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ABSTRACT
Vector sets arising in application domains such as polyhedral model
optimizations are not necessarily convex, thereby ruling out repre-
sentation by a single polyhedral set. In such scenarios, a commonly
employed representation is using multiple polyhedral sets whose
union is the vector set to be represented. While this suffices to
represent all relevant vector sets for most applications, it is not
necessarily efficient. Despite being simple to construct, these repre-
sentations may require an exponential number of polyhedral sets
to entirely cover non-convex vector sets.

In this work we introduce the Polyhedral Binary Decision Dia-
gram (PBDD), inspired by binary decision diagrams (BDDs) and
quasi-affine selection trees, as an alternative representation of non-
convex vector sets. We implement a proof of concept in Python
and show that, when supported by simple structural simplification
operations from BDD literature, the PBDD avoids the exponential
blow-up arising from compiling a simple program in Polly—in fact,
the representation of a set’s complement can be computed in con-
stant time. Several case studies compare the scaling behavior of
isl’s union-of-convex-polyhedra implementation and our PBDD
implementation with and without simplifications.
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1 INTRODUCTION & MOTIVATION
Leslie Lamport may have been the first to explore the idea to rep-
resent the set of execution instances in one or more for-loops as
an integer vector space bounded by constraints. Such spaces, or
Z-polyhedra, have been well explored in mathematics. Lamport
used the idea to find a parallel cross section of the execution space
that does not cut dependencies required for correctness [20], now
called the hyperplane method. Paul Feautrier further developed the
technique by using the Farkas lemma to more efficiently represent
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IMPACT’22, January 2022, Budapest, Hungary
.

for (int i = 1; i <= 6; ++i)
for (int j = 1; j <= 5; ++j)
if (i != 3 || j != 3)

Stmt(i,j);
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(b) Statement domain

Figure 1: Non-convex (union of four convexZ-polyhedra) ex-
ecution space (domain) of Stmt

the solution space [8, 9] and used linear programming tools such as
the simplex algorithm to select the best solution according to some
optimization goal. This principle is referred to as the polyhedral
model.

Over time, researchers have extended the kinds of loop nests that
can be represented by using the polyhedral model [2]. These ex-
tensions include handling of conditional execution, non-affine con-
straints, potentially infinite loops, and finite integer bitwidth. Unfor-
tunately, these also increase the complexity of the constraint system
that has to be represented and eventually solved. The more complex
the (in-)equation system, the longer it takes to parallelize/optimize
a loop nest. One of the complexities is that the shape of the vec-
tor space is not necessarily a (convex) Z-polyhedron anymore; an
example is shown in Figure 1a.

A common internal representation of such spaces is the union
of convex polyhedra. That is, every convex polyhedron is stored
separately, and the entire vector set is assumed to be the union
of several polyhedra. As a result, constraints shared by all pieces
are duplicated for each polyhedron, and pieces can overlap; an
element of the common set can have been ”added“ by multiple
pieces. Applying this to the example may, for instance, result in four
convex pieces shown in Figure 1b. A popular library to represent
vector sets using unions of convex polyhedra for polyhedral model
optimizations is the Integer Set Library (ISL) [29]).

Polly [12] is the polyhedral program optimizer for LLVM, which
also uses ISL for representing its polyhedral sets. Polly itself opti-
mizes LLVM’s intermediate representation but can be enabled to
automatically run when compiling with Clang along LLVM’s other
optimization passes.

To not be overwhelmed by overly complex programs and en-
sure that compilation finishes in reasonable time, Polly (like most
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for (int i = 0; i < n; i+=1) {
if (i == p0)

continue;
if (i == p1)

continue;
if (i == p2)

continue;
...
Stmt(i);

}

Listing 1: Motivating example

(a) (b) (c) (d)

Figure 2: Iterative polygon splitting

optimization passes) employs complexity limits. If such a limit
is exceeded, it stops optimizing a function. The rationale is that
overly complex control flow rarely allows meaningful optimizations
anyway and that constructing the polyhedral representation often
results only in determining that the program cannot be optimized.

However, there are programs that we would like to optimize but
that reach these complexity limits. For instance, the number of a
convex polyhedron in ISL’s internal representation easily grows
superlinearly, as illustrated in Listing 1. The loop’s iteration space
is

{ Stmt[8] | 0 ≤ 8 < = } ,
but Stmt’s domain excludes the condition when it is skipped be-
cause of the execution of continue statements, namely, 8 ≠ ?: . The
variables p0, p1, and so on are defined before the loops and are
unknown at compile time. Including the loop trip count = and the
iteration variable itself, this spans a ? + 2-dimensional space, where
? is the number or parameters.

ISL cannot directly represent unequal (≠) constraints; therefore
it is split into two inequalities:

8 < ?: OR ?: < 8 . (1)

As a union of convex polyhedra, the iteration space to accurately
represent the iteration space of Stmt with one parameter ?0 is⋃{

{ Stmt[8] | 0 ≤ 8 < = AND 8 < ?0 }
{ Stmt[8] | 0 ≤ 8 < = AND 8 > ?0 } .

The set is illustrated in Figure 2b. With each additional equality
the number of convex polyhedra grows by a factor of 2, that is,
4 convex polyhedra with ? = 2 (Figure 2c) and 8 polyhedra in
Figure 2d, namely, 2? convex polyhedra for the general case, which
is exponential growth.1

1Since each constraint references a previously unused dimension, onemay alternatively
state the growth as a function of the number of dimensions.
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Figure 3: Possible PBDDs for Listing 1

In cases where this occurs regularly, Polly uses two ISL objects
representing a single logical set: one containing positive constraints
and a second for negative conditions. The logical set they represent
is the negative constraint set from the positive constraint set. Ex-
plicitly building the logical set would of course result in the same
exponential explosion as in Figure 2, so it is avoided.

