
Static Versioning in the Polyhedral Model
Adithya Dattatri

Reservoir Labs

New York, USA

dattatri@reservoir.com

Benoît Meister

Reservoir Labs

New York, USA

meister@reservoir.com

ABSTRACT
We present an approach to enhancing the optimization process in

a polyhedral compiler by introducing compile-time versioning, i.e.,

the production of several versions of optimized code under varying

assumptions on its run-time parameters. We illustrate this process

by enabling versioning in the polyhedral processor placement pass.

We propose an efficient code generation method and validate that

versioning can be useful in a polyhedral compiler by performing

benchmarking on a small set of deep learning layers defined for

dynamically-sized tensors.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies.

KEYWORDS
polyhedral model, versioning, compilers, high performance com-

puting, deep learning

ACM Reference Format:
Adithya Dattatri and Benoît Meister. 2021. Static Versioning in the Polyhe-

dral Model. In IMPACT 2021: The 11th International Workshop on Polyhedral
Compilation Techniques, January 16–18, 2021 (Virtual event). ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Polyhedral compilers [Baghdadi et al. 2019; Bondhugula et al. 2008;

Grosser et al. 2012; Meister et al. 2011; Strout et al. 2018; Verdoolaege

et al. 2013] can realize powerful optimizations and parallelization

of loop-based programs by deriving a polyhedral representation

of the loop code, performing intricate mathematical operation on

that representation, and then rendering the transformed polyhedral

representation as code. The final code can be rendered in a parallel

programming language (e.g., C with OpenMP or pthreads, CUDA)

or in a compiler’s internal representation, from which scalar, single-

thread optimization is performed.

Modern compilers are able to leverage optimization opportu-

nities arising under specific run-time conditions by generating a

variety of optimized code variants, and informing the runtime of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IMPACT 2021, January 16–18, 2021, (Virtual event)
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

when to use each variant. This process is called versioning (or some-

times multi-versioning) [A. Jimborean 2011; Chen and Long 2009;

Luo et al. 2009]. A typical example is when alias analysis is unable

to statically disambiguate two pointers. The compiler may detect

that if said pointers were not aliased, more instructions could be run

in parallel. If this is the case, the compiler may insert code that per-

forms a run-time non-aliasing test, uses the optimized code when

the test holds, and uses the unoptimized code otherwise [Sampaio

et al. 2017].

Versioning has been used in many ways by compilers, including

in the polyhedral raising phase mentioned previously. We discuss

other interesting uses, such as disambiguating array references,

extracting affine access functions out of polynomial-looking ones,

and enabling just-in-time polyhedral optimizations for otherwise

non-polyhedral programs, in Section 6. Here, we are interested in

leveraging the idea of versioning in the polyhedral representation.

Polyhedral mapping is the process of reordering operations and

data in a loop-based computation to produce an optimized version

of said computation, targeting a particular computer hardware

platform. We describe an implementation of versioning in the R-

Stream polyhedral compiler [Meister et al. 2011] and discuss how

we enabled the processor placement pass to use it.

1.1 Application domain
The need for versioning appeared important to us while mapping

deep learning codes. Tensor sizes are dynamic in some neural net-

works (as for instance [Wu et al. 2016], where a variable number

of objects can be detected), and it seems worthwhile to adapt the

polyhedral optimization strategy for layers that access these tensors

as a function of the run-time tensor sizes. Hence, while versioning

may be useful in other application domains, we use deep learning

layers to illustrate the utility of versioning in a polyhedral compiler.

1.2 Model of an optimized code region
To simplify the discussion, we assume, without loss of generality,

that the loop code region modeled by a polyhedral representation is

outlined [Zhao and Amaral 2005] into a function. This way, we can

refer to the optimized code region as a function and its live-in and

live-out values as the function’s formal parameters. By the same

token, we are looking at applying versioning to the values of the

function’s formal parameters.

After outlining is done, we consider programs with at least one

function with numerical (integer or rational) arguments that satisfy

either of the following conditions:

(1) At least one numerical argument of the function is defined

by a run-time value.

(2) The function is called with varied values for at least one

numerical argument.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

We note that recursive functions, which can be generated from

polyhedral programs [Vasilache et al. 2013], almost always satisfy

both conditions. However, we choose to focus on deep learning

layers, which are, in our experience, rendered as non-recursive.

1.3 Versioning approach
Typically, versioning occurs in (at least) one of three places:

(1) Prior to compilation, the user can incorporate knowledge

about the run-time values of the function arguments into the

program logic for consideration by the polyhedral compiler.

In R-Stream, this is explicitly supported for users through a

special pragma annotation.

(2) Just-in-time (JIT) compilation creates versions of code re-

gions, inwhich the function arguments are fixed to frequently-

used values. However, the type of versioning performed at

run-time compilation is limited by the need to minimize

compilation time. Hence, versions would be determined by

the run-time values of the function arguments. Furthermore,

polyhedral compilation is generally considered too slow to

be used in a JIT context.

(3) In ahead-of-time compilation, the compiler generates code

for a function with numerical arguments that conditionally

executes optimized and parallelized code upon checking the

run-time argument values.

1.4 Overview
In this paper, we provide an ahead-of-time approach to versioning

programs in the polyhedral model. In our approach, we attempt to

make minimal assumptions about the implementation and design

details of the underlying polyhedral compiler infrastructure. Hence,

we anticipate that any polyhedral compiler can be reasonably ex-

tended to support our approach to versioning. Having successfully

implemented our versioning approach in R-Stream, we describe

the salient issues and suggest how to address these in the relevant

sections.

We first provide enough background to understand the rest of

the paper in Section 2. Then, we detail our approach to polyhedral

versioning in Section 4. We validate the need for versioning experi-

mentally and its impact on compilation time in Section 5, using a

few examples from deep learning. Finally, we discuss related work

in Section 6 and provide further direction in Section 7.

2 BACKGROUND
This section offers an overview of the main concepts needed to

understand the technical description of the polyhedral versioning

approach presented here. First, we provide a brief introduction to

polyhedra in Section 2.1, which is the foundation for polyhedral

compilation. Then we state and name the main phases of polyhe-

dral compilation in Section 2.2; our approach will introduce modi-

fications to some these phases. Lastly, we describe the polyhedral

intermediate representation (IR) and introduce the conventional

terms accordingly in Section 2.3; our approach will be defined over

these terms.

2.1 Polyhedra
In a vector space 𝑉 , a polyhedron 𝑃 ⊆ 𝑉 is the set of solutions to a

set of linear inequalities

𝑃 : 𝐴𝑥 + 𝑏 ≥ 0, 𝑥 ∈ 𝑉 (1)

Geometrically, Equation (1) defines 𝑃 as the intersection of finitely

many half-spaces in 𝑉 given by the rows of 𝐴. A finite polyhedron

is called a polytope.

It is possible to consider a subset of the dimensions of𝑉 as special

variables, which do not get instantiated. Such variables are called

the parameters of the polyhedron. For example, let us consider a

parametric polytope example presented in [Clauss and Loechner

1998], which has two variables (𝑖, 𝑗) and two parameters (𝑛,𝑚):

Example 2.1.

𝑄 (𝑖, 𝑗) = {(𝑖, 𝑗) ∈ Z2 : 0 ≤ 𝑖 ≤ 𝑛; 0 ≤ 𝑗 ≤ 𝑚} (2)

𝑄 is the set of lattice points of the rectangle whose lower left and

top right corners are at (0, 0) and (𝑛,𝑚), respectively.

As hinted in Equation (2), in the polyhedral model of loops, we

are often interested in integer-valued points inside polyhedra [Schri-

jver 1998; Verdoolaege 2010].

