
1/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Polyhedral Scheduling and Relaxation of
Synchronous Reactive Systems

Guillaume Iooss, Albert Cohen, Dumitru Potop-Butucaru,
Marc Pouzet, Vincent Bregeon, Jean Souyris,

Philippe Beaufreton

INRIA, Google, ENS, Airbus, Safran

June 20th, 2022

2/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Application considered

Critical embedded real-time synchronous applications (ex: avionic)

Critical system: correction is (very) important
Real-time: hard temporal deadlines
Synchronous:

Manipulate infinite streams of data
Computations can have different cadences of production
Rhythm of computations synchronized with a global clock

2/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Application considered

Critical embedded real-time synchronous applications (ex: avionic)

Critical system: correction is (very) important
Real-time: hard temporal deadlines
Synchronous:

Manipulate infinite streams of data
Computations can have different cadences of production
Rhythm of computations synchronized with a global clock

3/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Integration program

Integration program: top-most part of the application.
Orchestrates the exchange of data between computations

Assumed properties:Code generation:

Time

Harmonic periods
Computation: once per period

{ { { { { {

Code generation: infinite while loop (with if statements)
1 iteration = 1 tick of fastest period

Phase: in which iteration should a computation be?
Must respect timing constraints

Deadline at the end of a tick
(Additional) Latency constraints

3/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Integration program

Integration program: top-most part of the application.
Orchestrates the exchange of data between computations

Assumed properties:

Code generation:

Time

Harmonic periods

Computation: once per period

{ { { { { {

Code generation: infinite while loop (with if statements)
1 iteration = 1 tick of fastest period

Phase: in which iteration should a computation be?
Must respect timing constraints

Deadline at the end of a tick
(Additional) Latency constraints

3/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Integration program

Integration program: top-most part of the application.
Orchestrates the exchange of data between computations

Assumed properties:

Code generation:

Time

Harmonic periods
Computation: once per period

{ { { { { {

Code generation: infinite while loop (with if statements)
1 iteration = 1 tick of fastest period

Phase: in which iteration should a computation be?
Must respect timing constraints

Deadline at the end of a tick
(Additional) Latency constraints

3/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Integration program

Integration program: top-most part of the application.
Orchestrates the exchange of data between computations

Assumed properties:

Code generation:
Time

Harmonic periods
Computation: once per period

{ { { { { {

Code generation: infinite while loop (with if statements)
1 iteration = 1 tick of fastest period

Phase: in which iteration should a computation be?
Must respect timing constraints

Deadline at the end of a tick
(Additional) Latency constraints

3/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Integration program

Integration program: top-most part of the application.
Orchestrates the exchange of data between computations

Assumed properties:

Code generation:
Time

Harmonic periods
Computation: once per period

{ { { { { {

Code generation: infinite while loop (with if statements)
1 iteration = 1 tick of fastest period

Phase: in which iteration should a computation be?
Must respect timing constraints

Deadline at the end of a tick
(Additional) Latency constraints

4/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Contributions

1 How are integration programs written in Lustre ?
Specialization: 1-synchronous clocks
Issue: phase (= schedule) has to be provided manually.

2 Unknown phases, to be inferred by the compiler:
Gather affine constraints from typing system
ILP formulation (and tricks) to find them
Objective function: load-balancing

3 Under-specified operators: fuzzy dataflow
Possible to relax some dependency constraints

4/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Contributions

1 How are integration programs written in Lustre ?
Specialization: 1-synchronous clocks
Issue: phase (= schedule) has to be provided manually.

2 Unknown phases, to be inferred by the compiler:
Gather affine constraints from typing system
ILP formulation (and tricks) to find them
Objective function: load-balancing

3 Under-specified operators: fuzzy dataflow
Possible to relax some dependency constraints

4/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Contributions

1 How are integration programs written in Lustre ?
Specialization: 1-synchronous clocks
Issue: phase (= schedule) has to be provided manually.

2 Unknown phases, to be inferred by the compiler:
Gather affine constraints from typing system
ILP formulation (and tricks) to find them
Objective function: load-balancing

3 Under-specified operators: fuzzy dataflow
Possible to relax some dependency constraints

5/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Background - Lustre programming language

Equational language for synchronous program:
Variables/expressions are stream of data
Equations define the values of variables

x 0 1 1 2 . . .

y 4 −2 1 4 . . .

42 42 42 42 42 . . .

x + y 4 −1 2 6 . . .

42 fby y 42 4 −2 1 . . .

fby operator: use the previous value (memory)

5/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Background - Lustre programming language

Equational language for synchronous program:
Variables/expressions are stream of data
Equations define the values of variables

x 0 1 1 2 . . .

y 4 −2 1 4 . . .