Eventually, an integer linear program (intLP) still needs to be
solved, but a surprising majority of operations in Polly are intersec-
tion, union, complement, and subtraction. The focus of this work
is to avoid the exponential growth due to these base operations
before even reaching the intLP solver. We leave adapting intLP
algorithms such as simplex and Fourier–Motzkin elimination to
our representation as future work, although efficiency is already
improved from having fewer constraints due to simplifications.

Our idea is to use a binary decision diagram (or BDD; more
on BDDs in Sections 2.2 and 3) to determine whether a vector
is included — in or outside the set, which we call a polyhedral
binary decision diagram (PBDD). In a PBDD, a nonleaf (nonterminal)
node represents a constraint that is evaluated to either true or
false. A PBDD has exactly two leaf/terminal nodes, IN and OUT,
representing the outcome of the evaluation.

In contrast to a classic BDD, node evaluations are not indepen-
dent of each other. For instance, nodes representing the constraints
?0 < 8 and ?0 > 8 cannot be true at the same time. This fact can
be used for graph simplifications in addition to those allowed by
a generic BDD. For instance, ?0 > 8 can be forwarded to its false
branch for paths from the root through the true branch of ?0 > 8 .
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Figure 3 shows two possible PBDDs both representing the same
domain of Stmt in Listing 1 with 3 continue conditions, as visualized
in Figure 2d. The PBDD in Figure 3a is a direct representation of the
decisions for whether the statement is executed; Figure 3b shows
that even when splitting equalities into inequalities as ISL does, the
PBDD size can still be linear in the number of conditions by using
a DAG instead of a tree. In this representation, a path represents
an intersection of half-spaces only, which makes each path to the
IN node represent a convex polyhedron from the union of convex
polyhedra representation—there is an exponential number of such
paths. Hence, enumerating all paths or expanding the underlying
DAG into a tree should be avoided.

Union, intersection, and subtraction are simple operations that
just concatenate two BDDs; the complement can be built by swap-
ping the IN and OUT nodes. In a union of convex polyhedra rep-
resentation, the individual polyhedra may overlap, whereas in a
PBDD by construction each path to a terminal represents a disjoint
set. This can be an advantage with some operations that require
these to be disjoint, such as counting the number of Z= points in
the represented set [30].

Our hope is that using a PBDD internal representation makes
most operations in Polly — and by extension also for polyhedral
model optimizations in general — cheaper or trivial, with little cost
to other operations.

2 RELATEDWORK
Our work is inspired by the quasi-affine selection tree2 (QUAST) data
structure [7, 25]. It is used to describe the piece-defined solution
of the lexicographic minimum of a parametric Z-polyhedron. In
contrast to our PBDD, it is defined by a context-free grammar and
thus always a tree instead of a DAG. A QUAST is also vector-valued
whereas the PBDD is Boolean-valued representing whether a point
is part of the set defined by the PBDD.

A similar data structure is the S-tree, or single-valued solution
tree [16]. Like the QUAST, it is defined by a context-free grammar
but maps to only an integer value instead. The publication [28] uses
a binary search tree to evaluate set membership, but with the goal
of reducing the number of evaluations required (i.e.,tree depth),
essentially a binary space partition.

2.1 Polyhedral Optimization
Polyhedral optimizers have developed various strategies to handle
non-convexity that arises from source code representations. The
most common approach is to not support them at all, as done by
MLIR [21] and optimizers that are based on PIPLib [25], such as
PLuTo [3]. These optimizers are not able to process our motivating
example in Listing 1 for any number of continue statements and
have to leave it unoptimized.

As already mentioned, the ISL [29] supports disjunctions in the
form of union of convex polyhedra. In most cases, Polly [12] using
ISL bails out when the number of polyhedra grows too large, where
large means greater than a hard-coded constant such as 4 or 8.
Because negative conditions are common here, however, Polly has
a special treatment for the execution context that is later used to
generate a runtime condition that decides whether to execute the

2sometimes also quasi-affine solution tree [16, 31]

optimized or fallback version. It has a positive context and a negative
context, and the true context is a negative context set subtracted
from the positive context, but never explicitly built. Hence, unequal
constraints such as Equation (1) can go into the negative context
as 8 = ?: without ever needing to be split into inequalities.

2.2 Binary Decision Diagrams
Boolean functions frequently play crucial roles in several domains
of computer science. However, in practical scenarios witnessing the
application/computation of Boolean functions, it is often infeasible
to represent these functions by classical algebraic expressions (via
switching/Boolean algebras) or entire truth tables. Binary decision di-
agrams are fundamental data structures that have seen remarkable
success in succinctly representing Boolean functions encountered
in practice [5]. BDDs are widely used in logic synthesis [24], formal
verification [14], and circuit optimization [10, 19, 23, 26].

Informally, BDDs are rooted DAGs consisting of several decision
nodes and two terminal nodes labeled true or false. Each decision
node is labeled by a Boolean variable and has two child nodes called
the true-child and the false-child. A single directed edge from a
decision node to its true-child (resp. false-child) represents an
assignment of the labeled variable to true (resp. false). Given an
input Boolean vector, the function evaluation is the label of the
terminal obtained by traversing the path obtained as follows: Start
at the root, and when at a decision node take the edge to the 0-child
or 1-child as given by the value of the input on the labeled decision
variable. We refer the reader to [18] for an overview of BDDs.

3 PBDD DATA STRUCTURE
Formal Definition. A PBDD data structure is defined by & =

(+ , �0, �1, 2, A , CIN, COUT). Here,+ denotes the node set, and � = �0 ∪
�1 denotes the set of directed edges. The edges in �1 and �0 are
the ones labeled true, respectively false. The nodes + \{CIN, COUT}
are called constraint nodes. Each constraint node is labeled by a
constraint 2E given by the mapping function 2 . The resulting graph
�& = (+ , �) is a directed acyclic graph, and every node except
CIN and COUT has exactly two outgoing edges. Furthermore, the root
A ∈ + denotes the unique source node, and terminals CIN, COUT ∈ +

denote the two unique sink nodes (terminals) in�& . We denote E [0]
and E [1] as the nodes in + obtained by traversing the false-labeled
and true-labeled edges from E , respectively. We say that a PBDD
& = (+ , �0, �1, 2, A , CIN, COUT) is a representation of vector set % ⊆ Z=
if for each G ∈ Z= it holds that G ∈ % if and only if there exists a
path from A to CIN in the DAG �& s.t. for each constraint node E on
the path, if the path traverses (E, E [1]), then G ∈ 2E ; otherwise the
path traverses (E, E [0]) and G ∉ 2E . We denote this characterization
as G ∈ % ↔ & (G) = 1. Note that PBDD representations are not
unique, as illustrated by Figure 3.

