
Generating SIMD Instructions for Cerebras CS-1
using Polyhedral Compilation Techniques

Sven Verdoolaege Manjunath Kudlur Rob Schreiber Harinath Kamepalli

Cerebras Systems

January 22, 2020



January 22, 2020 2 / 31

Outline

1 Target Architecture

2 Code Generation

3 SIMD Code Generation

4 Conclusion



Target Architecture January 22, 2020 3 / 31

Outline

1 Target Architecture

2 Code Generation

3 SIMD Code Generation

4 Conclusion



Target Architecture January 22, 2020 4 / 31

Cerebras CS-1

Largest chip ever built

46,225 mm2 silicon

1.2 trillion transistors

400,000 AI optimized cores

18 Gigabytes of On-chip Memory

9 PByte/s memory bandwidth

100 Pbit/s fabric bandwidth

TSMC 16nm process



Target Architecture January 22, 2020 5 / 31

Interesting Features

Dataflow scheduling in hardware
I Triggered by data
I Filters out sparse zero data
I Skips unnecessary processing

Powerful SIMD Engine
I Performs some number of operations per cycle
I Mimics normalized loop nest of depth at most four
⇒ removes overhead of software managed loops



Target Architecture January 22, 2020 6 / 31

Sparse Tensor Communication
Tensor 0 42 0

0 0 0

57 0 13

Dense Communication

0 42 0 0 0 0 57 0 13
send

Sparse Communication

break up tensor into chunks (e.g., rows)
only send

I non-zero entry + position in chunk
I end-of-chunk

42

1

57

0

13

2eoc eoc eoc
send



Target Architecture January 22, 2020 6 / 31

Sparse Tensor Communication
Tensor 0 42 0

0 0 0

57 0 13

Dense Communication

0 42 0 0 0 0 57 0 13
send

Sparse Communication

break up tensor into chunks (e.g., rows)
only send

I non-zero entry + position in chunk
I end-of-chunk

42

1

57

0

13

2eoc eoc eoc
send



Target Architecture January 22, 2020 7 / 31

Interesting Features

Dataflow scheduling in hardware
I Triggered by data
I Filters out sparse zero data
I Skips unnecessary processing

Powerful SIMD Engine
I Performs some number of operations per cycle
I Mimics normalized loop nest of depth at most four
⇒ removes overhead of software managed loops



Target Architecture January 22, 2020 7 / 31

Interesting Features

Dataflow scheduling in hardware
I Triggered by data
I Filters out sparse zero data
I Skips unnecessary processing

Powerful SIMD Engine
I Performs some number of operations per cycle
I Mimics normalized loop nest of depth at most four
⇒ removes overhead of software managed loops



Target Architecture January 22, 2020 8 / 31

SIMD Instructions
Loop code:

handle(uint16_t index , half data) {

for (int c3 = 0; c3 <= 4; c3 += 1)

for (int c4 = 0; c4 <= 4; c4 += 1)

dx_local [2 * dy_index_0 + c3][2 * index + c4] +=

(data) * (W_local [0][c3][c4]);

}

SIMD instruction:

handle(uint16_t index , half data) {

set_base_address(dx , &dx_local [2 * dy_index_0 ][2 * index]);

invoke_simd(fmach , dx, W, data , index );

}

void main() {

configure(/* 5,5; W_local: i,j -> 0,i,j; dx_local: i,j -> i,j */);

set_base_address(W, &W_local [0][0][0] );

}



Target Architecture January 22, 2020 8 / 31

SIMD Instructions
Loop code:

handle(uint16_t index , half data) {

for (int c3 = 0; c3 <= 4; c3 += 1)

for (int c4 = 0; c4 <= 4; c4 += 1)

dx_local [2 * dy_index_0 + c3][2 * index + c4] +=

(data) * (W_local [0][c3][c4]);

}

SIMD instruction:

handle(uint16_t index , half data) {

set_base_address(dx , &dx_local [2 * dy_index_0 ][2 * index]);

invoke_simd(fmach , dx, W, data , index );

}

void main() {

configure(/* 5,5; W_local: i,j -> 0,i,j; dx_local: i,j -> i,j */);

set_base_address(W, &W_local [0][0][0] );

}



Code Generation January 22, 2020 9 / 31

Outline

1 Target Architecture

2 Code Generation

3 SIMD Code Generation

4 Conclusion



Code Generation January 22, 2020 10 / 31

Code Generation Overview

LAIR code

DTG
codegen

C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)

LAIR map contains information in isl (V. 2010) notation about

the size of the target rectangle of PEs

how input and output tensors are communicated

where computations are performed



Code Generation January 22, 2020 10 / 31

Code Generation Overview

LAIR code

DTG
codegen

C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)

LAIR map contains information in isl (V. 2010) notation about

the size of the target rectangle of PEs

how input and output tensors are communicated

where computations are performed



Code Generation January 22, 2020 11 / 31

LAIR Example

lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

lair node

defines one or more output tensors in terms of input tensors

each statement has zero-based rectangular set of instances

LAIR is single assignment (at tensor level)

all accesses are affine (not piecewise, not quasi-affine)

each tensor in a statement is accessed through single index expression

Other nodes combine and/or specialize lair nodes
⇒ e.g., M = 32 and N = 16



Code Generation January 22, 2020 12 / 31

Code Generation Overview

LAIR code

DTG
codegen

C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)

