
Polyhedral Binary Decision Diagrams for 
Representing Non-Convex Polyhedra

Shubhang Kulkarni (University of Illinois, Urbana-Champaign) and Michael Kruse (Argonne National Labs) 

IMPACT 2022



Polyhedral Model

Simple Program

Statement Domain (Explicit Enumeration)

Statement Domain (Compact Representation)

Statement Domain Visualization



Polyhedral Compilation

Use the polyhedral model for: 

❖ Program Analysis
❖Check the legality of a program transform
❖E.g. Loop interchange
❖Eventually need to solve a system of linear/affine inequalities

❖ Statement Scheduling 
❖Form a "better” schedule according to some objective
❖E.g. parallelism, data locality, memory access
❖Eventually need to solve an Integer Linear Program (IntLP)



Convexity, A Crucial Requirement

❖ Statement domain must be convex for compact polyhedral representation

❖ Does not hold for programs with conditional statements

Programs

Statement Domains



Union-of-Convex-Polyhedra

❖ Non-convex vector sets are represented as union of convex polyhedra



Motivating Example
❖Conditionals introduce non-affine constraints (eg non-equality), which 

leads to splitting of iteration domain



Polly 

❖The previous example shows that with 𝑝 conditional statements, the 
union-of-convex-polyhedra representation requires Ω(2𝑝) polyhedra!

❖Infeasible to even write down for polyhedral optimizers even when 𝑝 = 20

❖Polly is LLVM’s polyhedral optimizer

❖A typical execution of Polly involves 
❖Representing programs via polyhedral model

❖Performing several set operations

❖Solving IntLPs



Integer Set Library (ISL)
❖Polly uses Integer Set Library (ISL) to handle polyhedral computations

❖ISL uses union-of-convex-polyhedral representation

Problem: Polly terminates without program-optimizations when programs 
have conditional-structure similar to that of motivating example.

Question: Is there an alternative representation that avoids this blowup?

YES!



Our Results

❖Polyhedral Binary Decision Diagrams (PBDDs) as an alternative 
representation for non-convex vector sets.

❖Proof of concept implementation (Python)

❖Case studies comparing scaling behavior of common set operations (needed 
by Polly) for PBDDs vs ISL’s union-of convex-polyhedra representation



Our Results – Remarks

❖Polyhedral Binary Decision Diagrams (PBDDs) as an alternative 
representation for non-convex polyhedral

❖We introduce PBDDs to make representing and performing set operations on non-
convex sets feasible

❖Motivating example has a linear size PBDD representation

❖Several set-operations become computationally/algorithmically simple

❖Particularly useful when these operations result in simple sets, but Polly currently 
terminates prematurely due to representational overhead.

❖Open Question: Adapt PBDDs to work with IntLP solvers.



Binary Decision Diagrams (BDDs)

❖Binary decision diagrams (BDDs) are used to represent Boolean functions

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇(𝒙𝟏, 𝒙𝟐, 𝒙𝟑)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

𝒙𝟏

𝒙𝟐 𝒙𝟐

𝒙𝟑 𝒙𝟑 𝒙𝟑 𝒙𝟑

1 1 0 0 0 1 1 0

𝒙𝟏

𝒙𝟐 𝒙𝟐

𝒙𝟑 𝒙𝟑

0 1

Truth Table

Binary Decision Tree Binary Decision Diagram

Function Evaluation Examples:
𝑓 0,1,0 = 0
𝑓 1,1,0 = 1



Polyhedral Binary Decision Diagrams (PBDDs)

❖In PBDDs, we consider the Boolean function being evaluated as the indicator 
of whether a point is in the polyhedral set.

❖Variables correspond to constraints

❖Point in iteration space corresponds to indicator vector of which constraints 
the point satisfies

❖Function evaluation is same as in the case of BDDs



Polyhedral Binary Decision Diagrams (PBDDs)

Program (recall)

Statement Domain (recall)

𝑖 ≥ 1

𝑖 ≤ 6

𝑗 ≥ 1

𝑗 ≤ 5

𝑖 = 3

𝑗 = 3

TF

PBDD Representation Example Evaluations:
0,1 → 𝐹
2,4 → 𝑇
3,3 → 𝐹



Distinctions from BDDs and QuASTs
❖PBDD vs BDD

❖ An assumption of BDDs is that all the input variables are independent

❖ For PBDDs that have not been simplified, conflicting constraints can happen

❖We allow non-simplified PBDDs as simplification steps often computationally 
intensive

❖PBDD vs QuAST
❖ Quasi-Affine Solution Tree

❖ Used to describe the piece-wise defined solution of the lexicographic minimum of a 
parametric Z-polyhedron.

❖ In contrast to PBDD, it is defined by a context-free grammar. 

❖QuASTs are always trees instead of DAGs.

❖QuAST is vector-valued whereas PBDD is Boolean-valued (indicator function).



Simple Set Operations
𝑄1

TF

𝑄2

TF

𝑄1

F

𝑄2

T

𝑄1

TF

𝑄2

TF

𝑄1

F

𝑄2

T

Intersect

Union

𝑄1

TF
C

o
m

p
le

m
e

n
t

𝑄1

T F

Can be implemented to be extremely efficient!!



Simple Set Operations

❖Main paper also defines and gives algorithms for various set operations:
❖Emptiness check

❖Subset check

❖Subtraction 

❖Project Out

❖Recursion + Memoization 

Note: Algorithms are recursive as our Python PoC implementation of a PBDD is 
inherently recursive.



Simplification Operations

❖We use structural simplifications in order to control the sizes of PBDDs
❖ Conceptually simple but lead to big speedups
❖ Correctness follows from Shannon Expansion (see main paper)
❖ Experiments show that these are necessary to make representations tractable.

𝑄2

TF

𝑄1

𝑄2

TF

Simplify

𝑄2

TF

𝑄1

Simplify
𝑄2

TF𝑄1 = 𝑄2

Redundant Nodes Isomorphic Nodes



Experiments I



Experiments II



Experiments III



Future Work

❖Implementation that does not rely on ISL intermediate data representation

❖Parallelism

❖Operational Efficiency

❖Simplifications

❖Decision Orderings

❖Approximations

❖Typed Roots

❖Adapt PBDDs for ILP solvers

See main paper for discussions on each!


