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Abstract
Programs admitting a polyhedral representation can be trans-
formed in many ways for locality and parallelism, notably
loop tiling. Data flow analysis can then compute dependence
relations between iterations and between tiles. When tiling is
applied, certain iteration-wise dependences cross tile bound-
aries, creating the need for inter-tile data communication.
Previous work [1, 5] computes it as the flow-in and flow-out
sets of iteration tiles.
In this paper, we propose a partitioning of the flow-out

of a tile into the maximal sets of iterations that are entirely
consumed and incur no redundant storage or transfer. The
computation is described as an algorithm and performed
on a selection of polyhedral programs. We then suggest
possible applications of this decomposition in compression
and memory allocation.
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1 Introduction
A historical and core usage of computers is the acceleration
of computations. The continued demand for precision and
speed in signal and data processing algorithms has prompted
performance engineers to develop carefully tuned programs
for platforms like graphics processors (GPUs), and even
domain-specific hardware accelerators (e.g., FPGAs).

The growth of computation volume and complexity pose
multiple challenges to application developers: because the
computing platforms are massively parallel at multiple levels
(nodes, cores, threads, vectors), they must extract enough
parallelism from their programs to use all parallelism the
platform provides, without over-constraining the memory
hierarchy in bandwidth and capacity.

In practice, the parallelism actually used is often limited by
the data movement between CPU cores, GPU threads, nodes,

IMPACT’23, January 16, 2023, Toulouse, France
.

as the data goes through complex memory hierarchies that
introduce latency, resulting in processor stalls waiting for
data.
Program optimization techniques tend to be made avail-

able to developers as automatic tools. Certain classes of pro-
grams can be analyzed and transformed automatically using
polyhedral analysis and transformations [6–8, 12–15].
Polyhedral analysis is used to transform programs to im-

prove both parallelism and memory access locality (Bond-
hugula et al., 2008 [3, 4]). Beyond these transformations,
prior work uses polyhedral analyses to reduce the volume
of communicated data (Bondhugula, Dathathri et al. [1, 5]).
In this paper, we seek to devise optimal sets of data that

are communicated between tiles of a polyhedral program,
with a strict condition to not allow redundancy, both in terms
of write (no data is written more than once into memory)
and read (no unused data is read from memory).

This paper is organized as follows: Section 2 introduces the
concepts used to construct our sets; Section 3 gives a view of
other work related to data movement; Section 4 describes the
MARS sets and gives their construction procedure; Section
5 provides examples of constructed sets and analyses them;
Section 6 gives possible applications of our work.

2 Background
Our work relies on a large stack of polyhedral techniques,
ranging from analysers to schedulers, and in particular relies
on loop tiling. This section gives a quick glance at the most
important techniques we rely on.

2.1 Polyhedral model
The control flow of part of a program is defined by control
structures (e.g., loops and guards), the conditions or bounds
of which can be affine. If this is the case, then this control
flow admits a polyhedral representation: it is possible to se-
mantically equivalently represent these loops by an iteration
space (the set of all iterations described by the loops and
guards) and a schedule, respectively as a set of integer points
with affine bounds, and an affine map from the iteration
space to a multi-dimensional schedule space.

Likewise, memory accesses performed inside the loop nest
which access function is an affine function of the surrounding
iterators can be represented as affine maps from the iteration
space to a collection of data spaces.
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A polyhedral model of an imperative program comprises
at least the iteration space, schedule and memory access
information.

2.2 Dataflow analysis
A polyhedral model of an imperative program bears read
and write access functions, from which it is possible to com-
pute an iteration-to-iteration dependence pattern. Dataflow
analysis algorithms [6] compute this pattern.
The output of dataflow analysis is a dependence graph,

which can be expressed as a polyhedral reduced dependence
graph (PRDG).

2.3 Loop tiling
In high-performance computing applications, data spaces
are too large to fit in a single level of local memory or cache.
Therefore, the iteration space is transformed into similarly-
shaped, atomic blocks such that the memory footprint of
each block fits in a certain level of cache or local memory.
This operation is called loop tiling [9, 18].

Loop tiling consists in breaking the iteration space into
tiles using families of hyperplanes. Every tiling hyperplane
𝐻𝑖 is such that all dependence vectors that are not parallel
to it, “traverse” it in the same direction, and there is no
dependence going in the opposite direction. This means that
the scalar product of all dependences against the normal
vector to 𝐻𝑖 must have the same sign.

A family of tiling hyperplanes is obtained by repeatedly
translating the same hyperplane by the same amount to
make a “periodic“ tiling. This way, the entire iteration space
can be split into similarly-shaped tiles. The distance between
two consecutive hyperplanes in a family is the tile size. One
can note that all hyperplanes in a tiling hyperplane family
have the same normal vectors.

In Figure 2, there are two families of hyperplanes:
{𝑖 = 5𝑘 : 𝑘 ∈ Z} and {𝑖 + 𝑗 = 5𝑘 : 𝑘 ∈ Z}.
In the rest of this paper, we assume the reader is familiar

with loop tiling, and we assume some tiling has been applied
to all the programs considered. We will then focus on inter-tile
communications.

