Uniform Random Sampling in Polyhedra

Benoît Meister, Philippe Clauss

Reservoir Labs, INRIA CAMUS - University of Strasbourg
IMPACT 2020, 22 Jan 2020

Outline

(1) Refresher
(2) Motivation
(3) Method
(4) Trahrhe Expressions
(5) Conclusion

Refresher

Parametric polyhedron
Polyhedron : convex set delimited by affine (linear + constant) constraints.
Non-parametric :

$$
\begin{equation*}
P(x): A x+b \geq 0, x \in V \tag{1}
\end{equation*}
$$

Parametric : treat some variables as symbolic constants

$$
\begin{equation*}
P(x, N): A x+B N+c \geq 0,(x, N) \in V \tag{2}
\end{equation*}
$$

Example : $n \times m$ box in $2-d$ space

$$
\begin{equation*}
Q(i, j, n, m)=\left\{(i, j) \in \mathbb{Z}^{2}: 0 \leq i \leq n ; 0 \leq j \leq m\right\} \tag{3}
\end{equation*}
$$

Problem

Sample integer points uniformly in a bounded parametric polyhedron

- Each point has the same probability of being sampled
- Often, there is no (other) known prior
- Desirable property of a random search
- Simple to understand
- Integer points
- Generalizes trivially to any lattice, even real
- Parametric polyhedron
- Compute sampling function once, use it for any value of the parameters

Use cases
 1- Iterative compilation

- Look for a schedule using a search
- Without any known prior

1. Bastoul's method [Bastoul et al. 05, 16]

- Sample a hyper-rectangular superset of P
- Pull it back into P
- Minimizes distance w/ sampled schedule
- No obvious way to get uniform distribution
- Useful if the assumption is that solutions lie around the faces
- (Still not uniform within set of edge solutions)

Use cases

1- Iterative compilation
2. Pouchet's method [Pouchet et al. 07]

- Generate scanning loops of P
- Draw $d=[1, \# P]$ and stop when d points scanned
- Can adapt to uniform distribution by re-scanning every time - $O(n \# P)$ to draw n samples.
- Looking for a method that has a $O(n)$ cost

Use cases
 2- Stochastic Polyhedral Operators

Polyhedral model works with parametric polyhedra

- Don't know what their value will be in practice
- Automatic parallelization is about making choices
- Need to compare, relate, sort, etc. : relationship $\operatorname{rel}(A, B)$
- Problem when result is itself parametric : $\operatorname{rel}(A, B, N)$
- Valuable to know if relationship is mostly true
- Or to which amount (probability) it is true

Use cases
 2- Stochastic Polyhedral Operators

Naive method sometimes available. Let $C(N)$ be the domain of $\operatorname{rel}(A, B, N)$.

- Form the parameter sub-domain T of C.
- Probability $=\frac{\# T}{\# C}$
- Issues

Use cases
 2- Stochastic Polyhedral Operators

Naive method sometimes available. Let $C(N)$ be the domain of $\operatorname{rel}(A, B, N)$.

- Form the parameter sub-domain T of C.
- Probability $=\frac{\# T}{\# C}$
- Issues
- Can't always compute T
- E.g., compare $\# A(N)$ and $\# B(N)$
- Counting can be expensive

Use cases
 2- Stochastic Polyhedral Operators

- Compute a stochastic approximation of the relationship
- Sample (uniformly) : $E(r e l, A, B)=\frac{1}{|U|} \sum_{N \in U} \operatorname{rel}(A, B, N)$
- We can always compute $\operatorname{rel}(A, B, N)$
- Doesn't need polyhedral counting
- Can trade off speed for precision (\# samples)

Use cases
 3- Random testing

Some uses :

- Test programs where affine bounds are known on inputs
- Bounds can come from static or dynamic analysis, or both
- Generate random inputs for polyhedral libraries
- Generate parametric polyhedra
- Instantiate (some) parameters from sampling
- Explores size
- Generate random polyhedral programs to test a compiler
- R-Stream's nightly tests include this