Shannon Expansion. The Shannon expansion allows for using
Boolean algebra within the set theoretic interpretation of PBDDs
and can thus be used to argue correctness of our implementations
of set theoretic as well as the structural simplification operations
on PBDDs.

Consider PBDD& = (+ , �0, �1, 2, A , CIN, COUT). For any node E ∈ + ,
the sub-DAG obtained by removing all nodes that can reach E is a
PBDD rooted at E with the same terminals &E = CIN, COUT. Note that
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&E is a representation of some polyhedron %E ⊇ % . The Shannon
expansion for & can then be expressed as follows:

G ∈ % ↔ G ∈
(
2A ∩ %A [1]

)
∪
(
2A ∩ %A [0]

)
↔ G ∈

(
2A ∩ %A [1]

)
OR G ∈

(
2A ∩ %A [0]

)
↔

(
G ∈ 2A AND G ∈ %A [1]

)
OR

(
G ∉ 2A AND G ∈ %A [0]

)
.

Alternatively, we may express the above as follows:

& (G) = 1 ↔ OR

{
G ∈ 2A AND &A [1] (G) = 1

G ∉ 2A AND &A [0] (G) = 1 .

Note that the Shannon expansion can be applied recursively at
all nodes E ∈ + to characterize membership in %E according to
the sub-DAG &E . This expansion allows us to argue correctness of
set operations (Section 4.2) on PBDDs as well as perform various
structural simplifications (Section 4.3) on PBDDs while preserving
representation of the underlying polyhedron.

4 IMPLEMENTATION OF A PBDD
We implemented3 our proof of concept in Python. To avoid having
to implement an integer linear program solver, we fall back to IslPy
for functionality that is not related to the PBDD representation.
IslPy [17] is a Python binding for the ISL library. In contrast to the
binding that comes with the ISL library itself, IslPy has a package
in PyPI that is easy to install and exposes more functionality that
the official binding does not make available.

In the following sections we discuss details of our implemen-
tation, including the type and reference structure between node
objects (Section 4.1), the implementation of several set operations
(Section 4.2), and simplifications to control the growth explosion
(Section 4.3).

4.1 Implementation Structure
Object Types. We implemented the PBDD data structure using

two types of object. The first type is Nodes labeled with constraints
and having pointers to other Node objects. This Node-to-Node link-
ing gives rise to the directed graph structure. Our implementation
also includes the terminal Node objects within this first type of
object. The second type of object is the class representing the poly-
hedral set data structure PBDD itself. The PBDD object points to
the root and terminal NodeS of the data structure and exposes an
external interface for applications and our experiments. Our PBDD
object does not explicitly bookkeep the vertex/edge sets of the DAG
formed by the linked Node objects. Hence, we denote PBDDs with
just their root and terminal Nodes; algorithmic implementation
details are discussed later in this section.

Reference Structure. In our implementation, objects are refer-
enced only downward, that is, farther away from the root in the
DAG. The advantages of such a referencing structure are twofold.
The first is that this avoids circular references that cannot be freed
by Python’s reference-counting garbage collector and so have to
be freed by its generational garbage collector. Furthermore, mas-
sive amounts of circular references would increase the work to
3Our implementation can be found at https://github.com/Shubhangk/PBDD

be done by the generational garbage collector, which would also
have to run more often. The second advantage is that a node can be
referenced by multiple parents without knowledge of each other.
Figure 4 illustrates adding a new constraint ?2 < 8 to an exist-
ing set PBDD 1. Instead of copying the entire data structure for
PBDD 2, the new constraint node references the existing objects
from PBDD 1. This approach is valid if we know that the existing
nodes are never changing (immutable). However, operations that
usually would be implemented by changing existing nodes, such as
rearranging/balancing nodes, do require making a copy of existing
nodes (copy-on-write). This trade-off may well be worthwhile when
client programs need to reuse related sets for multiple purposes,
as often is the case of polyhedral optimization. Alternatively, we
could introduce a reference counter to each node (or reuse Python’s
existing reference counter) that allows changing an object as long
as its reference counter is one. Programs using the ISL library make
use of the fact that copying is cheap (just increasing a reference
counter).

Terminal Nodes. Because of the referencing structure of our im-
plementation, the natural choice of explicitly labeling the terminal
Nodes with IN and OUT turns out to be expensive in execution sce-
narios. For example, the complement operation for a PBDD requires
simply swapping the positions of the two terminals. However, since
every Node in the data structure is immutable and can reach at
least one of the two terminals, an explicit swap of the terminal
nodes would require deep-copying the entire DAG structure. We
overcome this requirement by having the PBDD object point to one
of the terminals as IN and the other as OUT. With this arrangement,
whether a path ending in a terminal node represents a value that is
inside or outside the set is not determined by the terminal itself but
by the PBDD object. Such a design choice enables implementing
the complement operation for our PBDD by simply exchanging
the pointers of the terminal nodes without having to copy any
constraint node.

4.2 Implementation of Set Operations
In this section we describe the implementation of a few impor-
tant set operations on PBDDs that we use in our experiments in
Section 5.