42 42 42 42 42 . . .

x + y 4 −1 2 6 . . .

42 fby y 42 4 −2 1 . . .

fby operator: use the previous value (memory)

6/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Background - Clocks
Clock: x :: clk

Boolean stream to encode if a value is present at a tick
Arbitrary in general
Will consider only periodic clocks (ex: (T F T T))

Clocking rules: check that the clocks match

Sub/Over-sampling: when / (merge + current)
when: filter the values of a (faster) stream
merge: combine 2 streams
current: repeat (faster) a value produced by a slower stream

x :: c 0 1 1 2 . . .

b = (TF) :: c T F T F . . .

z = x when b :: c on b 0 − 1 − . . .

y :: c on not b − 42 − 64 . . .

merge b z y :: c 0 42 1 64 . . .

current(b,0,z) :: c 0 0 1 1 . . .

6/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Background - Clocks
Clock: x :: clk

Boolean stream to encode if a value is present at a tick
Arbitrary in general
Will consider only periodic clocks (ex: (T F T T))

Clocking rules: check that the clocks match

Sub/Over-sampling: when / (merge + current)
when: filter the values of a (faster) stream
merge: combine 2 streams
current: repeat (faster) a value produced by a slower stream

x :: c 0 1 1 2 . . .

b = (TF) :: c T F T F . . .

z = x when b :: c on b 0 − 1 − . . .

y :: c on not b − 42 − 64 . . .

merge b z y :: c 0 42 1 64 . . .

current(b,0,z) :: c 0 0 1 1 . . .

7/17

Introduction 1-synchronous clocks Phase constraints Conclusion

1-synchronous clocks and temporal operators
1-synchronous clock : for integration program

Periodic + only one activation per period
(F k .T .F n−k−1) : n = period, k = phase, 0 ≤ k < n
Compact representation: [k, n]

Temporal operators:
Specialization of when/current operators.
delay(d) / delayfby(d) operators

•
0

•
1

•
2

•

y = x when [1,3]

•

•
0

•
1

•
2

y = current([1,3], 42, x)

delay(1)

• •
delay(2)

• •
delayfby(1)

• •
0 1 2 3 0 1 2 3 0

7/17

Introduction 1-synchronous clocks Phase constraints Conclusion

1-synchronous clocks and temporal operators
1-synchronous clock : for integration program

Periodic + only one activation per period
(F k .T .F n−k−1) : n = period, k = phase, 0 ≤ k < n
Compact representation: [k, n]

Temporal operators:
Specialization of when/current operators.
delay(d) / delayfby(d) operators

•
0

•
1

•
2

•

y = x when [1,3]

•

•
0

•
1

•
2

y = current([1,3], 42, x)

delay(1)

• •
delay(2)

• •
delayfby(1)

• •
0 1 2 3 0 1 2 3 0

7/17

Introduction 1-synchronous clocks Phase constraints Conclusion

1-synchronous clocks and temporal operators
1-synchronous clock : for integration program

Periodic + only one activation per period
(F k .T .F n−k−1) : n = period, k = phase, 0 ≤ k < n
Compact representation: [k, n]

Temporal operators:
Specialization of when/current operators.
delay(d) / delayfby(d) operators

•
0

•
1

•
2

•

y = x when [1,3]

•

•
0

•
1

•
2

y = current([1,3], 42, x)

delay(1)

• •
delay(2)

• •
delayfby(1)

• •
0 1 2 3 0 1 2 3 0

7/17

Introduction 1-synchronous clocks Phase constraints Conclusion

1-synchronous clocks and temporal operators
1-synchronous clock : for integration program

Periodic + only one activation per period
(F k .T .F n−k−1) : n = period, k = phase, 0 ≤ k < n
Compact representation: [k, n]

Temporal operators:
Specialization of when/current operators.
delay(d) / delayfby(d) operators

•
0

•
1

•
2

•

y = x when [1,3]

•

•
0

•
1

•
2

y = current([1,3], 42, x)

delay(1)

• •
delay(2)

• •
delayfby(1)

• •
0 1 2 3 0 1 2 3 0

8/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Clock analysis

1-synchronous operators: add a constant to the phase

• • •

•

k × n + p

q

y = x when [k,r]

where:
p/q are phases, n/m periods
k is the number of the sampled occurrence

9/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Extension - Unknown phases

1-synchronous clocks with unknown phases.
Period is still specified
Compiler will need to find a set of valid phases

