallelism are naturally exposed [16, 19],
including data, pipeline and task-parallelism [14]. This class
of languages also enforce functional determinism at the lan-
guage level, a desirable property inherited fromKahn Process
Networks (KPNs) [17] which form the basis for most modern
deterministic streaming languages.
In order to realize dataflow programs on a tangible chip

with bounded resources, streams cannot be allowed to grow
beyond the available memory on said device. This poses the
question of whether a given specification of a dataflow pro-
gram can execute under these restrictions. In this paper, we
explore a strategy first suggested in [10], based on polyhe-
dral model techniques, to answer such question for Open-
Stream programs. In essence, the dataflow, Read-after-Write
(RaW) producer-consumer task dependencies are augmented
with new, artificial, Write-after-Read (WaR) dependencies.
These prevent tasks from writing to a full stream by delaying
their execution to after other tasks first consume from the
stream, thereby freeing some memory. This contrasts with
the non-blocking, unconditionally successful writes to un-
bounded data channels of traditional KPNs and can introduce
deadlocks. Furthermore, as even in the polyhedral subset of
OpenStream, dependencies might be polynomial, deadlock
detection is a semi-decidable, undecidable problem [10]. On
the bright side, the polynomial extensions to the polyhedral
model developed by Feautrier [12] can be leveraged to obtain
a (polynomial) schedule, i.e., a task execution order, whose

1Tasks are also known in the literature as agents, actors, processes and filters.
Likewise, data channels or lines are also known as buffers. We adhere to
OpenStream’s nomenclature, which designates these structures as streams.
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existence certifies the absence of deadlocks. This enables an
approach which, conservatively, can certify the execution
of a dataflow OpenStream program on memory constrained
hardware. The aim of this work is not only to study the
limitations of this stream bounding strategy beyond its un-
decidability restraints, but also to outline some envisioned
use cases.
Section 2 provides a brief description of OpenStream, its

polyhedral fragment and the technique devised in [10, 12] to
compute polynomial dependencies and schedules. Section 3
outlines the strategy used to bound streams and illustrates
its limitations, while Section 4 sketches some guidelines for
using it in practice. Section 5 discusses the most closely
related work, before we conclude in Section 6.

2 OpenStream: Dataflow Task-Parallelism
OpenStream is a task-parallel streaming dataflow language
implemented as an extension to OpenMP supporting the
specification of fine-grained task, data and pipeline paral-
lelism [26]. The fully fledged computational model under-
lying the operational semantics of the language is detailed
in [25] and a simplified, partial-model is also defined in [11].
We briefly recall the three main concepts of OpenStream:
streams, dataflow tasks and the control program. We present
the restrictions placed upon OpenStreams programs for com-
patibility with the polyhedral model and review the technical
solutions used for computing dependencies and handling
polynomial schedules.

2.1 Streams and Tasks
A stream is a one-dimensional array of indefinite size, whose
elements are of the same type. Each element of a stream is
written using Dynamic Single Assignment (DSA), i.e., each
stream element is written at most once. Conceptually, a
stream 𝑠 has a read pointer 𝐽𝑠 and a write pointer 𝐼𝑠 that
define which elements of the stream are affected by subse-
quent read and write accesses. Streams themselves can also
be grouped in arrays of arbitrary size and dimension.
A task 𝑡 has a work function, i.e., an arbitrary sequence

of instructions acting on local variables and on a finite set of
streams. Access to each of the referenced streams is provided
through windows. A window on a stream 𝑠 is characterized
by the access type it provides (read or write), its horizon ℎ𝑡,𝑠 ,
and the burst𝑏𝑡,𝑠 . The horizon is a positive integer specifying
the size of the window. The burst is a non-negative integer
specifying the amount by which the stream’s read or write
pointer is shifted after task creation. The burst of a write
access window is equal to its horizon, guaranteeing single
assignment, i.e., dataflow-only dependencies. The burst of
a read access is either zero or equal to its horizon. A burst
of zero corresponds to the peek operation. Figure 1 depicts
how these concepts are used in OpenStream to express the
flow of data between producer and consumer tasks.
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Figure 1. Illustration of stream accesses and the evolution
of the read and write pointers for a stream 𝑠 with equal
bursts and horizons for all tasks, except 𝑡3, and a zero burst
for 𝑡3 (𝑏𝑡1,𝑠 = ℎ𝑡1,𝑠 = 3, 𝑏𝑡2,𝑠 = ℎ𝑡2,𝑠 = 2, 𝑏𝑡4,𝑠 = ℎ𝑡4,𝑠 = 5
and 𝑏𝑡3,𝑠 = 0, ℎ𝑡3,𝑠 = 3). (1) shows the initial state of the
stream before any access. In (2) and (3), producers 𝑡1 and 𝑡2,
respectively, are created and the write pointer 𝐼𝑠 updated.
Lastly, in (4) and (5), reader 𝑡3 and consumer 𝑡4, respectively,
are created and, as the former only peeks on 𝑠 , the read
pointer 𝐽𝑠 is advanced solely for 𝑡4.