Method
 General Idea

- Get a known bijective mapping from integer points of P to \mathbb{N} using ranking functions
- Invert the mapping - the trahrhe method to get invrank $_{P}(I, N)$
- sample uniformly $s \in[1, \# P(N)]$ and compute $X=\operatorname{invrank}_{P}(s$,
- since $\operatorname{invrank} k_{P}(s, N)$ is a bijection, X is sampled uniformly in P

Preliminaries
 Ehrhart Polynomials [Clauss 96, Clauss \& Loechner 98]

- Integer-valued polynomials
- Express the exact number of integer points contained in a polytope which depends linearly on integer parameters
- For a d-dimensional polytope depending on parameters $p_{1}, p_{2}, \ldots, p_{m}$:
Polynomial of degree d whose variables are $p_{1}, p_{2}, \ldots, p_{m}$, and whose coefficients are periodic numbers
- Can be automatically computed using existing algorithm implementations as the one of the barvinok library

Preliminaries

Ranking Polynomials [Clauss \& Meister 2000]

```
pc=0;
/* A general affine loop nest */
for(i}\mp@subsup{i}{0}{}=\mp@subsup{l}{0}{};\mp@subsup{i}{0}{}<\mp@subsup{h}{0}{\prime};\mp@subsup{i}{0}{+++}
    for(i}=\mp@subsup{l}{1}{}(\mp@subsup{i}{0}{}); \mp@subsup{i}{1}{}<\mp@subsup{h}{1}{}(\mp@subsup{i}{0}{}); \mp@subsup{i}{1}{}++
        for(id}=\mp@subsup{l}{d}{}(\mp@subsup{i}{0}{},\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{d-1}{}); \mp@subsup{i}{d}{}<\mp@subsup{h}{d}{}(\mp@subsup{i}{0}{},\mp@subsup{i}{1}{},\ldots,\mp@subsup{i}{d-1}{}); \mp@subsup{i}{d}{++}
        {
        pc++;
        if ((i0==j0) && ( }\mp@subsup{i}{1}{}==\mp@subsup{j}{1}{})&& ... && (id== j j ))
            printf("%d\n",pc);
        }
```

 I
 printf("\%d\n", RankingPolynomial(\(\left.\left.j_{0}, j_{1}, \ldots, j_{d-1}\right)\right)\);

Preliminaries

Ranking Polynomial : example

$$
P=\left\{(i, j, k) \in \mathbb{Z}^{3} \mid 0 \leq i<N, 0 \leq j \leq i, 0 \leq k<M\right\}
$$

Rank of $\left(i_{0}, j_{0}, k_{0}\right) \in P$
$=$ number of points that are lexicographically less than $\left(i_{0}, j_{0}, k_{0}\right)$ (included) :

$$
\begin{aligned}
& \hline \operatorname{Rank}\left(i_{0}, j_{0}, k_{0}\right)=\#\left\{(i, j, k) \mid(i, j, k) \unlhd\left(i_{0}, j_{0}, k_{0}\right),\right. \\
&0 \leq i<N, 0 \leq j \leq i, 0 \leq k<M\}
\end{aligned}
$$

where \unlhd denotes the lexicographic order

Preliminaries

Ranking Polynomial : example

$$
\begin{aligned}
(i, j, k) \unlhd\left(i_{0}, j_{0}, k_{0}\right) \Leftrightarrow & \left(i<i_{0}\right) \text { or }\left(i=i_{0} \text { and } j<j_{0}\right) \text { or } \\
& \left(i=i_{0} \text { and } j=j_{0} \text { and } k \leq k_{0}\right)
\end{aligned}
$$