New operators: buffer/bufferfby:
Similar to delay(d) / delayfby(d) with less information
buffer clock rule: dependence constraint

Clock analysis: now manipulates symbolic phases p.
Gather affine constraints from it:

Boundary condition on phases: 0 ≤ p < n
Dependence constraints from buffer: p1 + C ≤ p2
Unification constraints from ops/equation: p1 = p2 + C
(Additional) latency constraints: p1 − p2 ≤ C

9/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Extension - Unknown phases

1-synchronous clocks with unknown phases.
Period is still specified
Compiler will need to find a set of valid phases

New operators: buffer/bufferfby:
Similar to delay(d) / delayfby(d) with less information
buffer clock rule: dependence constraint

Clock analysis: now manipulates symbolic phases p.
Gather affine constraints from it:

Boundary condition on phases: 0 ≤ p < n
Dependence constraints from buffer: p1 + C ≤ p2
Unification constraints from ops/equation: p1 = p2 + C
(Additional) latency constraints: p1 − p2 ≤ C

9/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Extension - Unknown phases

1-synchronous clocks with unknown phases.
Period is still specified
Compiler will need to find a set of valid phases

New operators: buffer/bufferfby:
Similar to delay(d) / delayfby(d) with less information
buffer clock rule: dependence constraint

Clock analysis: now manipulates symbolic phases p.

Gather affine constraints from it:
Boundary condition on phases: 0 ≤ p < n
Dependence constraints from buffer: p1 + C ≤ p2
Unification constraints from ops/equation: p1 = p2 + C
(Additional) latency constraints: p1 − p2 ≤ C

9/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Extension - Unknown phases

1-synchronous clocks with unknown phases.
Period is still specified
Compiler will need to find a set of valid phases

New operators: buffer/bufferfby:
Similar to delay(d) / delayfby(d) with less information
buffer clock rule: dependence constraint

Clock analysis: now manipulates symbolic phases p.
Gather affine constraints from it:

Boundary condition on phases: 0 ≤ p < n
Dependence constraints from buffer: p1 + C ≤ p2
Unification constraints from ops/equation: p1 = p2 + C
(Additional) latency constraints: p1 − p2 ≤ C

10/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Example

Example of program:

model main(...) returns (...)
var

a :: [..,1]; b :: [..,2];
c :: [..,6]; d :: [..,2]; e :: [..,1];

let
b = buffer f1(a when [1,2]);
c = buffer f2(b when [0,3]);
d = f3(current([2,3], 0.0, buffer c));
e = f4(current([0,2], 0.0, buffer d));

tel

Extracted constraints:
Bounds from variable declarations:
0 ≤ pa, pe < 1, 0 ≤ pb, pd < 2 and 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb

pb ≤ pc pc − 4 ≤ pd pd ≤ pe

10/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Example

Example of program:

model main(...) returns (...)
var

a :: [..,1]; b :: [..,2];
c :: [..,6]; d :: [..,2]; e :: [..,1];

let
b = buffer f1(a when [1,2]);
c = buffer f2(b when [0,3]);
d = f3(current([2,3], 0.0, buffer c));
e = f4(current([0,2], 0.0, buffer d));

tel

Extracted constraints:
Bounds from variable declarations:
0 ≤ pa, pe < 1, 0 ≤ pb, pd < 2 and 0 ≤ pc < 6

Constraints from buffer:
pa + 1 ≤ pb

pb ≤ pc pc − 4 ≤ pd pd ≤ pe

10/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Example

Example of program:

model main(...) returns (...)
var

a :: [..,1]; b :: [..,2];
c :: [..,6]; d :: [..,2]; e :: [..,1];

let
b = buffer f1(a when [1,2]);
c = buffer f2(b when [0,3]);
d = f3(current([2,3], 0.0, buffer c));
e = f4(current([0,2], 0.0, buffer d));

tel

Extracted constraints:
Bounds from variable declarations:
0 ≤ pa, pe < 1, 0 ≤ pb, pd < 2 and 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb

pb ≤ pc pc − 4 ≤ pd pd ≤ pe

10/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Example

Example of program:

model main(...) returns (...)
var

a :: [..,1]; b :: [..,2];
c :: [..,6]; d :: [..,2]; e :: [..,1];

let
b = buffer f1(a when [1,2]);
c = buffer f2(b when [0,3]);
d = f3(current([2,3], 0.0, buffer c));
e = f4(current([0,2], 0.0, buffer d));

tel

Extracted constraints:
Bounds from variable declarations:
0 ≤ pa, pe < 1, 0 ≤ pb, pd < 2 and 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb pb ≤ pc

pc − 4 ≤ pd pd ≤ pe

10/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Example

Example of program:

model main(...) returns (...)
var

a :: [..,1]; b :: [..,2];
c :: [..,6]; d :: [..,2]; e :: [..,1];

let
b = buffer f1(a when [1,2]);
c = buffer f2(b when [0,3]);
d = f3(current([2,3], 0.0, buffer c));
e = f4(current([0,2], 0.0, buffer d));

tel

Extracted constraints:
Bounds from variable declarations:
0 ≤ pa, pe < 1, 0 ≤ pb, pd < 2 and 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb pb ≤ pc pc − 4 ≤ pd pd ≤ pe