Stream accesses throughwindows determine the producer-
consumer relationships: a task is a producer for another task
if its output window overlaps with the other task’s input
window. Such relationships are captured in the task graph,
such as the one in Figure 2 for the example of the stream
accesses in Figure 1.

2.2 The Control Program
All task creations take place in the control program, an ordi-
nary function containing task instantiation statements. Each
such statement includes the respective list of read and write
accesses to streams, each specified as a reference to a stream,
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Figure 2. Task graph for the example of Figure 1. Task 𝑡3
reads, without consuming, data produced by 𝑡1 and must
wait for its execution. Task 𝑡4 consumes data produced by
both 𝑡1 and 𝑡2 and, thus, must be executed after both 𝑡1 and
𝑡2 finish. Tasks 𝑡1 and 𝑡2, however, are dependency-free and
can be executed concurrently.

a burst and a horizon. The order of task creation is defined
by the order in which the control program executes the task
instantiation statements. This order defines all producer-
consumer relationships, since the read and write pointers at
each task creation only depend on the bursts of prior task
creations referencing the same streams. Note that the result-
ing producer-consumer relationships only partially define
the order of task execution: unrelated tasks can execute in
any order.

The control program for the example in Figures 1 and 2 is
specified below using the compact OpenStream pseudo-code
introduced in [10, 13]. This notation focuses on the depen-
dencies between tasks and generally omits the tasks’ work
function. It uses an extended C syntax for operations direct-
ing the control flow; declarations for parameters, streams and
stream arrays; and executable statements for task creation:

stream s;

task t1 {
write three times to s;

}

task t2 {
write two times to s;

}

task t3 {
peek three times from s;

}

task t4 {
read five times from s;

}

2.3 The Polyhedral Fragment of OpenStream
The analysis is confined to the subset of OpenStream in
which the control program fits the polyhedral model, as
first defined in [10]. We only consider programs that are
deterministic by construction, i.e., programs for which the
task creation order in the control program, and thus the
interleaving of data in streams, is determined statically. A
sufficient (but not necessary) condition is to require a se-
quential control program [25]. That is, the code of the tasks

themselves can be arbitrary, but nested task creation is not
allowed, i.e., tasks cannot instantiate other tasks. In addi-
tion, communication between tasks and the control program
using shared variables and OpenMP-inherited mechanisms
like firstprivate or copyin is not allowed. Control flow
stems, exclusively, from the textual sequence of statements,
affine conditional expressions and arbitrarily nested counted
loops with affine bounds in the surrounding loop iterators
and global parameters. The only executable statements are
task creation statements. Window bursts and horizons may
be numeric or parametric constants. Stream array indexing
must be affine.

2.4 Computing Dependencies and Schedules
If the control program fits in the polyhedral model, we can
statically compute closed form expressions for 𝐽𝑠 (𝑡) and
𝐼𝑠 (𝑡), the read and write pointers of a stream 𝑠 at a point
in the control program where task 𝑡 which reads from or,
respectively, writes to stream 𝑠 is instantiated. As, at each
task creation, these pointers are incremented by the burst, it
is enough to count the number of task creations which read
from or, respectively, write to 𝑠 and precede the creation of 𝑡
in the execution of the control program.

Since, within the constraints on the previous section, task
creations can be represented as integer tuples in the iter-
ation domain of their task instantiation statements and as
these are polyhedra, their count can be obtained using the
theory of Ehrhart polynomials [9] or Barvinok’s Brion gener-
ating functions [30] which are both available in the barvinok
library2. The result will, in general, be a polynomial.

