Polyhedral Binary Decision Diagrams for
Representing Non-Convex Polyhedra

Shubhang Kulkarni (University of lllinois, Urbana-Champaign) and Michael Kruse (Argonne National Labs)

IMPACT 2022

Polyhedral Model

Simple Program

for (int i=1; i<5; i++)
for (int j=1; i+j
S(i,3);

icit Enumeration)

Statement Domain (Ex

5(1,1), S(1,2), 5(1,3), S(1,4), 5(2,1), 5(2,2), 5(2,3),
S(3,1), 5(3,2), S5(4,1)

P et

Statement Domain (Compact Representation)

[
|
I
A
1
1

{$(,J)10<ijni+j<6}

Statement Domain Visualization

Polyhedral Compilation

Use the polyhedral model for:

¢ Program Analysis
**Check the legality of a program transform
**E.g. Loop interchange
**Eventually need to solve a system of linear/affine inequalities

s Statement Scheduling
**Form a "better” schedule according to some objective
**E.g. parallelism, data locality, memory access
**Eventually need to solve an Integer Linear Program (IntLP)

Convexity, A Crucial Requirement

¢ Statement domain must be convex for compact polyhedral representation
¢ Does not hold for programs with conditional statements

for (int 1 = 1; 1 <= 6; ++1i) for (int i = 1; i <= 6; ++i)
for (int j = 1; j <= 5; ++]) Programs for (int j = 1; j <= 5; ++j)
if (1 =3 || jl= 3)

Stmt (i, j); Stmt(i,j);

5/ /6 @ © ® e @\ N
Tt 41 e e e e o o
3{|® @ ®© @ @ @ . |

Statement Domains 31 o e e o o
21|l ® ®© ® o o) AR
- Q =t .y 11 @€ @ ¢ o o o
0 : — i . y

Union-of-Convex-Polyhedra

** Non-convex vector sets are represented as union of convex polyhedra

for (int i = 1; i <= 6; ++i)
for (int j = 1; j <= 5; ++j)
if (A!=3 1] j!'=3)
Stmt (i, j);

S = N W s W
L 1 1 f 1 A
i

: !

0 1 2 3 4 5 6

D = N W s

S = W s
L L L . L \
5 .

01 2 3 4 5 6 0123456

Motivating Example

s*Conditionals introduce non-affine constraints (eg non-equality), which
leads to splitting of iteration domain

f . . 0 i - for (int i = @; i < n; i+=1) {
. . . . = : . +=
for (int i = 0; 1 < n; i+=1) { for (int i = 0; i < n; i+=1) { or (int i = 0; i <n; i+=1) { for (int 3 = 0; § < n; j+=1

for (int j = 0; j < n; j+=1) { for (int j = @; j < n; j+=1) { for ;;:t(Jin: z;:; E;‘(J:B,,ED { ﬁ".. (int k = 8; k <n; k=1 {
for (int k = 0; k < n; k+=1) { for (int k = @; k < n; k+=1) { if (i == p@)’ 4 if (i ?= po)
o . if (i == po) - continue;
Stmt(i, j, k); continue: continue; if (j == p1)
} Stmt (i, j,’k); if (j == p1) continue;
}) continue; if (k == p2)
} } Stmt(i, j, k); continue;
} } Stmt(i, j, k);

}

}
3 3
' ’

Polly

**The previous example shows that with p conditional statements, the
union-of-convex-polyhedra representation requires Q(2P) polyhedra!

“*Infeasible to even write down for polyhedral optimizers even whenp = 20
s*Polly is LLVM’s polyhedral optimizer

A typical execution of Polly involves
**Representing programs via polyhedral model
**Performing several set operations
**Solving IntLPs

Integer Set Library (ISL)

***Polly uses Integer Set Library (ISL) to handle polyhedral computations
**ISL uses union-of-convex-polyhedral representation

Problem: Polly terminates without program-optimizations when programs
have conditional-structure similar to that of motivating example.