Initialization. The simplest cases of PBDDs that we construct
are those representing the entire universe, the empty set, or a
half-space represented by a single constraint. The init function
constructs the PBDD tuple representing each of these cases accord-
ing to the input 2 .

init(2) :=


PBDD(CIN, CIN, COUT) 2 is universe
PBDD(COUT, CIN, COUT) 2 is empty
PBDD(Node(2, CIN, COUT), CIN, COUT) 2 is a constraint

We remark that PBDDs representing more complicated polyhedra
can be constructed by first initializing each constraint using the
init function, followed by applying set operations on the PBDD
representations. For example, the PBDD representation of a convex
polyhedron can be formed by repeatedly applying the intersect
operation to the PBDD representations of its constituent inequality
constraints.
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Union and Intersection. We describe the intersect operation
and remark that union is similar. Recall that our input is (1) PBDD
&1 = (A1, C1IN, C

1
OUT) representing polyhedron %

1, and (2) PBDD&2 =

(A2, C2IN, C
2
OUT) representing polyhedron %2. Our goal is to output

& = (A, CIN, COUT) representing polyhedron %1 ∩ %2.
The natural algorithm is as follows: (1) redirect all arcs that come

into C1IN to A
2; next, (2) redirect all arcs that come into C1OUT to C

2
OUT

and then return & = (A1, C2IN, C
2
OUT) as the PBDD representing the

intersection. Because of the referencing structure of our PBDD
implementation, however, we implement this algorithm recursively
while also using copy-on-write.We describe the recursive algorithm
below.

intersect
(
&1, &2

)
:= %���

(
5∩ (A1), C2IN, C

2
OUT

)
5∩ (E) :=


A2 E = C1IN
C2OUT E = C2OUT
Node (2E, 5∩ (E [1]) , 5∩ (E [0])) o.w.

In this algorithm, the node construction function 5∩ recursively
builds a new graph, starting with the A1, the root node of &1, and
applies itself recursively. When encountering the terminal node
IN1, it is reconnected to A2. Then, setting C2IN to be the IN terminal
node of the resulting PBDD ensures that to be contained in the
resulting set, a root-to-terminal path must end in C2IN Similarly, set-
ting C2OUT to be the OUT terminal node of the resulting PBDD ensures
that to be excluded from the resulting set, a root-to-terminal path
must end in C2OUT Since no nodes initially in &2 have to be changed,
they can simply be reused under the assumption of immutability.
A root-to-terminal path ending in C1OUT should result in the vector
not being in the set. Thus, C1OUT is replaced by OUT2 so that the re-
sulting PBDD has a single OUT terminal. To avoid the exponential
time complexity due to overlapping recursive calls of 5∩, we im-
plement the algorithm using memoization. Thus our intersect
implementation has runtime linear in the number of nodes in &1

and is independent of the size of &2.

Complement. As discussed previously, we implement the
complement operation by simply exchanging the roles of the
terminals in the PBDD object. Formally, this is defined as follows:
On input PBDD & = (A, CIN, COUT),

complement(&) := %��� (A, COUT, CIN)

We emphasize that this definition does not violate node immutabil-
ity because the terminals themselves are not changed, but their
roles are swapped in the output PBDD. Thus the entire operation
takes $ (1)-time.

Emptiness Check. For the emptiness check, we make use of the
following observation. Let &% = (A, CIN, COUT) be a PBDD represent-
ing polyhedron % . Then, % is empty if and only if no vector can
ever evaluate to be inside % ; in other words, no vector can simul-
taneously satisfy each constraint along any A -to-CIN path. Thus,
every A -to-CIN path must represent the empty set. This allows us to
implement is_empty as follows:

is_empty(&) := 5∅ (A [1], 2A , empty) AND 5∅ (A [0], universe, 2A )

5∅ (E, %) , %� ) :=


true E = COUT

%) ⊆ %� E = CIN

AND

{
5∅ (E [1], 2E ∩ %) , %� )
5∅ (E [0], %) , 2E ∪ %� )

o.w.

In this algorithm, the subproblem 5∅ (E, %) , %� ) represents the
A -to-E path % obtained by taking the true branches at the Nodes
represented by the constraints in %) and the false branches at the
Nodes represented by the constraints in %� . 5∅ (E, %) , %� ) evaluates
to true if every A -to-CIN path having % as a subpath is empty. In
particular, when at node E , the function 5∅ recursively applies itself
to all nodes below E in the PBDD. When applying itself in the
true branch of E , 5∅ has the constraint 2E intersected into %) . On
the other hand, when applying itself in the false branch of E , 5∅
has the constraint 2E unioned into %� . Thus when 5∅ encounters
the terminal C8= , it needs to check whether %) ∩ %� = ∅. This is
equivalent to checking whether %) ⊆ %� . Note that in our PBDD
implementation, %) and %� are polyhedral sets represented by using
ISL.

The rationale for performing the inclusion check at the terminal
node instead of the emptiness check is that complementing the
constraints in %� reproduces the same problem we faced in the mo-
tivating example. In particular, if the constraints in %� are equality
constraints, then the ISL representation for %� blows up exponen-
tially in the number of constraints. By performing the subset check
on %� , we bypass the need to explicitly construct the representation,
and thus we avoid the growth explosion. Thus, the overall runtime
of the algorithm is $ ( |P|), where P is the set of all A -to-terminal
paths in the input PBDD.

Subtract. Our input is (1) PBDD &1 representing polyhedron
%1 and (2) PBDD &2 representing polyhedron %2. Our goal is to
output a PBDD representing polyhedron %1\%2. We implement this
as follows:

subtract
(
&1, &2

)
:= intersect

(
Q1, complement

(
Q2

) )
Performing the complement operation takes $ (1) time. Thus our
subtract implementation follows the runtime of intersect and
has runtime linear in the number of nodes in &1, independent of
the size of &2.