As streams have the single assignment property, we need
only compute dataflow or RaW dependencies. For a task
𝑡 which writes to 𝑠 through window [𝐼𝑠 (𝑡), 𝐼𝑠 (𝑡) + 𝑏𝑡,𝑠 − 1],
and a task 𝑡 ′ which reads from 𝑠 through window
[𝐽𝑠 (𝑡 ′), 𝐽𝑠 (𝑡 ′) + ℎ𝑡 ′,𝑠 − 1], there is a dependency if the two
windows overlap, i.e., if:

𝐼𝑠 (𝑡) ≤ 𝐽𝑠 (𝑡 ′) + ℎ𝑡 ′,𝑠 − 1 ∧ 𝐽𝑠 (𝑡 ′) ≤ 𝐼𝑠 (𝑡) + 𝑏𝑡,𝑠 − 1. (1)

These dependencies inherit the polynomial nature of 𝐽𝑠 and
𝐼𝑠 and, thus, define semi-algebraic sets (which take the role
of dependence polyhedra in the polyhedral model).
Finding schedules over these semi-algebraic sets can be

achieved by leveraging Schweighofer’s theorem [27] and
Feautrier’s approach [12] which, respectively, play the role
of Farkas lemma and its algorithmic application in tradi-
tional tools. In a sentence, this entails finding a polynomial
function that can be written as a non-negative linear com-
bination of products of the polynomials that define the set.
Unfortunately, deciding on the existence of a schedule over
semi-algebraic sets is only semi-decidable. That is, if a sched-
ule is found then, by construction, it is guaranteed to be
valid and, thus, rules out the possibility of deadlocks. On the

2[Online] Available at http://barvinok.gforge.inria.fr.
3
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contrary, if no schedule is found, it could be that the search
space is limited by the order of the polynomial products
considered. As we cannot possibly exhaust all linear combi-
nations of higher degree in finite time, we cannot guarantee
the non-existence of a schedule and, therefore, the existence
of a deadlock.

3 Bounding Streams
We present a strategy to bound streams in OpenStream pro-
grams by introducing new WaR, ‘back-pressure’ dependen-
cies in the polyhedral representation of the program. A few
example OpenStream programs are presented which illus-
trate the procedure and its limitations.

3.1 Back-pressure Dependencies
If for a task execution schedule \ and a stream 𝑠 there ex-
ists a positive integer 𝑙𝑠 , for which all indices 𝑖 ≤ 𝑗 − 𝑙𝑠 are
dead (i.e. already both produced and consumed), whenever
position 𝑗 is written to by some task, then 𝑠 is effectively
bound by 𝑙𝑠 for \ . This suggests that we can first append
back-pressure dependencies that reproduce this behavior to
Equation 1 and only then look for a schedule. To do this,
we enforce all indices 𝑖 to be consumed before 𝑗 is written,
i.e., we introduce a dependency from a task 𝑡 which reads
from 𝑠 through [𝐽𝑠 (𝑡), 𝐽𝑠 (𝑡) + ℎ𝑡,𝑠 − 1] to a task 𝑡 ′ which
writes to 𝑠 through [𝐼𝑠 (𝑡 ′), 𝐼𝑠 (𝑡 ′) + 𝑏𝑡 ′,𝑠 − 1] whenever ∃𝑖 ∈
[𝐽𝑠 (𝑡), 𝐽𝑠 (𝑡) + ℎ𝑡,𝑠 − 1] and 𝑗 ∈ [𝐼𝑠 (𝑡 ′), 𝐼𝑠 (𝑡 ′) + 𝑏𝑡 ′,𝑠 − 1], such
that 𝑖 ≤ 𝑗 − 𝑙𝑠 , which is equivalent to:

𝐽𝑠 (𝑡) ≤ 𝐼𝑠 (𝑡 ′) + 𝑏𝑡 ′,𝑠 − 1 − 𝑙𝑠 . (2)

Once the dependencies captured by both Equation 1 and
Equation 2 have been added to the dependence relation,
Feautrier’s approach, as summarized in Subsection 2.4, can
be leveraged to find a schedule with bounded streams.
The following example illustrates the result of this pro-

cedure. It starts with a dataflow program with a schedule
\u with trivially-parallel reads and, independently, writes,
and obtains a purely sequential schedule \b when stream 𝑠

is bounded by 𝑙𝑠 = 2.

