Rephrasing Polyhedral Optimizations with Trace Analysis

Hugo Thievenaz, Christophe Alias and Keiji Kimura

12th International Workshop on Polyhedral Compilation Techniques IMPACT'22

Plan

Introduction

Context: compile-time storage optimization Approach: array contraction Contributions

Dynamic Array Contraction

Overview Input parameters Trace analysis algorithm Running example

Experimental Results

Setup Results

Conclusion

Context: Compile-time Storage Optimization

Challenges:

- Allocate local memory buffers: $local(i) \mapsto local_{opt}(\sigma_{local}(i))$
- Packing/unpacking of communicated data: *buffer(i)* → *buffer_{opt}(σ_{buffer}(i))*

Approach: Array Contraction

General approach: Contract temporary arrays (one-by-one) under the given scheduling constraints

- Focus: modular linear mappings $\sigma: \vec{i} \mapsto \vec{i} \mod b(\vec{N})$
- Correctness: Conflicting cells are mapped to different locations:

$$\forall \vec{i} \bowtie \vec{j}, \vec{i} \neq \vec{j} \Rightarrow \sigma(\vec{i}) \neq \sigma(\vec{j})$$

• Efficiency: Minimize σ range

Approach: Array Contraction

General approach: Contract temporary arrays (one-by-one) under the given scheduling constraints

- Focus: modular linear mappings $\sigma: \vec{i} \mapsto \vec{i} \mod b(\vec{N})$
- Correctness: Conflicting cells are mapped to different locations:

$$\forall \vec{i} \bowtie \vec{j}, \ \vec{i} \neq \vec{j} \Rightarrow \sigma(\vec{i}) \neq \sigma(\vec{j})$$

• Efficiency: Minimize σ range

State-of-the-art:

- Successive minima, Lefebvre et al., 1997, $\vec{i} \mapsto \vec{i} \mod b(N)$
- Admissible lattices, Alias et al., 2007, $\vec{i} \mapsto A\vec{i} \mod b(N)$
- Global array contraction, Bhaskaracharya et al., 2016

Approach: Array Contraction

General approach: Contract temporary arrays (one-by-one) under the given scheduling constraints

- Focus: modular linear mappings $\sigma: \vec{i} \mapsto \vec{i} \mod b(\vec{N})$
- Correctness: Conflicting cells are mapped to different locations:

$$\forall \vec{i} \bowtie \vec{j}, \vec{i} \neq \vec{j} \Rightarrow \sigma(\vec{i}) \neq \sigma(\vec{j})$$

• Efficiency: Minimize σ range

State-of-the-art:

- Successive minima, Lefebvre et al., 1997, $\vec{i} \mapsto \vec{i} \mod b(N)$
- Admissible lattices, Alias et al., 2007, $\vec{i} \mapsto A\vec{i} \mod b(N)$
- Global array contraction, Bhaskaracharya et al., 2016

Goal: Reduce computational cost by using offline execution traces

Contributions

Lightweight array contraction using offline execution traces and interpolation

Correct-by-construction interpolation, no need for an oracle

Preliminary experimental validation on polyhedral benchmarks

Plan

Introduction

Context: compile-time storage optimization Approach: array contraction Contributions

Dynamic Array Contraction

Overview Input parameters Trace analysis algorithm Running example

Experimental Results

Setup Results

Conclusion

Overview

Input Parameters

- Smallest N such that there exists one of each dependency (N = 3)
- Generation of next parameters, affinely independents (N = 3, 4)

Trace Analysis Algorithm

- Lefebvre-Feautrier instance on a trace \rightarrow affine mapping instance
- Run on several instances to extrapolate an affine mapping