Subset Check. Our input is (1) PBDD&1 representing polyhedron
%1 and (2) PBDD &2 representing polyhedron %2. Our goal is to
output true/false according to whether %1 ⊆ %2. We implement
this as follows:

is_subset
(
Q1, Q2

)
:= is_empty

(
subtract

(
&1, &2

) )
The subtract operation takes time linear in the size of &1 and
results in a PBDD with size being the sum of the sizes of &1 and
&2 since, internally, the intersect operation concatenates the two
PBDDs together. Thus the overall runtime is$ ( |P|), where P is the
set of all A -to-terminal paths in the PBDD arising from subtract,
following the analysis of is_empty. Note that this operation also
allows us to implement the equality checks between two PBDDs in
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the same asymptotic runtime as follows:

is_equal
(
Q1, Q2

)
:= is_subset

(
&1, &2

)
AND is_subset

(
&2, &1

)
.

Project Out. For vector ~ ∈ Z=−1 and G ∈ Z, let ~ ◦ G ∈ Z=
denote the vector obtained by appending G to the vector ~ such
that G becomes the final coordinate in the resulting vector. With
this notation, the input to the project_out operation is PBDD
& = (A, CIN, COUT) representing polyhedron % ⊆ Z= . The goal is to
output PBDD & ′ representing polyhedron % ′ = {~ ∈ Z=−1 : ∃G ∈
Z ~ ◦G ∈ %}. Since the dimensions of the polyhedron % are ordered,
our formulation makes a simplifying assumption without loss of
generality.This assumption is that only the final (i.e.,=th) dimension
is being projected out. Note that since the dimensions of the vector
space are ordered, the fact that this works for projecting out only
the last dimension can be removed with appropriate reordering of
the dimensions. Furthermore, this can also be iteratively reapplied
to project_out any number of dimensions.

We have the following.

% ′ = {~ : ∃G ~ ◦ G ∈ %}

=

{
~ : ∃G ~ ◦ G ∈

( (
2A ∩ %A [1]

)
∪
(
2A ∩ %A [0]

) ) }
=

{
~ : ∃G

(
~ ◦ G ∈ 2A ∩ %A [1]

)
OR

(
~ ◦ G ∈ 2A ∩ %A [0]

) }
=

{
~ :

(
∃G ~ ◦ G ∈ 2A ∩ %A [1]

)
OR

(
∃G ~ ◦ G ∈ 2A ∩ %A [0]

) }
=

{
~ :

(
∃G ~ ◦ G ∈ 2A ∩ %A [1]

) }
∪
{
~ :

(
∃G ~ ◦ G ∈ 2A ∩ %A [0]

) }
= project_out

(
cr ∩ Pr[1]

)
∪ project_out

(
cr ∩ Pr[0]

)
Here the first equation is by the definition of project_out. The

second equation is by the Shannon expansion of PBDD& . The third
equation follows from distributivity of the existential quantifier
over logical OR. The fourth equation follows by definition of union
and logical OR. The final equality is by definition of project_out.

Thus, the Shannon expansion allows for breaking the operation
into independent subproblems. We implement the operation recur-
sively according to this recursive structure. When at any constraint
node E of the PBDD during a recursive call, if the dimension to be
projected out is not present in 2E , we simply ignore the node and re-
curse directly on its children. Otherwise, if the dimension is present,
then we first recurse on E [1] while passing in the constraint 2E and
next recurse on E [0] while passing in 2E . On evaluation of these
recursive calls, we return the union of the returned PBDDs

The base cases of the recursion are the terminals CIN, COUT, which
become the terminals of the resulting PBDD. If at COUT, we simply
return the same terminal. Otherwise, when at CIN, we intersect
all the constraints that have been passed down through the recur-
sive calls (since these contain the dimension to be projected out).
We project_out the dimension from the resulting polyhedra and
compute the PBDD representation with CIN, COUT as the IN-terminal
and OUT-terminal, respectively. We return this PBDD as the eval-
uation of the base case. If no constraints were passed down, we
simply return CIN.

Note that each path in the recursion tree of the algorithm cor-
responds to a path in the PBDD. Thus, the time complexity of our
implementation is $ ( |P|), where P is the set of all paths in & .

roo
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fal
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truefal
se

PBDD 1 PBDD 2
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8 < ?2
root

O
U
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Figure 4: Data structure
4.3 Simplification
Simplification is necessary to stop the PBDD from growing uncon-
trollably. For instance, adding tautological or redundant constraints
should not add computational overhead to every following opera-
tion. While each simplification by itself may result in a PBDD with
just one less constraint node, repeated application of multiple rules
can dramatically reduce the number of root-to-terminal paths. In
this section we describe simple pruning operations that we perform
during computation to control the growth explosion of PBDDs.

Consider PBDD& = (A, CIN, COUT) representing polyhedron % . We
say that a constraint node E of & is redundant if E [0] = E [1]. We
say that constraint nodes D, E of & are isomorphic if either of the
following holds:

• 2D = 2E ; D [1] = E [1]; and D [0] = E [0].
• 2D = 2E ; D [1] = E [0]; and D [0] = E [1].

A PBDD having isomorphic or redundant nodes can be structurally
simplified because of the Shannon expansion. For example, in the
case of redundant node E , we have that

%E = (2E∩%E [1] )∪ (2E∩%E [0] ) = (2E∩%E [1] )∪ (2E∩%E [1] ) = %E [1] .

Here the equality conditions follow by the Shannon expansion,
redundancy of E , and disjunction of a constraint with its comple-
ment being the universe. Thus, the node E can be pruned out of& .
The case of isomorphic nodes D, E can also be analyzed in a similar
fashion to reveal that one of the nodes, say E , can be pruned and
D reused in its place without changing the represented polyhedra
(See Figure 5).