stream s;
parameter N;

for(k = 0; k < N; ++k)
task tw { // \u (𝑡w,𝑘 ) = 0; \b (𝑡w,𝑘 ) = 2𝑘
write two times to s; // 𝐼𝑠 (𝑡w,𝑘 ) = 2𝑘

}

for(k = 0; k < N; ++k)
task tr { // \u (𝑡r,𝑘 ) = 1; \b (𝑡r,𝑘 ) = 2𝑘 + 1

read two times from s; // 𝐽𝑠 (𝑡r,𝑘 ) = 2𝑘
}

Figure 3 illustrates how the back-pressure dependencies in-
troduced for 𝑙𝑠 = 2 force the execution of 𝑡w,𝑘 to succeed
𝑡r,𝑘−1 and precede 𝑡r,𝑘 .

 

……
… tw,k-2 tw,k-1 tw,ktw,k-3

tr,k-3 tr,k-2 tr,k-1 tr,k

Figure 3. Fragment of the dependence task graph for the
given example. This depicts the back-pressure dependencies
for 𝑡w,𝑘 as defined by Equation 2 for 𝑙𝑠 = 2 (dashed) and the
dataflow dependencies given by Equation 1 (solid).

We now provide a few examples that illustrate the limita-
tions of this procedure.

3.2 Non-causal schedules
A causal schedule \c is a schedule for which writes to a
given stream 𝑠 occur in the same order as their write pointer
indices advance, i.e., in the same order as the creation of
the corresponding tasks. In other words, if 𝑡 and 𝑡 ′ are two
producers in 𝑠 , and 𝑡 precedes 𝑡 ′ in the control program, then
𝐼𝑠 (𝑡) < 𝐼𝑠 (𝑡 ′), but also \c (𝑡) < \c (𝑡 ′).

Consider the following example:

stream s;
parameter N;

task tsink { // \ (𝑡sink) = 𝑁
read once from s; // 𝐽𝑠 (𝑡sink) = 0

}

for(k = 1; k < N; ++k)
task tw { // \ (𝑡w,𝑘 ) = 𝑁 − 𝑘

read once from s; // 𝐽𝑠 (𝑡w,𝑘 ) = 𝑘

write once to s; // 𝐼𝑠 (𝑡w,𝑘 ) = 𝑘 − 1
}

task tsource { // \ (𝑡source) = 0
write once to s; // 𝐼𝑠 (𝑡source) = 𝑁 − 1

}

The dataflow dependencies force the tasks in this program to
be sequentially executed in the reverse order of their creation.
Thus, this program only admits strict non-causal schedules
(as the one given in the listing):

∀𝑡, 𝑡 ′. 𝐼𝑠 (𝑡) < 𝐼𝑠 (𝑡 ′) → \ (𝑡 ′) < \ (𝑡).

However, any stream-bounding dependency of the type of
Equation 2 requires at least ‘partial causality’, i.e., for all in-
dices 𝑖 ≤ 𝑗 −𝑙𝑠 to be consumed before 𝑗 is written, Equation 1
also implies that they have to be produced before 𝑗 is written.
This cannot happen in the present program, and any such
dependency will add a cycle to the dependence task graph
in Figure 4 and thus introduce a deadlock.

It is important to note that this does not imply that 𝑠 can-
not be bounded. In particular, for 𝑙𝑠 ≥ 2 the program has a

4
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Figure 4. Fragment of the dependence task graph for the
given example. This depicts both the back-pressure depen-
dencies for 𝑡w,𝑘 for 𝑙𝑠 ≤ 2 (dashed) and the dataflow depen-
dencies (solid).

valid schedule, e.g., the schedule provided in the listing3. The
current strategy fails to capture this due to its implicit as-
sumption that streams are filled in a (partially) causal order,
which is not necessarily true for OpenStream programs. In
summary, this shows that ‘spurious’ deadlocks can be intro-
duced even for programs where streams can be effectively
bounded, as the current approach introduces artificial back-
pressure dependencies that go beyond bounding streams by
implicitly enforcing ‘some’ causality.