Trace Analysis Algorithm

- Lefebvre-Feautrier instance on a trace \rightarrow affine mapping instance
- Run on several instances to extrapolate an affine mapping

```
function GetMAPPING(T,a)
     Input: T : trace, a : array name
     Output: \sigma : scalar mapping
     (In, Out) \leftarrow \text{LIVENESS}(T)
    CS \leftarrow \bigcup \{ (a[i], a[j]) \mid a[i], a[j] \in In(p) \}
    \Delta_a \leftarrow \{\vec{i} - \vec{j} \mid (a[\vec{i}], a[\vec{j}]) \in CS\}
     for each array dimension i, starting from 0, in increasing order do
          m_i \leftarrow 1 + max\{\delta_i \mid (0, ..., 0, \delta_i, ...) \in \Delta_a\}
    end for
    return \sigma : i mod \vec{m}
end function
```


N = 3 N = 4

i = 1W(1,0); W(1,1); W(1,2)

> i = 2R(1,0); W(2,0); ...

i = 1W(1,0); W(1,1); W(1,2)

> i = 2R(1,0); W(2,0); ...

i mod 2, *j* mod 3

$$\label{eq:interm} \begin{split} & {\bf i} = {\bf 1} \\ & {\rm W}(1,\!{\bf 0}); \ {\rm W}({\bf 1},\!1); \ {\rm W}(1,\!{\bf 2}) \end{split}$$

i = 1W(1,0); W(1,1); W(1,2); W(1,3);

i mod 2, *j* mod 3

N = 3 N = 4

$$\label{eq:interm} \begin{split} & {\bf i} = {\bf 1} \\ & {\rm W}(1,\!{\bf 0}); \ {\rm W}({\bf 1},\!1); \ {\rm W}(1,\!{\bf 2}) \end{split}$$

$$\label{eq:interm} \begin{split} & {\bf i} = {\bf 1} \\ & {\rm W}(1,\!{\bf 0}); \, {\rm W}(1,\!1); \\ & {\rm W}(1,\!2); \, {\rm W}(1,\!{\bf 3}); \end{split}$$

i mod 2, *j* mod 3

i mod 2, *j* mod 4

Plan

Introduction

Context: compile-time storage optimization Approach: array contraction Contributions

Dynamic Array Contraction

Overview Input parameters Trace analysis algorithm Running example

Experimental Results

Setup Results

Conclusion

Experimental Setup

Implementation: in C++ named PoLi, total of 1230 lines of code.

Benchmarks:

- **fibonacci**, example of the computation of the *n*-th term of the fibonacci sequence,
- **pc-2d** and **pc-2d-line**, two examples of a producer-consumer mechanic in two dimensions,
- **blur-2d**, an example of the 2D blur filter.

Baseline: Lefebvre-Feautrier algorithm (successive minima).

Setup: Intel Core i5-1135G7 CPU @ 2.40GHz, 16Gb RAM.

Experimental Results

Kernel	Mapping found	Parameters	PoLi time(ms)	LF time(ms)	Speed-up
fibonacci	<i>i</i> mod 2	N = 2, 3	0.00103	0.024221	23.5
pc-2d	i mod N	N = 2,3	0.00284	0.045513	16.0
	j mod N				
pc-2d-line	i mod 2	N = 3,4	0.01022	0.064114	6.3
	j mod N				
blur-2d	<i>y</i> mod 3	N = 5, 6	0.15636	0.187037	1.2
	x mod N				

▶ Polytrace approach is lighter

- Expensive ILP \mapsto max over a few points
- Tightest parameter selection is paramount

Plan

Introduction

Context: compile-time storage optimization Approach: array contraction Contributions

Dynamic Array Contraction

Overview Input parameters Trace analysis algorithm Running example

Experimental Results

Setup Results

Conclusion

Conclusion

Contributions:

- New method for array contraction, based on a new paradigm
- Better performances with small trace parameters
- Scales better for examples with greater dimensionality

Future work:

- Contract the **global** array space all-at-once, to infer mappings of **smaller** memory footprint
- Select **smallest parameter instances**, gives smaller traces and so **faster** analysis
- Investigate new applications of this methodology to other **optimization** problems

Thank you !