Question: Is there an alternative representation that avoids this blowup?
YES!

Our Results

s Polyhedral Binary Decision Diagrams (PBDDs) as an alternative
representation for non-convex vector sets.

s*Proof of concept implementation (Python)

s Case studies comparing scaling behavior of common set operations (needed
by Polly) for PBDDs vs ISL’s union-of convex-polyhedra representation

Our Results — Remarks

s Polyhedral Binary Decision Diagrams (PBDDs) as an alternative
representation for non-convex polyhedral

**We introduce PBDDs to make representing and performing set operations on non-
convex sets feasible

s*Motivating example has a linear size PBDD representation

s*Several set-operations become computationally/algorithmically simple

s Particularly useful when these operations result in simple sets, but Polly currently
terminates prematurely due to representational overhead.

**Open Question: Adapt PBDDs to work with IntLP solvers.

Binary Decision Diagrams (BDDs)

**Binary decision diagrams (BDDs) are used to represent Boolean functions

f (1, Xz, %5)
1

0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0 Binary Decision Tree Binary Decision Diagram

Truth Table

Function Evaluation Examples:
f(0,1,0) =0
f(1,1,0) =1

Polyhedral Binary Decision Diagrams (PBDDs)

**In PBDDs, we consider the Boolean function being evaluated as the indicator
of whether a point is in the polyhedral set.

*»*Variables correspond to constraints

**Point in iteration space corresponds to indicator vector of which constraints
the point satisfies

**Function evaluation is same as in the case of BDDs

Polyhedral Binary Decision Diagrams (PBDDs)

Program (recall) PBDD Representation Example Evaluations:
(0,1) > F
for (int i = 1; i <= 6; ++i) (24)->T
for (int j = 1; j <= 5; ++j) (3,3) > F
if (i '=3 1] j'=3)
stmt(i,3);

Statement Domain (recall)

]

5{ @ @ o e e @
41 © @ o o o @
3{ @ @ X o o o
2{ © @ o o o o
1{ © @ © @ o @
0 > 1

Distinctions from BDDs and QUASTSs

“*PBDD vs BDD

** An assumption of BDDs is that all the input variables are independent
** For PBDDs that have not been simplified, conflicting constraints can happen

** We allow non-simplified PBDDs as simplification steps often computationally
intensive

**PBDD vs QUAST

** Quasi-Affine Solution Tree

s Used to describe the piece-wise defined solution of the lexicographic minimum of a
parametric Z-polyhedron.

** In contrast to PBDD, it is defined by a context-free grammar.
**QuASTs are always trees instead of DAGs.
**QUAST is vector-valued whereas PBDD is Boolean-valued (indicator function).

Simple Set Operati

Intersect >

L R b

Union >

ons

>H <%,uawa|dwo:) @H

Can be implemented to be extremely efficient!!

Simple Set Operations

** Main paper also defines and gives algorithms for various set operations:
**Emptiness check
**Subset check
**Subtraction
**Project Out

s»*Recursion + Memoization

Note: Algorithms are recursive as our Python PoC implementation of a PBDD is
inherently recursive.

Simplification Operations

¢ We use structural simplifications in order to control the sizes of PBDDs
+** Conceptually simple but lead to big speedups

+** Correctness follows from Shannon Expansion (see main paper)

s Experiments show that these are necessary to make representations tractable.

