
Static Versioning in the Polyhedral Model
Adithya Dattatri & Benoit Meister, Reservoir Labs

 IMPACT 20 Jan 2021 1

Outline

● Who we are: Reservoir Labs
● Polyhedral versioning: background & motivation
● Approach
● Results

2

Reservoir Labs
Technology Expertise

3

https://www.reservoir.com/
info@reservoir.com

https://www.reservoir.com/

Polyhedral Versioning
Background & Motivation

4

Versioning (a.k.a Multi-Versioning)
What is it?

5

● Observation: different optimization opportunities arise under
different run-time conditions

● With versioning, compiler generates:
○ Multiple versions of a code region
○ Code to select the most appropriate version at run-time

Traditional example

6

● Suppose alias analysis cannot statically disambiguate two pointers

● If these pointers were not aliased, more instructions could be run in
parallel [Sampaio17]

Motivation
Deep Learning (DL) Optimization

7

● DL networks can re-use layers with varied input tensor sizes
○ Explored this via our R-Stream TensorFlow [TF] front-end TFRCC

[TFRCC]

● R-Stream maps differently for different fixed input sizes
○ Mapping refers to polyhedral compiler’s optimization phase

● More and more DL networks have variable-size inputs
○ Assume: sizes are parameters to the optimized function
○ We may not know anything about them
○ A single mapping cannot be optimal for all sizes
○ Need to be more adaptive to sizes

Polyhedral versioning
Our solution

8

This function...

...is compiled to this
one

Run-time defined
parameters (e.g.,

tensor sizes)

Code (e.g., outlined NN code)

Call to a version of func

Constraints for
parametric affine

domain over a1,...,an

Other approaches

9

● Pre-compilation: User incorporates knowledge of run-time parameter values into
program logic (R-Stream allows this via #pragma)

● Just-In-Time: use polyhedral model in non-polyhedral codes
○ PolyJIT: find run-time polyhedral cases, point-wise versioning
○ Apollo: calls Pluto at runtime to optimize code

‒ Recent run-time versioning + mini-auto-tuning support

Polyhedral Intermediate Representation (IR)
Correspondences

10

1. Generalized dependence graph (GDG)
○ GDG parameters

2. GDG hierarchy
○ Parent / child GDGs

3. Specialized (aka versioned) GDG

4. Context of a GDG
○ Affine constraints over GDG parameters
○ Used in optimization decisions

1. Program function
○ Formal parameters

2. Function call graph
○ Caller / callee

3. Versioned function

4. Function domain / preconditions

Polyhedral terms Functional terms

Approach

11

Approach outline

12

Main steps:

1. (Auto) generate useful GDG parameter domains for versions
○ Illustration: processor placement

2. Incorporate and encode versioning decisions into the mapping process

3. Generate versioned code

Determine GDG version domains
Processor Placement (1/2)

13

● Placement pass: associate placement function to each polyhedral statement
Pl: ℤparam ⨉ ℤiterations ➝ ℤgrid_dims

● Occupation test
○ loop trip count >= c x processor grid size
○ c : “occupancy”, factor we want to occupy (½ of the grid, 3x the grid size, ...)
○ If true: place along the loop
○ Otherwise, try another loop

● When trip count involves unbounded GDG parameters, mapper assumes they are
large enough
○ Unchecked assumption

Determining GDG version domains
Processor Placement (2/2)

14

● t(N) : parametric loop trip count

● pg(k) : grid size along targeted dim k

● When t(N) cannot be bounded by a constant
○ Schedule the mapping of a GDG version
○ “Tell the mapper” to consider the following affine range (i.e., not

large enough assumption)

t(N) ≤ c * pg(k)

Mapping and encoding versions (1/2)

15

● Introduce polyhedral statement called a “SpecializeOp”
○ Maintains versions of a GDG (“specialized GDGs”)

● Introduce a specializer GDG to hold a SpecializeOp
○ At codegen: conditionally calls the versioned functions

● A specialized GDG comes from “specializing a GDG”, that is
○ Clone the GDG
○ Intersect cloned GDG’s context with given domain
○ Here, given domain will be t(N) ≤ c * pg(k)

Mapping and encoding versions (2/2)

16

● Insert specialized GDG into existing GDG
hierarchy

○ D : “specializer GDG”

○ P : “parent GDG” of G

○ C1 and C2 : the “child GDGs” of G

● After insertion, the specialized GDG is
scheduled for mapping

○ Start where mapping was at for the input
GDG (e.g., right at placement pass)

Figure 1

Figure 2

Figure 3

Specialize G to get G’

Specialize G’ (or G again) to
get G’’

Code Generation (1/2)