2.2 Automatic parallelization flow
In the polyhedral model of compilation, there are three main phases:

raising, mapping and lowering. The raising phase translates the

program from the input form to the polyhedral IR. In the case of

R-Stream, the input source program is first translated to Sprig, a sea-

of-nodes compiler IR. Raising is then performed from Sprig. The

mapping phase performs the optimizations and parallelizations,

termed mapping decisions, on the polyhedral IR of the program.

The part of the polyhedral compiler that performs the mapping

phase is termed the (polyhedral) mapper. Finally, the lowering phase
translates themapped program from the polyhedral IR to the output

language.

2.3 Polyhedral IR
The polyhedral IR represents an approximation of the input code

that uses affine expressions and leads to safe dependencies. For

instance, code that writes to a data region that is not a polyhedron

but that can be bounded by a polyhedron can be represented as

accessing the bounding polyhedral region as "may write." The poly-

hedral IR used by R-Stream is based on Feautrier’s Generalized

Dependence Graph (GDG) [Darte et al. 2000; Feautrier 1992]. The

polyhedral model focuses on the optimization of nested loop code

that operate on multi-dimensional arrays. Hence, loop iteration do-

mains and array access functions are first-class elements of polyhe-

dral representations. GDG vertices represent polyhedral statements,

which define an iteration domain, an operation performed for each

iteration of the iteration domain, and a set of functions used to

access data represented as multi-dimensional arrays. GDG edges

represent pairwise dependence relationships between polyhedral

statements (vertices).

We distinguish two types of polyhedral statements here:

• ClientOps represent operations in the input function, asso-

ciated with their polyhedral iteration domain and the array

Static Versioning in the Polyhedral Model IMPACT 2021, January 16–18, 2021, (Virtual event)

access functions involved in said operations. The semantics

of a function raised into a GDG are fully captured by a set

of ClientOps.

• PseudoOps are operations introduced by the mapper to ex-

press a parallel mapping of code. Examples include DMA

transfers, barriers, thread spawning, asynchronous schedul-

ing of a task, function calls and others.

Each raised function in the input IR is initially represented in the

polyhedral IR as one GDG. The mapping process transforms the

GDG, often with relation to a hierarchy of GDGs, where each GDG

is analogous to a function. The GDG hierarchy can take the form

of a general graph (since recursive calls form cycles), but there is

always a root GDG, without predecessors, for each input function.

Calling the input function is equivalent to calling the root GDG.

Since the GDG hierarchy shape is largely that of a tree, we refer

to the source of an edge in the GDG hierarchy as a parent GDG. The
destination of an edge in the GDG hierarchy is called a sub-GDG.

The numerical function arguments (if any) of an input function

become the GDG parameters. The iteration domain and array access

functions of polyhedral statements may be functions of the GDG

parameters. Each GDG defines a polyhedral domain of the GDG

parameter values for which the GDG is “valid”. This validity domain

can represent preconditions to the function or simply the set of

values for which the polyhedral statements’ iteration domains are

not all empty. We refer to a GDG’s validity domain as the GDG’s

context throughout this paper.

3 MOTIVATION
TensorFlow [Abadi et al. 2016] is one of the leading Deep Learning

research frameworks out there. Users can use it to compose Deep

Learning models, train them, and finally deploy them for infer-

ence. As part of an effort to optimize inference for these models,

we built the very first polyhedral deep learning optimizer by cre-

ating a TensorFlow front-end to R-Stream [Pradelle et al. 2017] a

few years ago. This exposed us to models that repeat the use of

some layers with varying input tensor sizes (a good example of

this is ResNet [He et al. 2015], a family of residual neural nets).

Very often, these sizes are fixed, which allows the mapper to know

everything about the iteration domains and access functions of

the polyhedral statements representing the layers at compile time.

We observed that R-Stream’s polyhedral mapper made different

mapping decisions for different input sizes.

However, another set of neural networks use and produce tensors

whose sizes are only known dynamically (e.g., [Wu et al. 2016], an

object-detection net meant for autonomous driving). For example,

detection networks may detect a variable set of objects, depending

upon the input image. In these cases, some of the tensor sizes will

be unknown at compilation time, and they have to be treated as

parameters in the polyhedral IR.

Still, we want the mapping decisions to internalize the tensor

sizes, even though the mapper may not know much about the

particular run-time tensor sizes. The next section presents our

approach to solving this issue, based on versioning.

4 APPROACH
A naive approach would be to enumerate all possible values of the

parameters and optimize the code for each of them. Without prior

knowledge about the run-time values, this is not efficient let alone

practical, since this approach could generate unreasonably large

amounts of code or a GDG’s context can be unbounded.

Instead, we divide the space of all collections of parameter val-

ues into finitely many ranges. Then we let the mapper generate

mapping decisions for each range. Because the context of a GDG is

defined to be a polyhedron, we restrict our focus to ranges that are

polyhedral domains. Our approach to versioning can be realized as

the answers to the following questions:

(1) How to inform the mapper to incorporate a given context

sub-domain into its mapping process? (Section 4.1)

(2) How to auto-generate the useful context sub-domains? (Sec-

tion 4.2)

(3) How to generate the subsequent versioned code ? (Section

4.3)

The polyhedral mapping process in R-Stream is organized by

a mapping pass scheduler. An optimal list of polyhedral passes

(called a "strategy") is determined for the targeted architecture and

associated with the GDG to be mapped. Some polyhedral passes

created new GDGs. These GDGs are usually called by the GDG be-

ing mapped, making them their "child GDG" in the GDG hierarchy.

For instance, the thread generation pass splits a GDG into a master

GDG (to be executed by the master thread) and one or more slave

GDGs. The input GDG becomes the master GDG, and the slave

GDGs are now children to the master GDG. These new GDGs are

then themselves associated with a mapping strategy and queued

up to the mapping pass scheduler. The mapping process ends when

all the GDGs have been mapped.

With the versioning feature, polyhedral passes can now also

define extra versions of the GDG being mapped, by defining extra

context constraints (i.e., a sub-domain of the context)

4.1 Informing the mapper
In this section, we define how a polyhedral pass can let the mapping

scheduler know that it decided to create a new version of a GDG,

specialized to a sub-domain of the GDG’s context, andwhat happens

to the GDGs and mapping process. We introduce the notions of

a specialized GDG, SpecializeOp and specializer GDG. At code
generation, a specialized GDG would correspond to a version of the

input function. A SpecializeOp is a PseudoOp that keeps track of

a family of specialized GDGs, that is (in terms of code generation)

a family of versions for one input function. More formally, a family

𝐹 of specialized GDGs is a maximal set of GDGs where either of

the following conditions exclusively holds for 𝐺 ′ ∈ 𝐹 :

(1) ∃𝐺 ∈ 𝐹 where𝐺 ≠ 𝐺 ′ and𝐺 ′ is a specialized GDG generated

by specializing 𝐺

(2) 𝐺 ′ is the GDG from which all the other GDGs in 𝐹 were

directly or indirectly specialized

In the versioning process presented here, the members of a family

are created by applying the specialize procedure described below

in any of the polyhedral passes run during the mapping process.

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

The SpecializeOp is lowered into code that calls the function

lowered for a specialized GDG, upon checking that its context is

satisfied by run-time parameter values. A specializer GDG is created

by the mapper to contain a SpecializeOp. This GDG enables the

generation of a wrapper function in the lowered program that

contains the code of the SpecializeOp. This wrapper function
replaces the input function in the lowered program.

Now, a specialized GDG arises from the following process. When

the mapper is provided a GDG and a polyhedral domain over GDG

parameter values to specialize towards, the mapper clones the GDG

and adds the constraints to the clone GDG’s context, which will be

used to make mapping decisions. Specializing a specialized GDG is

quite possible and well-defined; this would result in adding another

GDG to the family of specialized GDGs.