Simplify >

Redundant Nodes Isomorphic Nodes

Simplify >

Q1 =02

Experiments |

(1) Input: k, constraints c;

(1) Input: k, constraints c;
(2) P :=Universe

(2) P :=Universe .
(3) fori=1...k (3) fori=1...k:

(a) P = intersect (P, complement(c;)) (a) P = subtract (P, intersect(c;, P))
(4) Output P (4) Output P

10 A

-¥- simplified PBDD - 102 4 —¥- simplified PBDD g
-e- IsL > -e- 5L el
14 ~®- unsimplified PBDD e -m- unsimplified PBDD -
”.’ 10 ~ ,.’
T ~ T -7
o -7 © od
% 10711 e g 1 Rl
i - i L)
g R o -
= - g% = -
- - I nw 10-1 ed
2 10-2 4 "--"‘"'_* T - v---v
5] eV c ’f T
S - S . —
'i o - _p—-—-—
[7] - — =T
@ e % 1072 - -7
= P c _..j:-" _-a
v 103 4 ,.' .,’ ---m o ",—" - "-'
E v _.___.__._...--I—-'l'"" E 1034 v’ '.__-0’ o m--=
,/:-_-..._--.""'.' - L r——..—-‘.__,..--."
107 1 .’- '_'_--l""'
10-4 -
1075 ‘ T T T . T T 5
2 4 6 8 10 12 14 10

Number of non-equality constraints .)
quality Number of non-equality constraints

Time in seconds (log-scale)

Time in seconds (log-scale)

102

10

1072

103

1074

1075

10

-¥- simplified PBDD e
”
-e- 5L o
-m- unsimplified PBDD L
-
’f
"
-
o’
f”'
y
”
,I
l"
I’ v
I PP St
A i A v
| Jai
’d

.

e . A etk st EEEE bl EEbel |

2 4 6 8 10
Number of non-equality constraints

(a) Non-convex Intersection

i

-¥- simplified PBDD
-@- ISL
—-m- unsimplified PBDD

- ---R--- - ——-g---a
v

2 4 6 8 10
Number of non-equality constraints

(b) Non-convex Union

Experiments ||

1019 _y- simplified PBDD »
-e- ISL "
14 -m- unsimplified PBDD e
e
.
T .
g 1071 g
5 -
= 1072 .
5 o
[-4 -
S ed
@ 1073 o
E ,_r"'.
-
E 1041 *°7°
=
10—5 4
i——v--v——'——-v——-w'"""-v--"“"“""""'"‘“"
TE--g--- - - -a--a------g--%-p-a
2 4 6 8 10 12 14
Number of non-equality constraints
(c) Non-convex Complement
10 A - -
-¥- simplified PBDD 2
-e- ISL './
14 —®- unsimplified PEDD e
]
I ’
E 1 "
% 1071 4 .
: ~
g o«
v ,’
g 1072 4 ",.
2 /'__,,__-v-—#--—'r—"""""'
£ PR
g 1073 4 e
- -
= v ,4.
1074 '7“."'.".'“l——-.——f—-*l'--.--l——."'._—'.""l
107° T T T T T T T
2 4 6 8 10 12 14

Number of non-equality constraints

(d) Non-convex Subtraction

Time in seconds (log-scale)

Experiments |l

10 A

~¥% simplified PBDD
=% simplified PBDD w/ construction
-& ISL
11 —@~ ISL w/ construction
—=- unsimplified PBDD -
— unsimplified PBDD w/ construction 'z.’
1071 1 " 2
10-2 1
10—3 =
-4
10 o
ta
o--9®
10°° T . T '
2 4 6 12

Number of non-equality constraints

(a) Non-convex project-out

Time in seconds (log-scale)

10 A m—
=% simplified PBDD
- simplified PBDD w/ construction
-@ ISL
17 =&~ ISL w/ construction
- unsimplified PBDD ,’.
- unsimplified PBDD w/ construction v
lo—l <
1072 1
10—3 -
-4
10 e~
o--9
1073 T r T . . .
2 - 6 8 10 12

Number of non-equality constraints

(b) Non-convex emptiness check

Future Work

**Implementation that does not rely on ISL intermediate data representation

s»Parallelism

s Operational Efficiency
s»*Simplifications
s»*Decision Orderings

*** Approximations
**Typed Roots

*»Adapt PBDDs for ILP solvers

See main paper for discussions on each!