3.3 Minimizing stream sizes
The programmer could be interested in determining the
size 𝑙𝑠 of each stream 𝑠 such that the global surface of the
streams

∑
𝑠 𝑙𝑠 is minimized and there is no cycle in the de-

pendence graph. Unfortunately, this is not equivalent to a
multi-objective problem on the size of each individual stream.
In other words, the sizes of different streams are not inde-
pendent and therefore cannot be optimized separately and
successively, one after the other. Consider the following ex-
ample:

3Tasks execute atomically. When a producer task starts execution, it must
already have enough space to write to the stream. If, as when 𝑙𝑠 = 1, a
producer relies on itself to free the stream, the program deadlocks.

stream s, t;

task tws {
write two times to s;

}

task twt {
write three times to t;

}

task tcst {
write once to s;
read three times from t;

}

task tcts {
write two times to t;
read two times from s;

}

task trs {
read once from s;

}

task trt {
read two times from t;

}

If stream 𝑠 is minimized first, noticing that 𝑡ws requires 𝑙𝑠 ≥ 2,
we find the smallest bound 𝑙𝑠 = 2 is a solution if 𝑙𝑡 ≥ 5.
The bound on stream 𝑠 sequentializes the execution of 𝑡cst
after 𝑡cts, requiring a large enough bound on stream 𝑡 to
prevent the introduction of the reverse dependency, as seen
in Figure 5 (left). Conversely, if stream 𝑡 is optimized first,
𝑡wt requires 𝑙𝑡 ≥ 3, and we find 𝑙𝑡 = 3 is feasible for 𝑙𝑠 ≥ 3.
Figure 5 (center) shows the corresponding dependence graph.
Minimizing the global stream surface is a well-known

problem in the context of KPNs, and has been proven NP-
complete for as few as three tasks [20]. This example shows
how, for OpenStream, like for KPNs, a strategy that tries to
minimize each stream successively produces different results
depending on the order streams are considered in. Next, we
show how, unlike for KPNs, it is possible that none of the
identified solutions minimizes the global stream surface.
In fact, although within the scope of the back-pressure

dependencies strategy introduced in Subsection 3.1 these
solutions are both minimal for the component-wise order in
(𝑙𝑠 , 𝑙𝑡 ), neither solution minimizes the global stream surface.
In reality, even though a situation where 𝑙𝑠 = 2 and 𝑙𝑡 = 3
apparently introduces a deadlock, as seen in Figure 5 (right),
this is a ‘spurious’ deadlock of the type discussed in Subsec-
tion 3.2. For a (non-causal) schedule which executes each of
the two (unilaterally) connected components of the dataflow
dependence task graph one after the other, these bounds are
both respected: sequentially execute 𝑡ws, followed by 𝑡cts and
𝑡rt, and finally 𝑡wt, followed by 𝑡cst and 𝑡rs.

Furthermore, one should note that the determined global
stream surface does not correspond to themaximummemory
usage of the program. Notice that, even if our strategy were
able to identify 𝑙𝑠 = 2 and 𝑙𝑡 = 3 as the global stream surface
minimizer, the sequential schedule described above provides

5
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Figure 5. Dependence task graphs for the given example:
(left) and (center) for the two minimal stream size solutions
described in the text and (right) for the stream sizes that
minimize the global stream surface but cannot be identified
with the current strategy due to the ‘spurious’ deadlock.
This depicts both back-pressure dependencies (dashed) and
dataflow dependencies (solid).

an example of an execution where streams are never simul-
taneously fully utilized. In other words, at no point during
the execution do stream 𝑠 and stream 𝑡 simultaneously hold
two and three elements, respectively. This shows that, even
if a minimum global stream surface were to be found, this
would still be a conservative approximation of the actual
memory requirements of the program.