11/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Motivation

when/current operator: which occurrence is sampled?
Critical to have a deterministic dataflow

But, engineers do not know that information. . .

. . . How is that possible?
Equations coming from a physical model
Some stream have a physical meaning, with low temporal
variability (ex: temperature)

⇒ Just need a “fresh enough” value (̸= the most recent one)

⇒ Provide this property to relax the scheduling problem

11/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Motivation

when/current operator: which occurrence is sampled?
Critical to have a deterministic dataflow

But, engineers do not know that information. . .

. . . How is that possible?
Equations coming from a physical model
Some stream have a physical meaning, with low temporal
variability (ex: temperature)

⇒ Just need a “fresh enough” value (̸= the most recent one)

⇒ Provide this property to relax the scheduling problem

11/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Motivation

when/current operator: which occurrence is sampled?
Critical to have a deterministic dataflow

But, engineers do not know that information. . .

. . . How is that possible?
Equations coming from a physical model
Some stream have a physical meaning, with low temporal
variability (ex: temperature)

⇒ Just need a “fresh enough” value (̸= the most recent one)

⇒ Provide this property to relax the scheduling problem

11/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Motivation

when/current operator: which occurrence is sampled?
Critical to have a deterministic dataflow

But, engineers do not know that information. . .

. . . How is that possible?
Equations coming from a physical model
Some stream have a physical meaning, with low temporal
variability (ex: temperature)

⇒ Just need a “fresh enough” value (̸= the most recent one)

⇒ Provide this property to relax the scheduling problem

12/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Operators

Underspecified operators:
(e when? r) = any (e when [k,r]), 0 ≤ k < r
current?(r,i,e) = any current([k,r],i,e), 0 ≤ k < r

(c fby? e) = e or (c fby e)
(c bufferfby? e) = (buffer e) or (c bufferfby e)

Clock constraint: add decision variables di
Corresponds to the choice of dataflow made

Add constraints on the di to avoid causality loops.

12/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Operators

Underspecified operators:
(e when? r) = any (e when [k,r]), 0 ≤ k < r
current?(r,i,e) = any current([k,r],i,e), 0 ≤ k < r

(c fby? e) = e or (c fby e)
(c bufferfby? e) = (buffer e) or (c bufferfby e)

Clock constraint: add decision variables di
Corresponds to the choice of dataflow made

Add constraints on the di to avoid causality loops.

12/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Operators

Underspecified operators:
(e when? r) = any (e when [k,r]), 0 ≤ k < r
current?(r,i,e) = any current([k,r],i,e), 0 ≤ k < r

(c fby? e) = e or (c fby e)
(c bufferfby? e) = (buffer e) or (c bufferfby e)

Clock constraint: add decision variables di
Corresponds to the choice of dataflow made

Add constraints on the di to avoid causality loops.

12/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Underspecified operators - Operators

Underspecified operators:
(e when? r) = any (e when [k,r]), 0 ≤ k < r
current?(r,i,e) = any current([k,r],i,e), 0 ≤ k < r

(c fby? e) = e or (c fby e)
(c bufferfby? e) = (buffer e) or (c bufferfby e)

Clock constraint: add decision variables di
Corresponds to the choice of dataflow made

Add constraints on the di to avoid causality loops.

13/17

Introduction 1-synchronous clocks Phase constraints Conclusion

ILP solving

Cost function: load balancing across all phases
Each computation T has a weight (WCET) WT

Binary representation of pT : δk,T (= 1 iff pT = k, else = 0)
Link binary - integer representation:

(∀T computation)
∑
k

δk,T = 1

(∀T computation)
∑
k

k.δk,T = pT

Load balancing constraint (minimize Wmax)

(∀k phase)
∑
T

(δk mod per(T),T × WT) ≤ Wmax

Redundancy of encoding of phase value (binary + integer)
⇒ Alternative formulation with binary only