For the mapper to keep track of the specialized GDGs and the

specializer GDG created, they must be carefully inserted into the

existing GDG hierarchy. A specializer GDG will be the parent GDG

(in the hierarchy) of all the GDGs in the family of specialized GDGs

that is given by the SpecializeOp contained in the specializer

GDG. Furthermore, the hierarchy must re-structured so that for a

family 𝐹 of specialized GDGs, only the corresponding specializer

GDG is “visible” to GDGs outside of 𝐹 in the hierarchy; said in

terms of code generation, the different function versions should

only be called by the wrapper function in the lowered program.

Creating a specializer GDG is a convenient way to handle all cases

of GDG hierarchy, including recursive calls, and GDGs with more

than one parent. In the simpler cases, the specializer GDG can be

later inlined to remove the associated extra function call.

We provide the specialize procedure that precisely gives our

approach. specialize takes as input a GDG 𝐺 and a set of affine

constraints 𝐶 and is defined in Algorithm 1.

A specialized GDG is a bad specialization if its context is empty

or if there already exists a version of this GDG with the same

context. Mapping an extra GDG 𝐺 ′ obviously requires extra work

from the mapper. Since polyhedral mapping time can be non-trivial,

an important trade-off between compilation time and optimization

potential exists. If somemapping passes have already occurred on𝐺

when specialize is called, two options are available. Repeating all

the mapping steps on 𝐺 ′ can enable more optimization, especially

if the behavior of these previous steps is conditioned by the context,

but it also likely doubles the compilation time of 𝐺 . Conversely,

starting the mapping process for𝐺 ′ at the beginning of the step that
called specialize introduces only a fraction of the total mapping

time for 𝐺 ′, but may miss some optimization opportunities.

Since each polyhedral pass that uses versioning can split the

context of the input GDG in two or more sub-domains, the number

of specialized GDGs can grow exponentially with the number of

such passes. To limit the risk of an exponential compilation time

blowup, the default behavior of specialize is the latter.

We note that it is not necessary to create a custom-polyhedral

statement if it is not supported by the polyhedral compiler infras-

tructure. The families of specialized GDGs can be maintained in

other parts of the mapper state. Moreover, in our work, 𝐶 is gener-

ated as per the procedure in Section 4.2.

Algorithm 1 Informing the mapper

procedure specialize(𝐺 , 𝐶)
Let 𝐺 ′ be a clone of 𝐺
Intersect the context of 𝐺 ′ with 𝐶
if 𝐺 ′ is a bad specialization then

return
else if parent 𝑃 of 𝐺 exists and is a specializer GDG then

Do nothing

else
Create a specializer GDG 𝐷

Create a new 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑂𝑝 𝑠 and add it to 𝐷

Add 𝐺 to the family of specialized GDGs in 𝑠

if parent 𝑃 of 𝐺 exists then
Set parent of 𝐷 to 𝑃

Remove 𝐺 as a subGDG of 𝑃

Add 𝐷 as a subGDG of 𝑃

end if
Set parent of 𝐺 to 𝐷

end if
𝐷 ← parent GDG (i.e., specializer GDG) for 𝐺

𝑠 ← 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑂𝑝 of 𝐷

Add 𝐺 ′ to the family of specialized GDGs in 𝑠

Set parent of 𝐺 ′ to 𝐷
Tell mapper to map 𝐺 ′

end procedure

4.2 Generating versioning constraints
Each polyhedral pass whose behavior is determined by parameters,

e.g., the size of iteration domains along certain dimensions, or the

way array access references relate to each other, is a candidate for

versioning. R-Stream has many passes, and an exhaustive review

of them in relation to versioning is outside the scope of this paper.

We choose to illustrate polyhedral versioning on the placement

pass, because its behavior varies strongly as a function of the itera-

tion domain sizes. Moreover, because it is a fairly unsophisticated

pass, our discussion can remain centered on versioning itself. The

goal of placement is to define, for each polyhedral statement, a

function from its iterations (i.e., any point of its iteration domain)

to processor coordinates. The R-Stream machine model represents

processing entities in a multi-dimensional hyper-rectangular grid.

Hence, placement functions typically have as many dimensions as

the targeted processor grid. Let 𝑃𝑙 be the placement function of

statement 𝑜𝑝 . For any value of the parameters 𝑁 ∈ Z𝑝 , iteration
𝐼 ∈ Z𝑛 of 𝑜𝑝 gets executed by processor 𝑥 = 𝑃𝑙 (𝐼 , 𝑁).

With the OpenMP[Board 2020] target, the default placement

heuristic in R-Stream enumerates the loop dimensions of the poly-

hedral statements and tries to select the outermost loop dimension.

A major test that determines the behavior of placement is checking

whether a placement function would occupy the whole processor

grid. We call this the occupation test. The test holds when the loop

dimension considered for placement to a given processor grid di-

mension is large enough, that is when its trip count is at least the

size of the targeted processor grid dimension. When this test fails,

the pass declines to distribute the loop across the targeted processor

grid dimension and tries the next inner eligible loop, by default.

Static Versioning in the Polyhedral Model IMPACT 2021, January 16–18, 2021, (Virtual event)

Unfortunately, when a loop’s trip count depends upon GDG pa-

rameters and when the context does not bound these parameters,

the occupation test is undecidable. Before versioning was intro-

duced, our placement pass made the unchecked assumption that

the parameters are large enough for the occupation test to be true.

With versioning, we make this assumption explicit, by creating a

version where the assumption is not met.

Because the trip count of a loop often varies as a function of

outer loop dimensions, occupation tests can be defined and used

alternatively. For instance, we could decide that the average trip

count must occupy the grid dimension, or weighted averages among

the statements sharing the loop, or the maximum, etc. While several

of these tests are available from the placement pass, we chose to use

the maximum. The maximum trip count is obtained by computing

parametric bounding box of the loop’s trip count domain and taking

the difference (plus one) between the upper and lower bound of the

bounding box.

Another key parameter of the placement pass is its “occupancy”

(let us denote it with 𝑐). Occupancy defines the number of loop

iterations per processor (along a given processor grid dimension).

Occupancy can play a different role depending upon the targeted

architecture. An occupancy greater than one is often used with

programming models supporting dynamic scheduling and load bal-

ancing, reflecting a desire to over-provision work. An occupancy

less than one is often used with statically scheduled targets, when

these have a large amount of processing elements along the consid-

ered dimension, indicating that using a fraction of the grid is still

profitable.

Placement declines to distribute a loop if its trip count is less

than 𝑐 times the targeted processor grid size. The user might set the

occupancy to
1

2
to use only half the processors (using a command-

line parameter). On the other hand, the user may require at least

two iterations of the given loop per processing element by setting

the occupancy to two.

When placement selects a loop for placement along dimension

𝑘 of the processing grid, and its trip count is a parametric function

𝑡 (𝑁), we let placement trigger the mapping of a specialized GDG

by calling specialize on the current GDG in the placement pass

and the following affine constraint

𝑡 (𝑁) ≤ 𝑐.𝑝𝑔(𝑘)
where 𝑝𝑔(𝑘) is the size of the processor grid along dimension 𝑘 .

This constraint informs the mapper that 𝑡 (𝑁) is not large enough
when mapping the specialized GDG.

4.3 Versioned code generation
Code generation of the specialized GDGs does not require any

modification to support versioning. Specialized GDGs do not have a

special status in the lowering phase. Hence, this section of the paper

focuses on modifications made to the lowering phase to generate

code for a specializer GDG and in particular its SpecializeOp.
Consider a specializer GDG 𝐷 with SpecializeOp 𝑠 . Let 𝑛(𝑠)

denote the size of the family of specialized GDGs contained in 𝑠 .