We now describe the simplify algorithm that takes as input
PBDD & = (A, CIN, COUT) representing polyhedron % and outputs
PBDD & ′ with no redundant or isomorphic nodes that also repre-
sents polyhedron % .

simplify(&) := %��� (5 (E), CIN, COUT)

5 (E) :=



E E is terminal
5 (E [1]) 5 (E [0]) = 5 (E [1])
m� [2E, 5 (E [1]), 5 (E [0])] m� [2E, 5 (E [1]), 5 (E [0])] ≠ nil

E 5 (E [0]) = E [0], 5 (E [1]) = E [1]
Node(2E, 5 (E [1]), 5 (E [0])) otherwise

Here the function 5 recursively applies itself to every node, with
the base case being the terminals, and prunes away redundant and
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Figure 5: Constraint nodes E1 and E2 can be merged into a
single node with constraint 2E1 if constraints 2E1 and 2E2 are
the same.

isomorphic nodes. In case (1), the terminals are left unchanged by 5

and so remain the same for the final PBDD returned by simplify.
Case (2) checks whether the two nodes returned by recursive calls
to 5 are the same. If so, then E is a redundant node by definition
and is ignored by directly returning the child node. Case (3) checks
for isomorphic nodes. In particular, m� is a lookup table that maps
constraint and 2 nodes (2D , E,F) to a node I representing that I is
the canonical representative of all nodes having constraint 2D and
true/false children as E andF , respectively. In case (3), if this entry is
nonempty, then such a representative exists and is directly returned.
Note that the m� table is filled up when in cases (3), (4), and (5);
in other words, if m� (2D , E,F) = ∅, then we set m� (2D , E,F) := D.
Cases (4) and (5) represent scenarios when simplifications have not
and have happened below node E , respectively.

Redundant Branches. In addition to local simplification opera-
tions, we implement global pruning procedures. By enumerating
over paths and constructing the corresponding polyhedra along
each path, we are able to prune away those paths that result in
the same polyhedron. We note that ISL has a similar simplification
operation whereby it attempts to prune away redundant polyhedra
from its representation. We note that path enumeration may be
expensive in the worst case where the number of root-to-terminal
paths may be superpolynomial in the size of the PBDD. However,
we experimentally observe in Section 5 that this operation, when
coupled with simplify, helps control the number of paths and does
not degrade performance too much. In fact, in a particular scenario,
we find that this operation is necessary to even keep the PBDD
representation computationally feasible to use (see Section 5.1).

5 EXPERIMENTS
In this section we provide experimental evidence that the PBDD
data structure provides tremendous speedup to execution flows
that arise in practical polyhedral compilation scenarios. We provide
several case studies and include performance comparisons of our
Python-based PBDD implementation (with and without structural
simplification operations) to the ISL (via IslPy) union-of-convex-
polyhedra representation in Figures 6 to 8.

In each figure the plots depict the trade-off between the number
of constraints in the polyhedra (x-axis) vs. the time taken (y-axis,
log10 of the number of seconds) to run the specific execution flow
described in the experiment. The blue, red, and green dashed lines
indicate the performance of ISL, our PBDD implementation with
and without simplifications, respectively.

While the test cases in this section are synthetic in the sense
that they are designed to reveal worst-case scenarios, these are also
condensed from sets that occur when running Polly, in particular
when optimizing the motivating example Listing 1. We also traced

(a) Iterative Intersection of Complement (Algo-
rithm 5.1)

(b) Iterative Subtraction of Redundant Con-
straints (Algorithm 5.2)

Figure 6: Vector set construction

the sequence of function calls to ISL during the execution of Polly
using library interposition. This results in a trace file that can be
compiled and executed to repeat the same polyhedral operations as
Polly did. We converted parts of it to use our PBDD implementation
instead to see how it behaves in practice. It turned out that the
simplification operations described in Section 4.3 are crucial to
maintaining compact representations of the underlying polyhedra.

5.1 PBDD Construction
We focus on the motivating example from Section 1 (Listing 1)
where the underlying iteration domain was a non-convex polyhe-
dron in the form of a conjunction of several nonequality constraints.
The represented vector set should look like that in Figure 2 and its
PBDD one of Figure 3.

In the first experiment we construct this set by consecutively
intersecting the complement of the equality 28 ↦→ (?8 = 8), namely,
Equation (1):

Algorithm 5.1 (Iterative Intersection of Complement)

(1) Input: : , constraints 28
(2) % := Universe
(3) for 8 = 1 . . . :
(a) % = intersect (%, complement(28 ))

(4) Output %
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In a variant construction procedure, we directly use the subtract
operation (in the PBDD this is implemented by intersecting with
the complement), but we first precondition the set by intersecting
with the previous result:

Algorithm 5.2 (Iterative Subtraction with Redundant Constraints)

(1) Input: : , constraints 28
(2) % := Universe
(3) for 8 = 1 . . . : :
(a) % = subtract (%, intersect(28 , %))

(4) Output %

The idea is that the additional intersection will add additional
constraints to the subtraction arguments that will be redundant
in the result. An effective simplification will be able to simplify
these constraints such that they appear only once. The experimen-
tal results are shown in Figure 6. For Figure 6a, ISL exhibits an
exponential behavior while the PBDD implementation stays subex-
ponential (and even polynomial) in the number of nonequality
constraints. There are two reasons for this behavior. First, exami-
nation of the constructed representations reveals that the size of
ISL’s union of convex polyhedra representation is already expo-
nential in the number of nonequality constraints, while the PBDD
representations, both simplified and unsimplified, are linear in size.
Second, the intersection operation for ISL is quadratic time while
that of the PBDD is linear time without simplifications (See also
Section 5.4). In this scenario, the PBDD representation does not
require simplifications at any steps.

In Figure 6b, one can observe that the PBDD with simplifica-
tions performs similarly to its performance in Figure 6a with only
a slight degradation. This degradation happens mainly due to the
fact that several redundant nodes are added into the PBDD at each
iteration. These are pruned out during the simplification step car-
ried out at the end of each intersect. Despite the pruning, the
PBDD performs faster than ISL which takes exponential time on
Algorithm 5.2. Furthermore, although the PBDD without simplifi-
cations has the best performance, one can prove by induction on
the number of iterations in Algorithm 5.2 that the unsimplified
PBDD representation blows up exponentially. Due to this, using the
representation to perform set operations (e.g. checking is_empty
after running Algorithm 5.2) is computationally infeasible and the
simplified PBDD performs best overall. We discuss such tradeoffs
further in Section 5.3.