$\Rightarrow \operatorname{Rank}\left(i_{0}, j_{0}, k_{0}\right)$ is the sum of 3 Ehrhart polynomials :
$\operatorname{Rank}\left(i_{0}, j_{0}, k_{0}\right)=\#\left\{(i, j, k) \mid 0 \leq i<i_{0}, 0 \leq j \leq i, 0 \leq k<M\right\}$

$$
\begin{aligned}
& +\#\left\{(i, j, k) \mid i=i_{0}, 0 \leq j<j_{0}, 0 \leq k<M\right\} \\
& +\#\left\{(i, j, k) \mid i=i_{0}, j=j_{0}, 0 \leq k \leq k_{0}\right\} \\
& =\frac{M i_{0}\left(i_{0}+1\right)}{2}+M j_{0}+k_{0}+1
\end{aligned}
$$

$$
=\frac{2 k_{0}+2 M j_{0}+M i_{0}^{2}+M i_{0}+2}{2}
$$

Preliminaries
 Ranking Polynomial

Properties of Ranking Polynomials :

- monotonically increasing over the integers, from 1 to the total number of points, relatively to the lexicographic order of the tuples
- define a bijection between the tuples and the interval of successive integers, between 1 and the total number of points

Trahrhe Expressions

> Ranking Polynomial: Affine loop indices tuple $\quad \rightarrow \quad$ Rank

> Trahrhe Expressions :
> Rank
> \rightarrow Affine loop indices tuple

$$
\text { Trahrhe Expressions }=\text { Ranking Polynomial }{ }^{-1}
$$

Trahrhe Expressions

Example

$$
P=\left\{(i, j, k) \in \mathbb{Z}^{3} \mid 0 \leq i<N, 0 \leq j \leq i, 0 \leq k<M\right\}
$$

(1) $\operatorname{Rank}(i, j, k)=\frac{2 k+2 M j+M i^{2}+M i+2}{2}$
(0) Solve $\operatorname{Rank}(s, 0,0)-p c=\frac{M s^{2}+M s+2}{2}-p c=0$. This equation has two solutions :

$$
s_{1}=-\frac{\sqrt{8 M p c+M^{2}-8 M}+M}{2 M}, s_{2}=\frac{\sqrt{8 M p c+M^{2}-8 M}-M}{2 M}
$$

When $p c=1, s_{2}=0$. Thus $t_{1}=\left\lfloor\frac{\sqrt{8 M p c+M^{2}-8 M}-M}{2 M}\right\rfloor$

Trahrhe Expressions

Example

(1) Solve $\operatorname{Rank}\left(t_{1}, s, 0\right)-p c=\frac{M t_{1}^{2}+M t_{1}+2 M s+2}{2}-p c=0$. This equation has one solution. Thus $t_{2}=\left\lfloor-\frac{M t_{1}^{2}+M t_{1}-2 p c+2}{2 M}\right\rfloor$
(2) $t_{3}=p c-\operatorname{Rank}\left(t_{1}, t_{2}, 0\right)=-\frac{2 M t_{2}+M t_{1}^{2}+M t_{1}-2 p c+2}{2}$

$$
\begin{aligned}
& \operatorname{Trahrhe}(p c)= \\
& \left(\left\lfloor\frac{\sqrt{8 M p c+M^{2}-8 M}-M}{2 M}\right\rfloor,\left\lfloor-\frac{M t_{1}^{2}+M t_{1}-2 p c+2}{2 M}\right\rfloor,-\frac{2 M t_{2}+M t_{1}^{2}+M t_{1}-2 p c+2}{2}\right)
\end{aligned}
$$

- Closed-form bijection invrank $_{P}$ from \mathbb{N} to the integer points of parametric polyhedron P
- Uniform sampling method in $O(n)$ for n samples
- Stochastic polyhedral relationships
- Tell us more about parametric polyhedra at compile time
- Have a built-in performance-precision tradeoff (n)
- Only cost n times the cost of the non-parametric relationship
- Ranking is defined for a lattice basis
- Many possible rankings, i.e., sampling functions
- Limited form of unbounded domains are supported