Let {𝐺𝑖 }𝑖∈[𝑛 (𝑠)] denote the family of specialized GDGs in 𝑠 and let

{𝐶𝑖 }𝑖∈[𝑛 (𝑠)] be the contexts where𝐶𝑖 is the context of𝐺𝑖 with #(𝐶𝑖)
many constraints. A specializer GDG will correspond to a function

in the lowered program that checks for a specialized GDG’s context

whose constraints are satisfied by the run-time argument values

and calls that function lowered for that specialized GDG. While the

context of multiple specialized GDGs 𝐺 and 𝐺 ′ may be satisfied

by a given run-time value, even when 𝐺 ′ is not (transitively) a
specialization of𝐺 . If not, the first GDG in the SpecializeOp’s list is

selected. Our code generation algorithm only enforces that if 𝐺 ′ is
(transitively) a specialization of 𝐺 ,𝐺 ′ is selected. We note that this

design choice does not affect correctness. Allowing overlapping

contexts prevents us from computing complicated non-convex con-

texts, which would result in an explosion of conditionals. Instead,

we enforce that only one GDG of a given family is executed for

any valid value of the original GDG’s parameters using if/else
constructs. Here is a simple approach to generate code for 𝑠:

if (𝐶1) {

call the function lowered for 𝐺1

}

else if (𝐶2) {

call the function lowered for 𝐺2

}
.
.
.

else if (𝐶𝑛) {

call the function lowered for 𝐺𝑛

}

With this code, there is the possibility of re-evaluating the same

constraint more than once across different if-statements when the

contexts share constraints. Furthermore, when𝐺𝑖 is called, all con-

texts𝐶 𝑗 for 𝑗 ≤ 𝑖 need to be checked, which can create unnecessary

overhead. We provide a heuristic that generates code for a spe-

cializer GDG, and which does not check any constraint more than

once for a given set of run-time values, but might check some extra

constraints, relative to the constraints of the context of the GDG

that the run-time values satisfy. We proceed to provide details of

this heuristic, which is run after mapping and in the beginning of

the lowering phase.

4.3.1 Specialization tree. Our code generation heuristic involves

constructing a specialization tree for each SpecializeOp, which
mirrors the structure of a conditionally branched code. We note

this tree is not to be confused with the GDG hierarchy. We use

this rooted-tree directly to generate the code for a single special-

izer GDG. We define two types of nodes in the specialization tree,

namely Cnd and FnCall. We let each Cnd node maintain a set of

constraints over the GDG parameters to be lowered into checking a

condition over the numerical function arguments and each FnCall
node maintain a reference to a specialized GDG, whose correspond-

ing function is to be called. The leaves of the tree will be of type

FnCall and all other nodes will be of type Cnd. Each Cnd node will

have between one and two children. If a Cnd has one child, then the

child corresponds to the true branch of the conditional. Otherwise,

if a Cnd node has two children, there will be a distinguished left and
right child, which will correspond to the true and false branches

of the conditional, respectively. Both types of nodes maintain a

Boolean flag indicating whether it is in a true (nested if) or false

branch (same-level else).

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

4.3.2 Tree generation. In this phase where the tree is first gen-

erated, each of the Cnd nodes of the tree will have only one con-

straint. We require the following pre-conditions to hold for the

SpecializeOp 𝑠 prior to tree generation:

(1) No two contexts of specialized GDGs in 𝑠 are equal.

(2) No specialized GDG in 𝑠 has an empty context.

To ensure the first condition, for every pair of GDGs that have the

same context, we remove one of them from 𝑠 . To ensure the second

condition, we remove GDGs with empty contexts from 𝑠 . After the

pre-conditions are ensured to hold and prior to tree generation,

we also assert that the family of specialized GDGs has at least two

specialized GDGs. These steps form our pre-processing. Due to the

first condition, each GDG uniquely corresponds to a context.

We now define a recursive procedure tree-gen to generate the

tree. The goal is to select the available constraints from all the

GDG contexts and turn them into nested if/else conditionals. Some

constraints are shared among contexts, other constraints include,

exclude or intersect GDG contexts. tree-gen takes in four argu-

ments: 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 , 𝑖𝑠𝑇𝑟𝑢𝑒 and 𝑝𝑡𝑁𝑜𝑑𝑒 . 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 is a

set of contexts (and thereby their corresponding GDGs) that are left

to be captured by FnCall nodes. 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 is a set of constraints
that remain available for use by Cnd nodes; here we treat two con-

straints as equal if and only if they include the same integer points.

𝑖𝑠𝑇𝑟𝑢𝑒 is a Boolean flag that indicates whether the current node

being constructed is directly within a true or false branch. Lastly,

𝑝𝑡𝑁𝑜𝑑𝑒 is the Cnd node that will be the parent of the current node

being constructed. The procedure returns the root node of the spe-

cialization tree, which is of type Cnd. In the first call to tree-gen

(after pre-processing), we set the argument values as follows:

(1) 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠: union of the specialized GDG contexts

(2) 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 : union of all specialized GDG context constraints

(3) 𝑖𝑠𝑇𝑟𝑢𝑒 : true in our convention, but does not matter for root

(4) 𝑝𝑡𝑁𝑜𝑑𝑒: null

On a high-level, the tree-gen proceeds as follows:

(1) When 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1, pick a differentiating constraint

𝑐 from 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 that differentiates two contexts 𝐶1 and

𝐶2 in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠; in other words, 𝑐 includes either 𝐶1 or 𝐶2

and does not include the other. Such a 𝑐 must exist when

𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1 (proved in Lemma 4.1).

(2) When 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 = 1, pick any 𝑐 from 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 that

includes a context in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 . If no such 𝑐 exists, then bind

the specialized GDG corresponding to the one remaining

context in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 to a FnCall node and return the node.

Otherwise, proceed with the next steps.

(3) Create a Cnd node and add 𝑐 to the node’s set of constraints.

(4) Partition 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 into those included (true branch) and

not included (false branch) by 𝑐 . Recursively call tree-gen on

both of these partitions to build the rest of the specialization

tree. We remove 𝑐 from 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 before these sub-calls as

it will not be used in the false branch sub-call and should

not be chosen again in the true branch sub-call. We add back

𝑐 after the sub-calls, as it can be used in other parts of the

specialization tree. Return the Cnd node created in this call.

We provide representative pseudocode for the specialization tree

generation in Algorithm 2.

Algorithm 2 Tree generation

procedure tree-gen(𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 , 𝑖𝑠𝑇𝑟𝑢𝑒 , 𝑝𝑡𝑁𝑜𝑑𝑒)

if 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1 then
𝑐 ← 𝑑𝑖 𝑓 𝑓 𝐶𝑠𝑡𝑟 (𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠, 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠)
assert 𝑐 exists

else
if exists 𝑐 that includes context in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 then

𝑐 ← 𝑐𝑠𝑡𝑟 𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝐶𝑡𝑥 (𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠, 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠)
else ⊲ FnCall node case

𝑔← 𝑐𝑡𝑥𝑇𝑜𝐺𝐷𝐺 (𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑔𝑒𝑡 ())
𝑓 𝑛𝐶𝑎𝑙𝑙𝑁𝑜𝑑𝑒 ← new 𝐹𝑛𝐶𝑎𝑙𝑙 (𝑖𝑠𝑇𝑟𝑢𝑒, 𝑔)
assert 𝑝𝑡𝑁𝑜𝑑𝑒 ! = 𝑛𝑢𝑙𝑙