4 Guidelines for Practical Applicability
Despite the undecidability of the scheduling problem and the
‘spurious’ constraints introduced by the stream bounding
strategy, an approach can still be devised through which,
given the resource constraints of a particular target archi-
tecture, one can, conservatively, decide on the execution
feasibility of a particular OpenStream dataflow program.
Consider an arbitrary device, e.g., an FPGA, with some

memory of total size𝑀 and an OpenStream program with 𝑛
streams. We first compute all combinations of (𝑙𝑠 )1≤𝑠≤𝑛 such
that

∑𝑛
𝑠=1 𝑙𝑠 = 𝑀 through any suitable method, e.g., stars

and bars. Next, we build the dependence relation for each of
these combinations by leveraging Equation 1 and Equation 2.
Finally, we apply Feautrier’s approach [12] in order to find a
schedule. Once a schedule is constructed, we know that if
we enforce the same dependencies at runtime, the streams
are implemented as bounded streams in accordance to the
combination for which the schedule was built, thereby guar-
anteeing successful execution on said device. Note that it is
possible to take into account the resource requirements of
tasks’ work functions if these are known statically, as it is
likely the case for FPGA kernels. In that case, the method just
outlined is still applicable by replacing𝑀 with𝑀 ′ = 𝑀−𝑀wf

where 𝑀wf are the collective memory requirements of the
tasks’ work functions.
Constraining a dataflow program to run on such devices

can, however, diminish the amount of parallelism available.
Let us reconsider the example in Subsection 3.3. If 𝑀 = 8,
we may set 𝑙𝑠 = 3 and 𝑙𝑡 = 5, essentially making the program
free from back-pressure dependencies. The program can then
execute in three waves: first 𝑡ws and 𝑡wt simultaneously; then
𝑡cst and 𝑡cts; and lastly 𝑡rs and 𝑡rt. If, however,𝑀 = 6, the only
possibility is, within the proposed strategy, 𝑙𝑠 = 𝑙𝑡 = 3 which,
as we have seen, serializes the execution of 𝑡cts after 𝑡cst.

On the other hand, these memory constrained devices may
be massively parallel. Thus, even if some parallelism is lost
due to memory constraints, the parallelism opportunities
available might still greatly surpass the capabilities of many-
core CPUs. In addition, the specialized hardware they expose
to the programmer might also allow faster implementations
of tasks’ work functions, thereby compensating for the re-
strictions imposed by the constrained memory resources.

5 Related Work
Kahn Process Networks (KPNs) [17] underpin most modern
languages based on streaming computing concepts, including
OpenStream. Perhaps unsurprisingly, Parks [22] has shown
KPNs’ expressive power comes at the cost of undecidability
for deadlock detection and bounded buffering guarantees.

However, despite the similarities, OpenStream and KPNs
have subtle differences and the equivalence of the models is
still not fully understood. Unlike KPNs, OpenStream allows
streams to be read and written by several tasks; and, un-
like OpenStream, KPNs allow conditional decisions on what
streams to read from based on the data that circulates on the
streams. Nevertheless, Cohen et al. [10] have shown the same
undecidability properties hold for OpenStream programs.

This leaves a few options to the programmer willing to ex-
ploit data-centric programming models: (1) resort to models
with restricted expressive power like Synchronous DataFlow
(SDF) and Cyclo-Static DataFlow (CSDF) that statically pro-
vide deadlock-absence and bounded memory guarantees
[23]; (2) resort to approaches like the one described here
to, in practice, albeit conservatively, certify the execution
of more expressive dataflow programs on devices with con-
strained memory resources; or (3) rely on automated process
network generation from static control loop nests initially
written in an imperative language, like Verdoolaege’s Poly-
hedral Process Networks [29] which allow conservative esti-
mation of the required buffer sizes for a given schedule, but
are limited to polyhedral-amenable code. This choice will
probably be ultimately guided by the application domain, but
we believe that current and upcoming architectures require
dataflow models that are more expressive - even than the
polyhedral subset of OpenStream defined here - that allow ir-
regular, dynamic communication patterns and the execution
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of non-polyhedral code, e.g., as part of tasks’ work functions.
In this sense, the presented work builds on this insight and
motivates future work in this direction.

Lastly, regarding the stream minimization problem of Sub-
section 3.3, the work in [1, 2, 20] on buffer minimization
in the context of restricted KPNs, SDF and CSDF graphs
might pave the way for the same kind of optimizations in
OpenStream, or a subset of the language, in future work.

6 Conclusion
We showed how augmenting polyhedral OpenStream pro-
gramswith back-pressure dependencies can be used to bound
streams and statically, albeit conservatively, decide if said
programs can be executed in devices with limited memory.
We described how the current method is limited in its power
due to the introduction of ‘spurious’ deadlocks, the difficulty
of global stream minimization, the overestimation of actual
memory usage and deadlock detection undecidability.
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