LAIR map contains information in isl (V. 2010) notation about

the size of the target rectangle of PEs

how input and output tensors are communicated

where computations are performed



Code Generation January 22, 2020 12 / 31

Code Generation Overview

LAIR code

DTG
codegen

C-level code

LAIR map

LAIR

⇒ DSL written by hand or extracted from TensorFlow (Abadi et al. 2016)

LAIR map contains information in isl (V. 2010) notation about

the size of the target rectangle of PEs

how input and output tensors are communicated

where computations are performed



Code Generation January 22, 2020 13 / 31

LAIR Map Example

lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

Mapping of 32× 16 matrix vector multiplication to 4× 4 PEs.

PEx

PEy

x

y

size: { PE[4, 4] }

compute_map: { ff[i, j] -> PE[j//4, i//8] }

iport_map: { x[i=0:15] -> [PE[i//4, -1] -> index[i%4]] }

oport_map: { y[i=0:31] -> [PE[4, i//8] -> index[i%8]] }



Code Generation January 22, 2020 14 / 31

Task Graph Construction

Code generation consists of

Parse LAIR and LAIR map

Construct task graph

Detect SIMD opportunities

Write out code

Task graph construction: split LAIR specification into

communication tasks

computation tasks
Two types:

I react to incoming tensor element
I read in entire tensor or operate on local memory



Code Generation January 22, 2020 14 / 31

Task Graph Construction

Code generation consists of

Parse LAIR and LAIR map

Construct task graph

Detect SIMD opportunities

Write out code

Task graph construction: split LAIR specification into

communication tasks

computation tasks
Two types:

I react to incoming tensor element
I read in entire tensor or operate on local memory



SIMD Code Generation January 22, 2020 15 / 31

Outline

1 Target Architecture

2 Code Generation

3 SIMD Code Generation

4 Conclusion



SIMD Code Generation January 22, 2020 16 / 31

SIMD Code Generation

⇒ detect sets of computation instances that can be performed by SIMD instructions

⇒ determine
I supported instruction
I “fixed” instance set sizes
I accesses of the form

offset + linear in iterators

“fixed” sizes: may depend on PE, but not on tensor element
Otherwise, configuration needs to be performed before each invocation



SIMD Code Generation January 22, 2020 16 / 31

SIMD Code Generation

⇒ detect sets of computation instances that can be performed by SIMD instructions

⇒ determine
I supported instruction
I “fixed” instance set sizes
I accesses of the form

offset + linear in iterators

“fixed” sizes: may depend on PE, but not on tensor element
Otherwise, configuration needs to be performed before each invocation



SIMD Code Generation January 22, 2020 17 / 31

SIMD Instructions
Loop code:

handle(uint16_t index , half data) {

for (int c3 = 0; c3 <= 4; c3 += 1)

for (int c4 = 0; c4 <= 4; c4 += 1)

dx_local [2 * dy_index_0 + c3][2 * index + c4] +=

(data) * (W_local [0][c3][c4]);

}

SIMD instruction:

handle(uint16_t index , half data) {

set_base_address(dx , &dx_local [2 * dy_index_0 ][2 * index]);

invoke_simd(fmach , dx, W, data , index );

}

void main() {

configure(/* 5,5; W_local: i,j -> 0,i,j; dx_local: i,j -> i,j */);

set_base_address(W, &W_local [0][0][0] );

}



SIMD Code Generation January 22, 2020 18 / 31

Challenge

Recall:

lair node guarantees:

each statement has zero-based rectangular set of instances

all accesses are affine (not piecewise, not quasi-affine)

SIMD detection requirements:

“fixed” instance set sizes

accesses of the form
offset + linear in iterators

Trivial?



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j
Computation instances on PE:

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j
Computation instances on PE:

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 19 / 31

Trivial Example
lair matvec <T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {

all (i, j) in (M, N)

y[i] += W[i][j] * x[j]

}

compute_map: { ff[i, j] -> PE[j//4, i//8] }

Computation instances:

i

j
Computation instances on PE:

i

j4PEx
8PEy

Mapping to PEs

Arrival of x-value

⇒ Size: [8, 1]

⇒ Access to y: y[8PEy + i ′]

(local coordinates: i ′, j ′)



SIMD Code Generation January 22, 2020 20 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S

Construct { x : min ≤ x ≤ max }
Check equal to S
⇒ S is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 20 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S

Construct { x : min ≤ x ≤ max }
Check equal to S
⇒ S is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }

⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 21 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ not a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 22 / 31

Variable Compression
Variable compression (Meister 2004):

pick affine transformation (with inverse) mapping

lower-dimensional set to

full-dimensional set (in lower-dimensional space)

A

B
B[i ]→ A[1 + 2i , 3i ]



SIMD Code Generation January 22, 2020 22 / 31

Variable Compression
Variable compression (Meister 2004):

pick affine transformation (with inverse) mapping

lower-dimensional set to

full-dimensional set (in lower-dimensional space)