𝑝𝑡𝑁𝑜𝑑𝑒.𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑 (𝑓 𝑛𝐶𝑎𝑙𝑙𝑁𝑜𝑑𝑒)
return 𝑓 𝑛𝐶𝑎𝑙𝑙𝑁𝑜𝑑𝑒

end if
end if
𝑐𝑛𝑑𝑁𝑜𝑑𝑒 ← new 𝐶𝑛𝑑 (𝑖𝑠𝑇𝑟𝑢𝑒) ⊲ Cnd node case

𝑐𝑛𝑑𝑁𝑜𝑑𝑒.𝑎𝑑𝑑𝐶𝑠𝑡𝑟 (𝑐)
if 𝑝𝑡𝑁𝑜𝑑𝑒 ! = 𝑛𝑢𝑙𝑙 then

𝑝𝑡𝑁𝑜𝑑𝑒.𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑 (𝑐𝑛𝑑𝑁𝑜𝑑𝑒)
end if
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐶𝑡𝑥𝑠 ← 𝑐𝑡𝑥𝑠𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐵𝑦 (𝑐) ⊲ subset of 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠

𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐)
𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐶𝑡𝑥𝑠)
tree-gen(𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐶𝑡𝑥𝑠 , 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 , 𝑇𝑟𝑢𝑒 , 𝑐𝑛𝑑𝑁𝑜𝑑𝑒)

if 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 is not empty then
tree-gen(𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 , 𝐹𝑎𝑙𝑠𝑒 , 𝑐𝑛𝑑𝑁𝑜𝑑𝑒)

end if
𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 .𝑎𝑑𝑑 (𝑐)
return 𝑐𝑛𝑑𝑁𝑜𝑑𝑒

end procedure

Lemma 4.1. If 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1, there exists a constraint in
𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 that differentiates between two contexts in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 .

Proof. Suppose 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1, but none of the constraints

in 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 differentiates between two contexts in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 .

Consider two contexts 𝐶1 and 𝐶2 in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , which must be

distinct by the pre-processing. There must be a differentiating con-

straint 𝑐 that includes either 𝐶1 or 𝐶2 and does not include the

other. 𝑐 must have been removed in a previous call for which the

current call is (transitively) a sub-call of, for otherwise 𝑐 would be

in 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 . This implies that 𝑐 was added to the set of constraints

of the Cnd node created in this previous call. However, if this were

the case, 𝐶1 and 𝐶2 would not appear in the same 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , a

contradiction. □

Lemma 4.1 shows that the claim made in the first high-level step

is well-defined. We now prove Lemma 4.2, which implies that for

each FnCall node, the corresponding GDG context is equivalent

to the intersection of the conditions on the path from the root to

the node.

Lemma 4.2. Given a FnCall node 𝑥 , for each constraint 𝑐 of the
corresponding GDG context𝐶 , there will exist an ancestor Cnd node 𝑎
that contains 𝑐 in its set of constraints. Furthermore, if 𝑎 has a Cnd
child node𝑤 that is an ancestor of 𝑥 , then 𝑖𝑠𝑇𝑟𝑢𝑒 must be set for𝑤 .

Static Versioning in the Polyhedral Model IMPACT 2021, January 16–18, 2021, (Virtual event)

Proof. Suppose that for a FnCall node 𝑥 , there is some con-

straint 𝑐 of the corresponding GDG context 𝐶 such that no Cnd
node ancestor of 𝑥 contains 𝑐 in its set of constraints. Now consider

the call to tree-gen that generates 𝑥 . 𝑐 would be in the 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠

of this call. However, creating a FnCall node only occurs when

there are no constraints in 𝑎𝑣𝑎𝑖𝑙𝐶𝑠𝑡𝑟𝑠 that cover the one remaining

context in 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 , a contradiction. This implies the existence

of a Cnd node ancestor 𝑎 that contains 𝑐 . Furthermore, if 𝑎 has a

Cnd child node𝑤 that is an ancestor of 𝑥 , the 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝐶𝑡𝑥𝑠 of the

call that generates 𝑎 would contain 𝐶 and𝑤 would be generated in

the first sub-call, that is with the 𝑖𝑠𝑇𝑟𝑢𝑒 argument set to 𝑇𝑟𝑢𝑒 . □

In Lemma 4.3, we show that we do not need to check too many

constraints in addition to the constraints of a specialized GDG’s

context to get to the corresponding function call.

Lemma 4.3. Let 𝑠 be a SpecializeOp with family of specialized
GDGs {𝐺𝑖 }𝑖∈[𝑛 (𝑠)] and contexts {𝐶𝑖 }𝑖∈[𝑛 (𝑠)] where𝐶𝑖 is the context
for𝐺𝑖 . In the specialization tree for 𝑠 , the path length from the root to
the FnCall node that is associated to 𝐺𝑖 is ≤ 𝑛(𝑠) + #(𝐶𝑖).

Proof. When 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 > 1, a call partitions 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠

into two sets of size at most 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠.𝑠𝑖𝑧𝑒 − 1. In this way, ≤ 𝑛(𝑠)
calls are required to get 𝐶𝑖 to be the only remaining context in

𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 . Then we need to generate ≤ #(𝐶𝑖) many Cnd nodes for

the remaining constraints of 𝐶𝑖 . □

Lemma 4.3 also implies that the depth of a specialization tree for

𝑠 is ≤ 𝑛(𝑠) +max𝑖∈[𝑛 (𝑠)] #(𝐶𝑖). When calling the lowered function

for 𝐺𝑖 , the conditions when our heuristic is guaranteed to beat the

simple approach (as far as checking fewer constraints) is given by

the following inequality:

𝑛(𝑠) + #(𝐶𝑖) ≤
𝑖∑
𝑗=1

#(𝐶 𝑗) ⇒ 𝑛(𝑠) ≤
𝑖−1∑
𝑗=1

#(𝐶 𝑗)

We sum over all 𝑖 ∈ [𝑛(𝑠)] to arrive at the following inequality:

𝑛(𝑠)2 ≤
𝑛 (𝑠)∑
𝑖=1

𝑖−1∑
𝑗=1

#(𝐶 𝑗) =
𝑛 (𝑠)−1∑
𝑖=1

#(𝐶𝑖) · (𝑛(𝑠) − 𝑖)

When this inequality holds, we use the heuristic over the simple

approach. Furthermore, to make the heuristic better, in the first

high-level step, we pick the constraint that results in a partition

of 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 into sets that are as close to being equal in size as

possible. Ideally, if we are able to select a constraint that exactly

partitions 𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑡𝑥𝑠 into equal sized sets in every call to tree-gen,

then the 𝑛(𝑠) in the upper bound of Lemma 4.3 becomes log
2
(𝑛(𝑠)),

which justifies this additional optimization.

4.3.3 Tree collapsing. To render the output code more readable

and compact, nested if statements (without same-level else state-

ments) are collapsed into one if statement that uses a conjunction

of the conditionals. While several related simplifications or col-

lapses could be applied, it is not clear that they would actually

improve readability. We are not expecting to improve performance

here, since the backend compiler will presumably generate equiv-

alent CFGs regardless of whether these extra transformations are

performed.

5 RESULTS
In this section, we first describe the infrastructure we use for testing

as well as the the neural network layers we benchmark. Then

we describe our benchmarking procedure. Lastly, we show and

analyze the performance benefits of versioned code and display the

compilation time overhead for our versioning method. We want to

compare the behavior of versioned programs with non-versioned

ones, for a varying problem size.

5.1 Benchmarking infrastructure
In Section 5.3, we evaluate the performance benefits of using ver-

sioning in the placement pass on three neural network (NN) layers:

(1) fc: a fully connected layer in which the input and output

sizes are equal (i.e., square matrix multiplication)

(2) convolution_googlenet: GoogLeNet’s [Szegedy et al. 2014]

first convolution

(3) maxpool_resnet: a residual NN that uses MaxPooling

We use parametric versions of these codes, in which one or more

loop bounds are given by a numerical parameter of the layer func-

tion. In fc, we parameterize on the length of the input vector; we

refer to this parameter as 𝑄 . In convolution_googlenet, we parame-

terize on the number of images handled in a single batch; we refer

to this parameter as 𝑏𝑎𝑡𝑐ℎ. In maxpool_resnet, we parameterize

on the height of the images; we refer to this parameter as ℎ𝑒𝑖𝑔ℎ𝑡 .