5.2 Set-Algebra Operations (Non-Convex)
The experiments in Section 5.1 show that it is exponentially faster
to construct the PBDD representation of the motivating example
than the union-of-convex-polyhedra representation. The natural
question that arises is whether this representation can be prac-
tically applied in computations involving set operations. In this
section we take a step toward an affirmative answer to this question
by focusing on set operations that frequently arise in polyhedral
compilation—the domain from which this example originates. In
particular, we compare the performance of these operations on the
representations of the motivating example constructed in the pre-
ceding section. Besides non-convex projection and emptiness check

the performances in this section do not include the time for con-
struction of the representation. Figure 7 showcases the comparisons.
We describe the specific experiments next.

Non-convex Intersection. We intersect the representations of
two polyhedra constructed by Algorithm 5.1. Both polyhedra have
the same number of nonequality constraints, and all the nonequality
constraints are distinct. This ensures that the two polyhedra have
a nonempty intersection. The plots in Figure 7a show the perfor-
mance comparison of this intersect operation. ISL’s intersect
operation scales the worst case quadratically in the size of its rep-
resentation (see Section 5.4). The experiments in Section 5.1 show
that this representation has exponential size, resulting in the overall
exponential behavior observed in Figure Figure 7a. Note that since
all the constraints in the representation are distinct/independent,
the resulting PBDD has no redundancies that need to be pruned out.
Thus the simplification steps result in an additive linear overhead
that leads to the simplified and non-simplified PBDD performing
as observed.

Non-convex Union. We union two polyhedra constructed by Al-
gorithm 5.1 similar to non-convex intersection described previously.
The plots in Figure 7b show the performance comparison of this
union operation. We observe that the scaling behavior of the union
operation on PBDD is the same as that of the intersect operation,
leading to performances similar to those in non-convex intersection.
However, the intersect operation for ISL is more expensive than the
union operation, as can be observed by comparing both the blue
curves in Figures 7a and 7b. Nevertheless, both the simplified and
unsimplified PBDD implementations outperform ISL even in the
union operation.

Non-convex Complement. We complement a polyhedron con-
structed by Algorithm 5.1. The plots in Figure 7c show the perfor-
mance comparison. We note that the scaling behavior of the PBDD
implementation is independent of the size of the representation and
is constant time, reflecting the discussion of the complement opera-
tion in Section 4. On the other hand, ISL requires exponential time
to perform this operation even though the final union-of-convex-
polyhedra representation is very small.

Non-convex Subtraction. We subtract from the universe a non-
convex polyhedron formed by the union of several equality con-
straints. Note that this results in the same output as that of Al-
gorithm 5.1 and Algorithm 5.2. The plots in Figure 7d show the
performance comparison of this subtract operation. We observe
that the scaling behavior of the subtract operation on PBDD is
similar to that of the intersect operation, leading to performances
similar to those in non-convex intersect. This behavior follows the
implementation of subtract described in Section 4 along with
insights from non-convex complement.

5.3 Projection and Emptiness
The following non-convex projection and non-convex emptiness check
highlight the trade-off we currently face between representational
simplicity and usability of the PBDD. In both scenarios we observe
that when the performances of only the respective operations are
measured independently of the construction procedures, then our
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(a) Non-convex Intersection

(b) Non-convex Union

(c) Non-convex Complement

(d) Non-convex Subtraction

Figure 7: Set-algebraic operations on non-convex vector sets

(a) Non-convex project-out

(b) Non-convex emptiness check

Figure 8: Expensive set operations on non-convex sets
current PBDD implementation performs slower than ISL. However,
taking into account the time of construction—something every such
polyhedral representation will witness—we observe that the PBDD
performs comparable to or even better than ISL. These scenarios
provide intriguing directions for future work (see Section 7).

Non-convex Projection. We project_out the first dimension
from the representation of a polyhedron constructed by
Algorithm 5.1. Figure 8a compares the performances of ISL and the
PBDD implementation in two manners: (1) time to construct and
project_out; and (2) time to just project_out.

Non-convex Emptiness Check. We check whether a polyhedron
constructed by first running Algorithm 5.1 and then intersecting
with one of the input equality constraints (resulting in the empty
set) is is_empty. Figure 8b compares the performances of ISL and
the PBDD implementation in two manners: (1) time to construct
and check is_empty; and (2) time to just check is_empty.

5.4 Set-Algebra Operations (Convex)
Even with only convex polyhedra and a single vector dimension,
ISL’s intersect operation has quadratic complexity. To illustrate this
behavior, we use the following algorithm.

Algorithm 5.3 (Convex Intersection)
(1) Input: :
(2) % := ∪:

9=1 { G | G = 0 9 }, where 0 9 random from [0, 10000]
(3) & := ∪:

9=1 { G | G = 1 9 }, where 1 9 random from [0, 10000]
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Figure 9: Convex intersection

(4) ' = intersect(%,&)
(5) Output '

The rationale behind the selection of such polyhedra is that it
is unlikely that ISL or our PBDD implementation can find smaller
representations than storing all: constraints. For instance, if instead
of random numbers we chose the even numbers from 2 to 2: , the
representation as { G | ∃~ : 2~ = G } would be possible.

We measure only the intersect with the construction time for
% and & excluded, shown in Figure 9. % and & have essentially the
same representational complexity (linear in the number of con-
straints) in both data structures. The unsimplified PBDD has linear
performance based solely on the time of intersect. The simplified
PBDD performs similar to ISL as the simplification operations are
still internally carried out to determine whether simplification is
possible.

6 CONCLUSION
We demonstrated that a PBDD is a viable alternative to the union
of convex polyhedra representation. Its advantages are found pri-
marily when applying set operations of logical vector sets before
eventually solving a linear equations system. Decision trees such
as QUASTs and especially BDDs are well explored in the litera-
ture. The PBDD also provides a more efficient representation of
non-equalities that otherwise have to be represented by a pair of
inequalities that, when combined, can easily require exponentially
growing costs. In the extreme case, the complexity of representing
the complement of a set is reduced from exponential to constant,
by swapping the role of the terminal nodes of the decision diagram.