17

● Generate nested if/else for the specializer GDG that
○ avoids explicit polyhedral differences (ugly code, complexity)
○ executes only one version for any parameter value

● Note: extra degree of liberty when specialized domains overlap
○ Unexploited here

● Naive approach
○ Ci = specialized GDG Gi’s context
○ #(Ci) = # of constraints in Ci
○ N = total # of contexts
○ Redundantly check constraints
○ Nested constraints depth for Gi :

 ∑i
j=1 #(Cj)

Code Generation (2/2)

18

● Outermost conditions: pick a constraint that divides the contexts
non-trivially into included/not included GDG contexts

● Following properties:
○ No constraint checked more than once for any parameter values
○ Total number of constraints to get to Gi is ≤ N + #(Ci)
○ See paper for proof

● Dividing as evenly as possible helps drive N to log2(N) in upper bound

Evaluation

19

Evaluation
Specifications

20

● Test machine processor info:
○ 1 socket, 8 cores/socket and 2 threads/core
○ Processing grid size: [16]

● Three test programs
○ fc: a fully connected layer where input/output sizes are equal
○ convolution_googlenet: 1st convolution of GoogLeNet
○ maxpool_resnet: a residual NN layer that uses MaxPooling

● Test programs are functions that have one run-time defined parameter
○ Here, versioned code is branched on this parameter’s value
○ For small parameter values, versioned program executes further

optimized code
○ For large parameter values, versioned and non-versioned programs

execute virtually the same code

Evaluation
R-Stream mapping, OpenMP target

21

For each (layer, occupancy setting, param value):
1. Compile program w/ versioning and w/o versioning

2. Run versioned program with fixed param value for 5 trials
a. Dampens OpenMP variability

3. Run the non-versioned with the fixed param value for 5 trials

4. Compute run time speed-up

● Occupancy values:
○ 100% (full) and 200% (double)
○ 200% is to leverage dynamic load-balancing of OpenMP

Results
Versioning speedup

22

fc, c=2fc, c=1

Large param range, same performance

Small param range,
significant speed-up

Small param range,
significant speed-up

Large param range, same performance

Results
Versioning speedup

23

 convolution_googlenet maxpool_resnet

Small param range,
significant speed-up

Small param range,
significant speed-up

Small param range,
significant speed-up

Small param range,
significant speed-up

Large param range,
same performance

Large param range,
same performance

Large param range,
same performance

Large param range,
same performance

Results
Versioned GDG vs non-versioned

24

● Speedup was due to sequential version being faster than
parallel version for small size parameters (expected)

● Example layers resulted in sequential vs. parallel
○ Want to find examples where different placement choices

are made

● “Bump” between versions
○ Versioning domain inequality can be improved
○ Occupation test is very simple but not optimal

● Simple target (OpenMP) and pass (processor placement)
○ Useful to understand basic problematic
○ More tradeoffs and questions w/ other passes & targets

Results
Compilation time

25

Upshot: low overhead

Tradeoff between partial mapping (placement & onward) vs. full mapping
● Full: More optimization opportunities, but higher compilation time

Thank You

26

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Award Numbers DE-SC0017071, DE-SC0018480, and DE-SC0019522.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

References

27

[Apollo] Lazcano, R., Madroñal, D., Juarez, E., & Clauss, P. (2020, February). Runtime multi-versioning and specialization inside
a memoized speculative loop optimizer. In Proceedings of the 29th International Conference on Compiler Construction (pp.
96-107).

[GoogLeNet] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
arXiv:1409.4842 http://arxiv.org/abs/1409.4842

[PolyJIT] Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian Lengauer. 2019. PolyJIT: Polyhedral Optimization
Just in Time. Int J Parallel Prog 47 (2019), 874—- 906. https://doi.org/10.1007/s10766-018-0597-3

[R-Stream] Benoit Meister, Nicolas Vasilache, David Wohlford, Muthu Baskaran, Allen Leung, and Richard Lethin. 2011.
R-Stream Compiler. In Encyclopedia of Parallel Computing, David Padua (Ed.). Springer Reference

[Sampaio17] Sampaio, Diogo N., Louis-Noël Pouchet, and Fabrice Rastello. "Simplification and runtime resolution of data
dependence constraints for loop transformations." In Proceedings of the International Conference on Supercomputing, pp.
1-11. 2017.

[TF] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
265–283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[TFRCC] Benoıt Pradelle, Benoıt Meister, Muthu Baskaran, Jonathan Springer, and Richard Lethin. 2017. Polyhedral
Optimization of TensorFlow Computation Graphs. In 6th Workshop on Extreme-scale Programming Tools (ESPT) at The
International Conference for High Performance Computing, Networking, Storage and Analysis (SC17).