We note that 𝑄 , 𝑏𝑎𝑡𝑐ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 are positive integer parameters.

We use an empirical upper bound for these parameters, which we

derive from bounds used in constant-size versions of the layers.

To benchmark these codes, we embed them into a program with

microkernel structure. Here, a microkernel structure consists of

the code that is embedded in it as well as the following functions:

initialize_once, initialize, kernel, check. The kernel method is the

main source of program behavior, and in our case, calls the NN code.

Furthermore, a microkernel supports running the kernel method

for any specified fixed number of trials and specifying run-time

parameter values to be used by the kernel method. Both the number

of trials and parameter values may be provided via command-line

arguments to the microkernel. The execution of a microkernel

consists of the following steps:

(1) Call the initialize_once function

(2) For each trial, do the following:

(a) Call the initialize function

(b) Call the kernel function

(c) Call the check function, which checks if the kernel cor-

rectly performed its computation

In each trial, the cache is flushed right after the initialize function,

but before the kernel function. Upon finishing a run, the microker-

nel displays the execution time of the kernel method totaled across

all trials. The microkernels are written in C. Our test machine is

a Ubuntu 18.04.5 64-bit server that has a Intel Xeon W-2245 CPU

@ 3.90GHz processor, which features one socket, eight cores per

socket and two threads per core.

5.2 Benchmarking procedure
For benchmarking, we restrict our focus to R-Stream’s OpenMP

backend, which generates C code that features R-Stream-generated

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

optimizations and parallelizations (i.e., OpenMP constructs). In an

attempt to make full utilization of our test machine’s compute re-

sources, we set OMP_NUM_THREADS to 16. R-Stream dynamically

chooses among a collection of LP solvers at compile-time, which is

used to perform various polyhedral tasks. To remove any variability

that might arise here, we fix the LP solver prior to compilation to

COIN-OR [cbc 2008]. We fed R-Stream with a machine model that

represents the machine with the parameters given by the lscpu
tool. gcc is used as the backend compiler to R-Stream with the

-march=native -O3 -fno-trapping-math options.
For our specific selection of NN codes, R-Stream with versioning

enabled generates the following simple conditional branching:

if (𝑝𝑎𝑟𝑎𝑚 ≤ 𝑙𝑖𝑚𝑖𝑡) {

call 1st version of NN code

} else {

call 2nd version of NN code

}

Here, 𝑝𝑎𝑟𝑎𝑚 is a placeholder for𝑄 , 𝑏𝑎𝑡𝑐ℎ, and ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑙𝑖𝑚𝑖𝑡 is a

placeholder for a constant that the placement pass chooses based on

the processor grid size and the occupancy option (see Section 4.2).

Our test machine has a processor grid with 16 processing elements.

For performance benchmarking, we use the following procedure

given a fixed NN code’s microkernel, occupancy setting and value

for 𝑝𝑎𝑟𝑎𝑚:

(1) Compile the microkernel with the fixed occupancy setting

using R-Stream w/ versioning and R-Stream w/o versioning

(2) Run the versioned microkernel with the fixed value for

𝑝𝑎𝑟𝑎𝑚 for five trials (to dampen OpenMP variability)

(3) Run the non-versioned microkernel with the fixed value for

𝑝𝑎𝑟𝑎𝑚 for five trials

(4) Compute the execution time speed-up

Regarding occupancy, we toggle between 1x and 2x, which re-

sults in 16 and 32 (respectively) for the values attained in place of

𝑙𝑖𝑚𝑖𝑡 . While the reason for setting 1x occupancy is to maximize

processor utilization, the reason for setting 2x occupancy is to

leverage the dynamic load-balancing provided by OpenMP. The

set of values for 𝑝𝑎𝑟𝑎𝑚 that we use for a microkernel is given by

the following ranges: [1, .., 𝑙𝑖𝑚𝑖𝑡], eight equally-spaced points in

[𝑙𝑖𝑚𝑖𝑡 + 1, .., 𝑝𝑎𝑟𝑎𝑚] and [𝑙𝑖𝑚𝑖𝑡 + 1, .., 2 · 𝑙𝑖𝑚𝑖𝑡]. We choose these set

of values for 𝑝𝑎𝑟𝑎𝑚 to provide an equal-sized window for running

both versions of code, to show how the versioning scales with re-

spect to no-versioning, and to keep the visualization of the results

simple. Here is the formula we use to calculate speed-up:

run time of optimized code w/o versioning

run time of optimized code w/ versioning

5.3 Performance benchmarking
5.3.1 fc. To increase legibility of the speedup results for fc, we

have split their representation between the 𝑄 ≤ 𝑙𝑖𝑚𝑖𝑡 and 𝑄 >

𝑙𝑖𝑚𝑖𝑡 ranges. The fully-connected layer (Figures 1 and 2) is the

most dramatic of our examples, because placement chooses to not
parallelize the code for low values of 𝑄 (i.e., 𝑄 ≤ 𝑙𝑖𝑚𝑖𝑡) in the

specialized version. It is a sobering reminder that parallelizing

small matrix multiplications across cores on a cache machine is not

advisable. The random-looking speedups are due to the low absolute

computation time, leading to higher performance variability, and

to penalties incurred by false sharing. Setting the threshold to 32,

as in Figure 2 (top) confirms this observation, with a smoother

behavior as the absolute computation time grows. In the bottom

plots of Figures 1 and 2, the speedup revolves around 1x, which

confirms that the versioned code behaves like the non-versioned

code (up to the remaining variability due to OpenMP), when the

non-specialized GDG is selected. This is true for all the benchmarks

(as seen in the right halves of Figures 3, 4, 5 and 6). This is not

surprising, since the optimization of the non-specialized GDG is

unchanged by the versioning process.

Figure 1: Speed-ups for fc, 1x occupancy

5.3.2 convolution_googlenet. The convolution example exposes a

side-effect of choosing to restart the mapping process at the place-

ment pass for the specialized GDG. At this stage, tiling decisions

have been made, on the basis of a large number of iterations along

the batch dimension. This resulted in “fat” tiles, leaving only a few

iterations in the inter-tile dimensions resulting from the height and

width dimensions, which are fixed in the input program. As a result,

these inter-tile dimensions do not pass the occupation test and the

sequential code is used.

Starting a full mapping for the specialized version would have

had the potential to use these loop dimensions for placement, at

the expense of a doubled mapping time. We plan to evaluate the

exact impact of a full mapping in further work.

Static Versioning in the Polyhedral Model IMPACT 2021, January 16–18, 2021, (Virtual event)

Figure 2: Speed-ups for fc, 2x occupancy

Still here, a sequential mapping performs two to three times

better than a parallelization along the batch dimension for small

values of the batch size.

Figure 3: Speed-ups for convolution_googlenet, 1x occu-
pancy

5.3.3 maxpool_resnet. The scenario is slightly different for max-

pool, in that the bound on the second loop (out_h) is parametric

but linked to the value of the outermost loop (height). In this exam-

ple, the other dimensions are fixed and did not pass the occupation

Figure 4: Speed-ups for convolution_googlenet, 2x occu-
pancy

test. Again, we are comparing a sequential version with parallelized

ones on small versions of the kernel, and they win.

Figure 5: Speed-ups for maxpool_resnet, 1x occupancy

Figure 6: Speed-ups for maxpool_resnet, 2x occupancy

In all cases, the parallel branch had a self-contained #pragmaomp

parallel for, while the sequential branch had none. We did not

check if the sequential path avoided some of the OpenMP runtime

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

overhead, such as starting threads. Such an overhead avoidance

would contribute to the speedups.

