Simplifying Dependent Reductions

Sanjay Rajopadhye
Colorado State University

Overview

Problem

-

Improved Program

Reductions

+ A reduction is an associative and commutative operator applied to collections of values to produce a single or collections of results

Reductions

+ A reduction is an associative and commutative operator applied to collections of values to produce a collection of results
+ Our collections are polyhedral sets
Domain of F

Domain of Y

Simple Example (scan)

+ Compute an array Y given by the equation

$$
Y_{i}=\sum_{k=0}^{i} X_{j}
$$

$$
\text { for } i=0 \text { to } n\{
$$

$$
\mathrm{Y}[i]=0 \text {; }
$$

$$
\text { for } j=0 \text { to } i
$$

$$
\text { \} }
$$

$$
\begin{aligned}
& Y[0]=X[0] ; \\
& \text { for } i=1 \text { to } n\{ \\
& Y[i]=Y[i-1]+X[i]
\end{aligned}
$$

y[i] += X[j]

Outline

+ Introduction and Problem Definition
+ Sharing
+ Simplification
+ Multidimensional Simplification
+ Gautam Rajopadhye algorithm
+ Dependent Reductions, what's the problem?
+ Coupling Scheduling and Simplification
+ Related Work \& Conclusions

Representation

+ Three equivalent forms of representation Geometric
+Loops (bounds define the polyhedron) for $\mathrm{i}=1$ to n \{

$$
\begin{aligned}
& Y[i]=0 ; \\
& \text { for } j=1 \text { to } i-1 \\
& \text { for } k=1 \text { to } i-j \\
& Y[i]+=F[i, j, k] ;\}
\end{aligned}
$$

+ Equations

$$
Y_{i}=\sum_{j=1}^{i-1} \sum_{k=1}^{i-j} F_{i, j, k}, i \in 2, \ldots, n
$$

Sharing

+ If $F_{i, j, k}=X_{k}$
*All index points on planes parallel to the $\{i, j\}$ plane have the same value $+\{i, j\}$ is called the share space + Denoted by green
+ Aim to replace this polyhedron by one of lesser dimensions

Simplification

Simplification

Simplification

Simplification

Multidimensional
 Simplification

Multidimensional Simplification

Multidimensional Simplification

Multidimensional
 Simplification

Infinite Space

Another Option

GR 2006 Algorithm
 $$
\min (2 i+N-1,3 N-1)
$$

+ Preprocessing:

GR 2006 Algorithm

Infinitely many choices
t Only finitely many labels

+ All choices of ρ that yield the same facet labels are equivalent for complexity reduction
+ Only finitely many choices at each level
+ May need to backtrack
+ All roads lead to Rome: if reduction operator admits an inverse,
+ All available dimensions can be fully exploited
+ All choices of reuse vectors to exploit are equivalent

Dependent Reductions

$$
\begin{gathered}
Y_{i}=\sum_{j=i}^{\min (2 i+N-1,3 N-1)} X_{j} \\
X_{i}=f\left(Y_{j-1}\right)
\end{gathered}
$$

+ What if X depends on Y ?
+ Not all reuse vectors are legal
+ Cyclic dependences
+ Couple simplification with scheduling
+ Polyhedral scheduling is well known when dependences are given
+ But reuse vectors are unknown (chosen as the algorithm recurses down the face lattice)

Solution

+ Key insight: The feasible space of legal schedules is a finitely generated (w generators $\theta_{1} \ldots \theta_{\mathrm{m}}$) blunt (i.e., does not contain the origin)
cone
+ Start with the feasible space of all schedules of the original program
+ When choosing the reuse vector ρ at each face, make sure that the cone does not become empty
+ At least one of the generators satisfies that $\theta_{\mathrm{i}} \rho$ is nonnegative
+ Leads to m disjunctions, but only finitely many choices
+ Retains optimality of GR 2006

Related Work

+ Roychowdhury 1988
+Delosme Ipsen 1985
+ Yang Atkinson and Carbin [POPL 2021]
+First to formulate the problem
+ Many practical use cases from probabilistic programming
+ Formulated solution as bilinear programming plus simple heuristic that works in practice.

Conclusions

+ Simplifying reductions has practical benefits
+ Dependences add a new twist (whole program analysis, not just one equation)
+ We can have optimal simplification even with dependences