A

B
B[i ]→ A[1 + 2i , 3i ]



SIMD Code Generation January 22, 2020 23 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S

Construct { x : min ≤ x ≤ max }
Check equal to S
⇒ S is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 23 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S ′

Construct { x : min ≤ x ≤ max }
Check equal to S ′

⇒ S ′ is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ not a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

i

Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }

⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 24 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 25 / 31

Fixed Size Box Hull Approximation
Fixed size box hull approximation:

Result: box containing the input set with
I variable offset (in particular, may involve “index”)
I fixed size (in particular, does not involve “index”)

Approach: look for suitable constraints in representation of input set

May fail to produce a result

i

j

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)



SIMD Code Generation January 22, 2020 25 / 31

Fixed Size Box Hull Approximation
Fixed size box hull approximation:

Result: box containing the input set with
I variable offset (in particular, may involve “index”)
I fixed size (in particular, does not involve “index”)

Approach: look for suitable constraints in representation of input set

May fail to produce a result

i

j

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)



SIMD Code Generation January 22, 2020 25 / 31

Fixed Size Box Hull Approximation
Fixed size box hull approximation:

Result: box containing the input set with
I variable offset (in particular, may involve “index”)
I fixed size (in particular, does not involve “index”)

Approach: look for suitable constraints in representation of input set

May fail to produce a result

i

j

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)



SIMD Code Generation January 22, 2020 25 / 31

Fixed Size Box Hull Approximation
Fixed size box hull approximation:

Result: box containing the input set with
I variable offset (in particular, may involve “index”)
I fixed size (in particular, does not involve “index”)

Approach: look for suitable constraints in representation of input set

May fail to produce a result

i

j

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)



SIMD Code Generation January 22, 2020 25 / 31

Fixed Size Box Hull Approximation
Fixed size box hull approximation:

Result: box containing the input set with
I variable offset (in particular, may involve “index”)
I fixed size (in particular, does not involve “index”)

Approach: look for suitable constraints in representation of input set

May fail to produce a result

i

j

(also used by PPCG (V. et al. 2013) to obtain mapping to shared memory)



SIMD Code Generation January 22, 2020 26 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S ′

Construct { x : min ≤ x ≤ max }
Check equal to S ′

⇒ S ′ is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 26 / 31

Size Computation

Input: S : set of instances executed on a PE on arrival of a tensor element

Apply variable compression to S to obtain S ′

Try and compute fixed size box hull of S ′

If successful and extra instances write to disjoint locations, then use box size. Stop.

Compute element-wise minimum and maximum of S ′

Construct { x : min ≤ x ≤ max }
Check equal to S ′

⇒ S ′ is a dense box

Size: max−min + 1

Check size does not depend on “index”



SIMD Code Generation January 22, 2020 27 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Compute minimum and maximum

Construct { x : min ≤ x ≤ max }
⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 27 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Try and compute box hull

⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



SIMD Code Generation January 22, 2020 27 / 31

Convolution
lair C() : float16 x[8], float16 W[3] -> float16 y[6] {

all (w, rw) in (8 - 3 + 1, 3)

y[w] += x[w + rw] * W[rw]

}

compute_map: { C[w, rw] -> PE[0, 0] }

Computation instances:

w

rw

Compressed instances:

i
Arrival of x-value

Compress

Try and compute box hull

Extra instances write to disjoint
locations

⇒ a dense box

Size: max−min + 1

⇒ [1], [2] or [3] depending on “index”



Conclusion January 22, 2020 28 / 31

Outline

1 Target Architecture

2 Code Generation

3 SIMD Code Generation

4 Conclusion



Conclusion January 22, 2020 29 / 31

Conclusion

achieving good performance on Cerebras CS-1 requires generation of SIMD instructions

heuristics based approach can detect opportunities in many cases, using
I variable compression
I fixed size box hull approximation

effective use of polyhedral compilation techniques (other than affine scheduling)



January 22, 2020 30 / 31

References I

Abadi, Mart́ın, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng
(Nov. 2016). “TensorFlow: A System for Large-Scale Machine Learning”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, pp. 265–283.

Meister, Benôıt (Dec. 2004). “Stating and Manipulating Periodicity in the Polytope Model.
Applications to Program Analysis and Optimization”. PhD thesis. Université Louis Pasteur.

V., Sven (2010). “isl: An Integer Set Library for the Polyhedral Model”. In: Mathematical
Software - ICMS 2010. Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and
Nobuki Takayama. Vol. 6327. Lecture Notes in Computer Science. Springer, pp. 299–302.
doi: 10.1007/978-3-642-15582-6_49.

https://doi.org/10.1007/978-3-642-15582-6_49


January 22, 2020 31 / 31

References II

V., Sven, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and
Francky Catthoor (2013). “Polyhedral parallel code generation for CUDA”. In: ACM Trans.
Archit. Code Optim. 9.4, p. 54. doi: 10.1145/2400682.2400713.

https://doi.org/10.1145/2400682.2400713

	Target Architecture
	Code Generation
	SIMD Code Generation
	Conclusion
	Appendix
	References