While there is a clear benefit to using versioning in the place-

ment pass, here we have only shown cases where a sequential (but

optimized for cache locality and vectorized) version can be faster

than a parallel one. In the future, we would like to explore different

parameterizations of kernels and find out cases where a different

parallelization is happening.

It could be argued that the absolute run time of the small-size

examples is not significant enough to warrant paying the extra

compilation cost, or the extra code size. The answer depends upon

how often such small-size occurrences appear in the execution of

the targeted program. This could be determined by profiling, i.e.,

instrumenting the program, running it on representative inputs,

and counting the proportion of “small” cases. The result would be a

decision to use the versioning option of the placement pass or not.

Also, some hardware platforms have tight instruction memories,

and polyhedral versioningmay not be reasonable. This issue is more

generally applicable to versioning, and can be tackled by exploring

configurations with and without versioning through auto-tuning.

Finally, with this selection of benchmarks targeted to OpenMP,

we have considered that the cost of the added conditional code

was negligible. This may not be the case for more complicated

specializations, which have more specialization constraints.

5.4 Compilation cost for versioning
For measuring the compilation time overhead that results from

versioning, for a fixed occupancy setting and microkernel, we com-

piled the microkernel using R-Stream + versioning and R-Stream

for ten iterations and computed the geometric mean slowdown

over the ten iterations. Here is the formula we use for slowdown:

R-Stream compilation time w/ versioning

R-Stream compilation time of w/o versioning

As demonstrated by Figure 7, the cost of compiling code with ver-

sioning turned on is not much more than compiling with just R-

Stream.

Figure 7: Versioning compilation time overhead

A method that has been used in other compilers is to use polyhe-

dral enumerators [Clauss et al. 1997; Verdoolaege 2007] to estimate

the distributed loop trip count, and dynamically set the number of

threads to one if the trip count is too small. This method is specific

to placement and OpenMP (not as easy to implement in other par-

allel programming languages), and since we are addressing a more

general issue, we did not think it was worth performing a formal

comparison in this paper. However, the difference is clear. Code size

and compilation time would be smaller, but optimization oppor-

tunities could be lost. Also, openmp is not used in our sequential

version, saving some overhead as compared to that method.

6 RELATEDWORK
Versioning has been used before in the context of polyhedral com-

pilation, although not with the same objectives.

6.1 Raising
Grosser’s work [Grosser et al. 2015] de-flattens one-dimensional

arrays that are accessed through polynomial functions of the loop

counters and size parameters into multi-dimensional arrays with

affine access functions. This process generates affine conditions on

the parameters for the de-flatttening to be applicable. When these

conditions are not met at run-time, an unoptimized version of the

function is selected. Practically speaking, the affine conditions be-

come part of the context of the GDG associated with the optimized

function. This context is then unmodified by the mapping process.

6.2 Polyhedral JIT
PolyJIT [Simbürger et al. 2019] takes a more direct approach to poly-

hedral Just-In-Time (JIT) compilation, by detecting non-polyhedral

functions that become polyhedral when some of its parameters are

instantiated. A polyhedral compilation (using Polly [Grosser et al.

2012]) is then triggered at run time for new instances of these param-

eters. Metaphorically, versions produced by the PolyJIT mechanism

correspond to equalities in the context of the GDG associated with

the function. This system works well when a limited number of

combinations of the versioned parameters are used at run time,

which amortizes polyhedral compilation times over the number of

executions of the function. In contrast, in our approach the number

of polyhedral compilations is not dependent upon the number of

dynamic instances of a GDG’s parameters.

The Apollo project [Caamano et al. 2017] is a daring approach to

using the polyhedral model in a Just-In-Time manner. To reduce JIT

code generation time, code fragments called code bones are gener-
ated at compile-time and assembled into code at runtime. Run-time

polyhedral dependence tests inform the code fragments assembly

into parallel, speculative code, which gets JITed. Recent work on

Apollo adds true runtime multi-versioning to this process [R. Laz-

cano 2020]. In contrast with PolyJIT, this work introduces a form

of mini-auto-tuning, where the best code version for a given value

of the parameters is selected from a fixed set of mappings gener-

ated at runtime, and then memoized to avoid redundant assembly

overhead.

The true power of these JIT approaches is that they make the

polyhedral model available to programs that cannot leverage it at

compile time. In that sense, they enlarge the application domain of

polyhedral optimization.

6.3 Nested conditional optimizations
We have explored some heuristics to reduce the overall number of

conditionals being tested in the nested conditional code that defines

which version is to be executed.

This question has been tackled in the more general context of

control flow optimization of arbitrary programs. A full review of

Static Versioning in the Polyhedral Model IMPACT 2021, January 16–18, 2021, (Virtual event)

this field would not be useful in this paper, although we note that

this question is particularly critical in the problem of reverse if-

condition [Warter et al. 1993].

Our work differs in that we have the advantage of knowing that

all our conditionals are affine relationships and that conjunctions

thereof form a polyhedral context. This allows us to drive code

generation based on loose and tight inclusion relationships.

Optimal ordering of conditionals can also be informed by execu-

tion traces, as in profile guided optimizations [Pettis and Hansen

1990]. However, since we are generating these conditionals from a

partition of a polyhedral context, it can be more effective to com-

pute the importance of each context at compile-time, either by

using polyhedral counting methods [Clauss et al. 1997; Verdoolaege

et al. 2007] or through polyhedral sampling [Meister and Clauss

2020] of the context.

7 CONCLUSION
While this paper focuses on the logistics and impact on perfor-

mance of applying versioning within a polyhedral mapper, there is

much to explore. We touched upon trade-offs made to avoid paying

for improved run-time performance with an explosion of versions

and a subsequently long compilation time. While we focused on

placement, several other polyhedral passes can benefit from special-

ization, raising new questions. How should the number of created

versions be controlled, in order to get the best trade-off between

compilation time with run-time performance? We are also curious

about which polyhedral passes best benefit from versioning for a

given target machine. Comprehensive uses of versioning will also

better leverage the qualities of our conditional code generation

heuristics.

Even though the placement use case could be explored further, by

identifying parametric kernels that trigger more complex mapping

behaviors than the ones observed in this paper, we believe this

work successfully demonstrates the usefulness of compile-time

versioning in the polyhedral model.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department

of Energy, Office of Science, Office of Advanced Scientific Comput-

ing Research under Award Numbers DE-SC0017071, DE-SC0018480,

and DE-SC0019522.

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liabil-

ity or responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or

service by trade name, trademark, manufacturer, or otherwise does

not necessarily constitute or imply its endorsement, recommenda-

tion, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government

or any agency thereof.

REFERENCES
2008. Cbc User’s Guide: http://www.coin-or.org/Cbc/index.html.
Ph. Clauss A. Jimborean, V. Loechner. 2011. Handling Multi-Versioning in LLVM: Code

Tracking and Cloning. InWIR 2011: Workshop on Intermediate Representations, in
conjunction with CGO.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
265–283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrah-

man Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amaras-

inghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable

Code.

OpenMP Architecture Review Board. 2020. OpenMP Application Programming Inter-

face, Version 5.1.

U. Bondhugula, A. Hartono, J. Ramanujan, and P. Sadayappan. 2008. A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer. In ACM SIGPLAN Pro-
gramming Languages Design and Implementation (PLDI ’08). Tucson, Arizona.
http://www.cse.ohio-state.edu/~bondhugu/publications/uday-pldi08.pdf

Juan Manuel Martinez Caamano, Aravind Sukumaran-Rajam, Artiom Baloian, Manuel

Selva, and Philippe Clauss. 2017. APOLLO: Automatic speculative POLyhedral

Loop Optimizer. In 7th International Workshop on Polyhedral Compilation Techniques
(IMPACT) (Stockholm, Sweden).

