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● Polyhedral versioning: background & motivation
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● Results
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Polyhedral Versioning
Background & Motivation
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Versioning (a.k.a Multi-Versioning)
What is it?
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● Observation: different optimization opportunities arise under 
different run-time conditions

● With versioning, compiler generates:
○ Multiple versions of a code region
○ Code to select the most appropriate version at run-time



Traditional example
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● Suppose alias analysis cannot statically disambiguate two pointers

● If these pointers were not aliased, more instructions could be run in 
parallel [Sampaio17]



Motivation
Deep Learning (DL) Optimization
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● DL networks can re-use layers with varied input tensor sizes
○ Explored this via our R-Stream TensorFlow [TF] front-end TFRCC 

[TFRCC]

● R-Stream maps differently for different fixed input sizes
○ Mapping refers to polyhedral compiler’s optimization phase

● More and more DL networks have variable-size inputs
○ Assume: sizes are parameters to the optimized function
○ We may not know anything about them
○ A single mapping cannot be optimal for all sizes
○ Need to be more adaptive to sizes



Polyhedral versioning
Our solution
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Other approaches
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● Pre-compilation: User incorporates knowledge of run-time parameter values into 
program logic (R-Stream allows this via #pragma)

● Just-In-Time: use polyhedral model in non-polyhedral codes
○ PolyJIT: find run-time polyhedral cases, point-wise versioning
○ Apollo: calls Pluto at runtime to optimize code

‒ Recent run-time versioning + mini-auto-tuning support



Polyhedral Intermediate Representation (IR)
Correspondences
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1. Generalized dependence graph (GDG)
○ GDG parameters

2. GDG hierarchy
○ Parent / child GDGs

3. Specialized (aka versioned) GDG

4. Context of a GDG
○ Affine constraints over GDG parameters
○ Used in optimization decisions

1. Program function
○ Formal parameters

2. Function call graph
○ Caller / callee

3. Versioned function

4. Function domain / preconditions

Polyhedral terms Functional terms



Approach
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Approach outline
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Main steps:

1. (Auto) generate useful GDG parameter domains for versions
○ Illustration: processor placement

2. Incorporate and encode versioning decisions into the mapping process

3. Generate versioned code



Determine GDG version domains
Processor Placement (1/2)
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● Placement pass: associate placement function to each polyhedral statement
Pl: ℤparam ⨉ ℤiterations ➝ ℤgrid_dims

● Occupation test
○ loop trip count >= c x processor grid size
○ c : “occupancy”, factor we want to occupy (½ of the grid, 3x the grid size, ...)
○ If true: place along the loop
○ Otherwise, try another loop

● When trip count involves unbounded GDG parameters, mapper assumes they are 
large enough
○ Unchecked assumption



Determining GDG version domains
Processor Placement (2/2)
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● t(N) : parametric loop trip count

● pg(k) : grid size along targeted dim k

● When t(N) cannot be bounded by a constant
○ Schedule the mapping of a GDG version
○ “Tell the mapper” to consider the following affine range (i.e., not 

large enough assumption)

t(N) ≤ c * pg(k) 



Mapping and encoding versions (1/2)
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● Introduce polyhedral statement called a “SpecializeOp”
○ Maintains versions of a GDG (“specialized GDGs”)

● Introduce a specializer GDG to hold a SpecializeOp
○ At codegen: conditionally calls the versioned functions

● A specialized GDG comes from “specializing a GDG”, that is
○ Clone the GDG
○ Intersect cloned GDG’s context with given domain 
○ Here, given domain will be t(N) ≤ c * pg(k)



Mapping and encoding versions (2/2)
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● Insert specialized GDG into existing GDG 
hierarchy

○ D : “specializer GDG”

○ P : “parent GDG” of G

○ C1 and C2 : the “child GDGs” of G

● After insertion, the specialized GDG is 
scheduled for mapping

○ Start where mapping was at for the input 
GDG (e.g., right at placement pass)

Figure 1

Figure 2

Figure 3

Specialize G to get G’

Specialize G’ (or G again) to 
get G’’



Code Generation (1/2)
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● Generate nested if/else for the specializer GDG that
○ avoids explicit polyhedral differences (ugly code, complexity)
○ executes only one version for any parameter value

● Note: extra degree of liberty when specialized domains overlap
○ Unexploited here

● Naive approach
○ Ci = specialized GDG Gi’s context
○ #(Ci) = # of constraints in Ci
○ N = total # of contexts
○ Redundantly check constraints 
○ Nested constraints depth for Gi :

 ∑i
j=1 #(Cj)



Code Generation (2/2)
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● Outermost conditions: pick a constraint that divides the contexts 
non-trivially into included/not included GDG contexts

● Following properties:
○ No constraint checked more than once for any parameter values
○ Total number of constraints to get to Gi is ≤ N + #(Ci)
○ See paper for proof

● Dividing as evenly as possible helps drive N to log2(N) in upper bound



Evaluation
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Evaluation
Specifications
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● Test machine processor info:
○ 1 socket, 8 cores/socket and 2 threads/core
○ Processing grid size: [16]

● Three test programs
○ fc: a fully connected layer where input/output sizes are equal
○ convolution_googlenet: 1st convolution of GoogLeNet
○ maxpool_resnet: a residual NN layer that uses MaxPooling

● Test programs are functions that have one run-time defined parameter
○ Here, versioned code is branched on this parameter’s value
○ For small parameter values, versioned program executes further 

optimized code
○ For large parameter values, versioned and non-versioned programs 

execute virtually the same code



Evaluation
R-Stream mapping, OpenMP target
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For each (layer, occupancy setting, param value):
1. Compile program w/ versioning and w/o versioning

2. Run versioned program with fixed param value for 5 trials
a. Dampens OpenMP variability

3. Run the non-versioned with the fixed param value for 5 trials

4. Compute run time speed-up

● Occupancy values: 
○ 100% (full) and 200% (double)
○ 200% is to leverage dynamic load-balancing of OpenMP



Results
Versioning speedup

22

fc, c=2fc, c=1

Large param range, same performance

Small param range, 
significant speed-up

Small param range, 
significant speed-up

Large param range, same performance



Results
Versioning speedup
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 convolution_googlenet maxpool_resnet

Small param range, 
significant speed-up

Small param range, 
significant speed-up

Small param range, 
significant speed-up

Small param range, 
significant speed-up

Large param range, 
same performance

Large param range, 
same performance

Large param range, 
same performance

Large param range, 
same performance



Results
Versioned GDG vs non-versioned
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● Speedup was due to sequential version being faster than 
parallel version for small size parameters (expected)

● Example layers resulted in sequential vs. parallel
○ Want to find examples where different placement choices 

are made

● “Bump” between versions
○ Versioning domain inequality can be improved
○ Occupation test is very simple but not optimal

● Simple target (OpenMP) and pass (processor placement)
○ Useful to understand basic problematic
○ More tradeoffs and questions w/ other passes & targets



Results
Compilation time
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Upshot: low overhead

Tradeoff between partial mapping (placement & onward) vs. full mapping
● Full: More optimization opportunities, but higher compilation time



Thank You
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