Unfortunately, we cannot compare the total time taken for the
end-to-end compilation and optimization of a program such as the
one in Listing 1 using Polly as this would require us to implement
and replace the entire ISL API used by Polly. In any case, with
sufficiently large number of constraints the exponentially-growing
union-of-convex-polyhedra representation would have dominated
the total compilation time without necessarily impacting the intLP
solver time, as Polly’s already present split into positive and nega-
tive contexts shows (see Section 2.1).

Set-oriented operations are widely used in optimizing compilers
using the polyhedral model, where the exponential complexity
cases can be observed in real-world code. A PBDD representation

might allow optimizingmore code instead of bailing out because the
compilation would take too long to complete. While our prototype
is not practical as a replacement of the ISL library because of the
overhead and limitations that come with Python, a more complete
and efficient implementation might.

7 FUTUREWORK
So far we implemented only intersection, union, subtraction, com-
plement, and some graph simplifications independently from ISL.
Other operations, such as the emptiness check that requires a linear
program solver, currently depend on the ISL implementation. ISL
basic sets are constructed when necessary, and the PBDD can be
reconstructed after non-projection operations. As shown, doing
this piece-wise already results in significant speedups but involves
additional overhead in first constructing the ISL data structure as
an intermediate representation, whereas we could go directly to a
simplex or PIP-style tableau implementation.

Parallelism. The recursive nature of the PBDD invites the use of
divide-and-conquer style parallelism or simplifications running in
the background. Unfortunately, such parallelism is blocked by
Python’s inability to handle in-process parallelism. However,
Python’s global interpreter lock might be removed in the near
future [11]. Alternatively, an implementation in C/C++ would
remove the interpreter overhead.

Operation Efficiency. Some operations can be constructed out of
the already-implemented set operations (such as subtraction) or can
be applied to the Shannon expansion recursively while memoizing
multiple parents (e.g., adding a new unknown dimension without
constraints); others could make better use of the recursive structure.
Moreover, some algorithms may have multiple, equivalent imple-
mentations. For instance, intersection and union can have either
tree appended to the other, but only one needs to be copied.

Typed Roots. Other operations can be always applied to the root
node. For instance, the division of unknowns into tuples, parameter,
set, and map-domain dimensions can be applied as a postoperation,
while the main PBDD is untyped and its dimensions are unordered.
This simplifies the implementation of the PBDD itself and allows
reusing nodes for sets that use the same constraints but vary in the
logical meaning of dimensions.

Simplifications. There is a trade-off between investing computa-
tion time in simplifications and suboptimal graph size reduction.
Some simplifications are more costly than what they save in follow-
ing operations; but, as shown in Section 5, omitting them entirely
results in exponential computational dept. It may make sense to
choose the one with fewer nodes or the one that is not referenced
from somewhere else so it can be modified in place. Some investi-
gation is needed to figure out under which circumstances to use an
algorithm or whether a graph simplification is useful.

In addition to the simplification operations described in Sec-
tion 4.3, we implemented a procedure that checks whether entire
sub-DAGs represent the same polyhedra. Specifically, we compared
their explicit constructions. While this operation dramatically re-
duces the size of the PBDD, our relatively straightforward imple-
mentation turns out to be expensive and degrades performance
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beyond that of ISL. An efficient implementation of this or a similar
operation could greatly reduce the sizes of PBDDs and speed up
practical execution flows.

Decision Orderings. In our current implementation the structure
of the PBDD is the result of the order of operations use to create
them. This has the consequence that logically equivalent sets can
very different internal structures with different performance char-
acteristics. Bryant [4] showed that the BDD of a Boolean function
obtained by fixing a variable ordering, often referred to as ROB-
DDs [5, 18], and maximally applying two simplification rules is
unique. While this still would not mean that the same set would al-
ways have the same PBDD due to decision equivalences, controlling
the node order potentially allows finding the cheapest PBDD repre-
sentation. Unfortunately, finding the decision ordering that yields
the smallest BDD has been shown to be NP-complete [6, 22, 27],
but heuristics [1, 13, 15] still allow for smaller representations and
thus cheaper operations, even if in worst-case their size remains
exponential.

Approximations. We would like to support three kinds of ap-
proximations. One possibility is to add an additional terminal node
UNDEFINED. When simplifying, nodes of this kind can combined
with either an IN or OUT to simplify the PBDD. That is, if a node
has edges to an IN and UNDEFINED node, the entire node can be re-
placed with the IN node, allowing the elimination of any constraints.
Since UNDEFINED can always be combined with something else
(unless the entire set itself is undefined), the information that was
originally undefined can easily get lost. Therefore, an alternative is
to have a second PBDD part of the root node that stores the defined
subset and is used implicitly by the graph simplification. This is
approximately equivalent to ISL’s gist operation. It is useful to
define the universe of possible values; for instance, the program
in Listing 1 may have undefined behavior if n <= 1 or it is known
that this will never occur (e.g., the function exits early for trivial
cases), which can be used to simplify the polyhedral set by remov-
ing corner cases that are known to never occur. Finally, it would be
of practical interest to design operations that are allowed to return
over- or underapproximations if computing the exact result would
be too computationally expensive. A general example of this for
vector sets could be the operations such as the emptiness check
returning “maybe” results. In polyhedral model optimization, the
set of dependencies can be arbitrarily overapproximated, which
decreases the probability that an optimization can be applied but
will never result in a miscompilation. This is in contrast to ISL’s
approach to return an error value when an application-defined
number of elemental operations is exceeded, in which case the ap-
plication does not even get an approximation. However, how hard
we should search for a good approximation is application-specific,
and we will need to find a measured different from ISL’s number of
elemental operations.
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