X. Chen and S. Long. 2009. Adaptive multi-versioning for OpenMP par-allelization via

machine learning. In 15th Int. Conf. on Parallel andDistributed Systems (ICPADS).
Philippe Clauss and V. Loechner. 1998. Parametric Analysis of Polyhedral Iteration

Spaces. J. VLSI Signal Process. Syst. 19, 2 (1998), 179–194. https://doi.org/10.1023/A:

1008069920230

P. Clauss, V. Loechner, and D. Wilde. 1997. Deriving formulae to count solutions

to parameterized linear systems using Ehrhart polynomials: Applications to the

analysis of nested-loop programs. citeseer.ist.psu.edu/clauss97deriving.html

A. Darte, Y. R., and F. Vivien. 2000. Scheduling and Automatic Parallelization.
Birkhäuser.

Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling Problem. Part I.

One-dimensional Time. International Journal of Parallel Programming 21, 5 (Oct.

1992), 313–348. citeseer.ist.psu.edu/feautrier92some.html

Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly - Performing

Polyhedral Optimizations on a Low-Level Intermediate Representation. Parallel
Processing Letters 22, 4 (2012). http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#

GrosserGL12

Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayappan, and Sebastian Pop.

2015. Optimistic Delinearization of Parametrically Sized Arrays. In Proceedings
of the 29th ACM on International Conference on Supercomputing (Newport Beach,

California, USA) (ICS ’15). Association for Computing Machinery, New York, NY,

USA, 351–360. https://doi.org/10.1145/2751205.2751248

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385

http://arxiv.org/abs/1512.03385

L. Luo, Y. Chen, C. Wu, S. Long, and G. Fursin. 2009. Finding representative sets of

optimizations for adaptive multiversioning applications. In International Workshop
on Statistical and Machine learning ap-proaches to ARchitectures and compilaTion
(Paphos Chypre).

Benoît Meister and Philippe Clauss. 2020. Uniform Random Sampling in Polyhedra. In

IMPACT 2020 - 10th International Workshop on Polyhedral Compilation Techniques.
Bologna, Italy. https://hal.inria.fr/hal-02425752

Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Baskaran, Allen Leung, and

Richard Lethin. 2011. R-Stream Compiler. In Encyclopedia of Parallel Computing,
David Padua (Ed.). Springer Reference.

Karl Pettis and Robert C. Hansen. 1990. Profile guided code positioning. In Proceed-
ings of the ACM SIGPLAN’SO Conference on Programming Language Design and
Implementation (White Plains, New York).

Benoıt Pradelle, Benoıt Meister, Muthu Baskaran, Jonathan Springer, and Richard

Lethin. 2017. Polyhedral Optimization of TensorFlow Computation Graphs. In 6th
Workshop on Extreme-scale Programming Tools (ESPT) at The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC17).

E. Juárez Ph. Clauss R. Lazcano, D. Madroñal. 2020. Runtime multi-versioning and spe-

cialization inside a memoized speculative loop optimizer. In Compiler Construction
(San Diego, CA, USA). 96–107.

Diogo N Sampaio, Louis-Noël Pouchet, and Fabrice Rastello. 2017. Simplification and

runtime resolution of data dependence constraints for loop transformations. In

Proceedings of the International Conference on Supercomputing. 1–11.
A. Schrijver. 1998. Theory of Linear and Integer Programming. Wiley. https://books.

google.com/books?id=zEzW5mhppB8C

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
http://www.cse.ohio-state.edu/~bondhugu/publications/uday-pldi08.pdf
https://doi.org/10.1023/A:1008069920230
https://doi.org/10.1023/A:1008069920230
citeseer.ist.psu.edu/clauss97deriving.html
citeseer.ist.psu.edu/feautrier92some.html
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
https://doi.org/10.1145/2751205.2751248
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://hal.inria.fr/hal-02425752
https://books.google.com/books?id=zEzW5mhppB8C
https://books.google.com/books?id=zEzW5mhppB8C

IMPACT 2021, January 16–18, 2021, (Virtual event) Adithya Dattatri and Benoît Meister

Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian Lengauer. 2019.

PolyJIT: Polyhedral Optimization Just in Time. Int J Parallel Prog 47 (2019), 874—-

906. https://doi.org/10.1007/s10766-018-0597-3

M. M. Strout, M. Hall, and C. Olschanowsky. 2018. The Sparse Polyhedral Framework:

Composing Compiler-Generated Inspector-Executor Code. Proc. IEEE 106, 11 (2018),

1921–1934. https://doi.org/10.1109/JPROC.2018.2857721

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.

Going Deeper with Convolutions. CoRR abs/1409.4842 (2014). arXiv:1409.4842

http://arxiv.org/abs/1409.4842

Nicolas Vasilache, Muthu Baskaran, Tom Henretty, Benoît Meister, M. Harper

Langston, Sanket Tavarageri, and Richard Lethin. 2013. A Tale Of Three Run-

times. arXiv:1409.1914.

S. Verdoolaege. 2007. barvinok: User Guide (version 0.25). http://www.kotnet.org/

~skimo/barvinok/barvinok.pdf

Sven Verdoolaege. 2010. isl: an integer set library for the polyhedral model. In Pro-
ceedings of the Third international congress conference on Mathematical software
(ICMS’10). ACM Press, 299–302.

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian

Tenllado, and Francky Catthoor. 2013. Polyhedral Parallel Code Generation for

CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013), 23 pages.

https://doi.org/10.1145/2400682.2400713

S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and Maurice Bruynooghe. 2007. Count-

ing Integer Points in Parametric Polytopes Using Barvinok’s Rational Functions.

Algorithmica 48, 1 (2007), 37–66. https://doi.org/10.1007/s00453-006-1231-0

NancyWarter, Scott Mahlke,Wenmei Hwu, and B. Rau. 1993. Reverse If-Conversion. In

Proceedings of the ACM SIGPLAN ’93 Conference on Programming Language Design
and Implementation. 290–299. http://citeseer.ist.psu.edu/warter93reverse.html

BichenWu, Forrest N. Iandola, Peter H. Jin, and Kurt Keutzer. 2016. SqueezeDet: Unified,

Small, Low Power Fully Convolutional Neural Networks for Real-Time Object

Detection for Autonomous Driving. CoRR abs/1612.01051 (2016). arXiv:1612.01051

http://arxiv.org/abs/1612.01051

P. Zhao and J. N. Amaral. 2005. Function outlining and partial inlining. In 17th
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD’05). 101–108. https://doi.org/10.1109/CAHPC.2005.26

https://doi.org/10.1007/s10766-018-0597-3
https://doi.org/10.1109/JPROC.2018.2857721
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://www.kotnet.org/~skimo/barvinok/barvinok.pdf
http://www.kotnet.org/~skimo/barvinok/barvinok.pdf
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1007/s00453-006-1231-0
http://citeseer.ist.psu.edu/warter93reverse.html
https://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1612.01051
https://doi.org/10.1109/CAHPC.2005.26

	Abstract
	1 Introduction
	1.1 Application domain
	1.2 Model of an optimized code region
	1.3 Versioning approach
	1.4 Overview

	2 Background
	2.1 Polyhedra
	2.2 Automatic parallelization flow
	2.3 Polyhedral IR

	3 Motivation
	4 Approach
	4.1 Informing the mapper
	4.2 Generating versioning constraints
	4.3 Versioned code generation

	5 Results
	5.1 Benchmarking infrastructure
	5.2 Benchmarking procedure
	5.3 Performance benchmarking
	5.4 Compilation cost for versioning

	6 Related work
	6.1 Raising
	6.2 Polyhedral JIT
	6.3 Nested conditional optimizations

	7 Conclusion
	Acknowledgments
	References