13/17

Introduction 1-synchronous clocks Phase constraints Conclusion

ILP solving

Cost function: load balancing across all phases
Each computation T has a weight (WCET) WT
Binary representation of pT : δk,T (= 1 iff pT = k, else = 0)

Link binary - integer representation:

(∀T computation)
∑
k

δk,T = 1

(∀T computation)
∑
k

k.δk,T = pT

Load balancing constraint (minimize Wmax)

(∀k phase)
∑
T

(δk mod per(T),T × WT) ≤ Wmax

Redundancy of encoding of phase value (binary + integer)
⇒ Alternative formulation with binary only

13/17

Introduction 1-synchronous clocks Phase constraints Conclusion

ILP solving

Cost function: load balancing across all phases
Each computation T has a weight (WCET) WT
Binary representation of pT : δk,T (= 1 iff pT = k, else = 0)

Link binary - integer representation:

(∀T computation)
∑
k

δk,T = 1

(∀T computation)
∑
k

k.δk,T = pT

Load balancing constraint (minimize Wmax)

(∀k phase)
∑
T

(δk mod per(T),T × WT) ≤ Wmax

Redundancy of encoding of phase value (binary + integer)
⇒ Alternative formulation with binary only

13/17

Introduction 1-synchronous clocks Phase constraints Conclusion

ILP solving

Cost function: load balancing across all phases
Each computation T has a weight (WCET) WT
Binary representation of pT : δk,T (= 1 iff pT = k, else = 0)

Link binary - integer representation:

(∀T computation)
∑
k

δk,T = 1

(∀T computation)
∑
k

k.δk,T = pT

Load balancing constraint (minimize Wmax)

(∀k phase)
∑
T

(δk mod per(T),T × WT) ≤ Wmax

Redundancy of encoding of phase value (binary + integer)
⇒ Alternative formulation with binary only

14/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Experimental results

Two real-world industrial use cases:
UC1: (control command - Airbus) 5124 nodes, 32k variables
4 harmonic periods (10/20/40/120 ms)
UC2: (motor regulation - Safran) 142 nodes, 5 harmonic
periods (15/30/60/120/240 ms)

ILP problem # of lines # of vars Solving time

UC1
No cost function 28742 5124 0.05 s
Load balancing integral 79128 45249 17.75 s
Load balancing binary 200746 40125 9.05 s

UC2
No cost function 3908 143 0.01 s
Load balancing integral 5106 1039 0.03 s
Load balancing binary 17689 897 0.05 s

Solutions found are ≤ 0.01% above rational optimal.

14/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Experimental results

Two real-world industrial use cases:
UC1: (control command - Airbus) 5124 nodes, 32k variables
4 harmonic periods (10/20/40/120 ms)
UC2: (motor regulation - Safran) 142 nodes, 5 harmonic
periods (15/30/60/120/240 ms)

ILP problem # of lines # of vars Solving time

UC1
No cost function 28742 5124 0.05 s
Load balancing integral 79128 45249 17.75 s
Load balancing binary 200746 40125 9.05 s

UC2
No cost function 3908 143 0.01 s
Load balancing integral 5106 1039 0.03 s
Load balancing binary 17689 897 0.05 s

Solutions found are ≤ 0.01% above rational optimal.

15/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Injecting the solution in the program

Once we found a solution, reinject it in the program

With decision variable values: op? ⇒ op

With phase values:
buffer ⇒ delay(d)
[..,n] ⇒ [k,n]

⇒ After substitution, fully specified 1-synchronous program

16/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Conclusion

In summary: Three language extensions to Lustre:
1-synchronous clocks. . .
. . . With unknown phases
Underspecified operators.

Remain to be done: load balancing with parallelism?

Takeaway message: Semantic properties can be useful
⇒ Check how an application is specified/used in practice

16/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Conclusion

In summary: Three language extensions to Lustre:
1-synchronous clocks. . .
. . . With unknown phases
Underspecified operators.

Remain to be done: load balancing with parallelism?

Takeaway message: Semantic properties can be useful
⇒ Check how an application is specified/used in practice

16/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Conclusion

In summary: Three language extensions to Lustre:
1-synchronous clocks. . .
. . . With unknown phases
Underspecified operators.

Remain to be done: load balancing with parallelism?

Takeaway message: Semantic properties can be useful
⇒ Check how an application is specified/used in practice

17/17

Introduction 1-synchronous clocks Phase constraints Conclusion

Thank you for listening. . .

. . . Do you have any questions?

	Introduction
	Introduction

	1-synchronous clocks
	Background
	1-synchronous

	Phase constraints
	Phase constraints
	Underspecified operators
	ILP solving and results

	Conclusion
	Conclusion