3 Related Work
The flow-in and flow-out sets have been extensively studied
alongwith a good amount of breakup scenarios byDatharthri
et al. (2013) [5] and Bondhugula (2013) [1]. We are focusing
on one special case along the lines of the work of Datharthri
et al., with a constraint that no point may belong to two
communication sets at the same time.
A decomposition of the communicated sets of data may

be used for inter-node message passing in MPI to reduce
the amount of traffic. Zhao et al. [19] perform a decompo-
sition of the data space of stencils into coarse blocks such
that fetch and write operations of each block are contiguous,

and blocks are laid out according to the consuming neigh-
bors so that a series of blocks is retrieved in one contiguous
message. A supporting graph data structure provides the
addresses for each of the blocks. This work seeks an optimal
memory layout in terms of number of communications, and
does so without the flow-in and flow-out sets or a polyhe-
dral representation. Our work generalizes the idea using the
polyhedral framework.

4 MARS: Maximal Atomic irRedundant Sets
This section presents the Maximal Atomic irRedundant Sets
(MARS). It is laid out as follows: first, we give a definition
of MARS and properties they satisfy. Then, we introduce an
algorithm to construct these sets along with an example.

4.1 Notations and hypotheses
To compute the MARS, we need a program with a polyhe-
dral model, to which the tiling transformation is legal along
given hyperplanes. We restrict ourselves to the case where
the dependences are uniform, and therefore we can consider
individual dependence vectors. The uniformity of the depen-
dence pattern guarantees that, assuming an infinite iteration
space, all tiles of the same shape feature the same MARS.
Tile sizes are assumed to be constant, but they can be made
runtime parameters using the idea from [16].
We also assume that each statement writes to a single

memory location. Therefore, we can interchangeably use an
iteration and the value it produces (data).

Additionally, we will use the following notations:
• D designates the iteration space, of dimension 𝑁 .
• There are 𝑇 tiling hyperplane families, 𝐻𝑖 for 𝑖 ∈
{1, . . . ,𝑇 }. We will

• There are 𝐷 dependence vectors, ®𝑏 𝑗 for 𝑗 ∈ {1, . . . , 𝐷}.
The PRDG is the set of all dependence vectors.

• The non-trivial parts of a set 𝐸 are all the non-empty
subsets of 𝐸. It is noted P𝑛 (𝐸). For instance:

P𝑛 ({1, 2, 3}) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
• The modulo operator is noted 𝑎 mod 𝑏 and congru-
ences are noted 𝑎 ≡ 𝑟 [𝑏].

4.2 Definition
Maximal Atomic irRedundant Sets (MARS) are defined as the
maximal sets of iterations that satisfy the following property:
All-consumed per tile (ACT): let 𝑆 be a set of iterations. If
a tile consumes data produced by an iteration ®𝑥 ∈ 𝑆 , then it

consumes all the data produced by the same tile as ®𝑥 .
Figure 1 shows this property is not sufficient for the sets

to be unique. However, the maximal such sets are unique.

4.3 Computation
The all-consumed property stated above is equivalent to
saying that all data inside aMARS is consumed by exactly the
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(a) (b)

Figure 1. Sets of iterations for Smith-Waterman matching
(ACT) that are not MARS. In both cases, the iterations used
only by the above tile should be merged into a single set to
honor (ACT).

i

j

Figure 2. Flow-out set for a skewed tile of a Smith-Waterman
kernel. The arrows correspond to the dependence pattern
(PRDG).

same tiles. Therefore, if two distinct tiles consume a MARS
𝑀 , then given the all-consumed property, both consumer
tiles use all of the points of𝑀 .
We propose a construction by breaking up the flow-out

set of each tile. There is an equivalent construction with the
flow-in set of each tile, and both constructions lead to the
maximal sets that respect the (ACT) property.

4.3.1 Flow-out set. We start by introducing the flow-out
set, with a different view than [1]. The flow-out set of a tile is
defined as all the iterations which have at least one consumer
iteration outside the tile. An example is given in Figure 2
for a Smith-Waterman kernel with skewed tiles. Notably, we
see that despite the dependences being all unit or null along
each axis, the “thickness” of the flow-out may be greater
than one (in this case, with the diagonal dependence).

The tile-wise flow-out can be expressed as follows: given
a tile 𝑆 ,

𝜑𝑂 (𝑆) =
{
®𝑥 ∈ 𝑆 : ®𝑥 + ®𝑏1 ∈ D\𝑆 ∨ · · · ∨ ®𝑥 + ®𝑏𝐷 ∈ D\𝑆

}
However, this formulation is missing information on the

tile the dependence vectors lead to. We therefore introduce a
finer formulation with the individual contribution of each de-
pendence that traverses a tiling hyperplane, i.e. that crosses
tile boundaries. This only requires knowledge of the PRDG
(dependence vectors) alongside the tiling hyperplanes and
the domain, and can be done as in Algorithm 1.

Algorithm 1: Computing the flow-out set using con-
tributions from each dependence

Input:

D = iteration space,

𝐵 =

{
®𝑏𝑖 : 𝑖 = 1, . . . , 𝐷

}
= PRDG,

H = {𝐻𝑖 : 𝑖 = 1, . . . ,𝑇 } = tiling hyperplane families
Result: 𝜑𝑂 = Flow-out set
for 𝐻 ∈ H do

®𝑐 = (𝑐𝑖 )𝑖=1,...,𝑁 normal vector to 𝐻 ;
𝑠 = tile size for hyperplane family 𝐻 ;
for ®𝑏 ∈ 𝐵 do

// Flow-out iterations for dependence
®𝑏 crossing a hyperplane of 𝐻

𝑚 = ®𝑐 · ®𝑏;
𝐹
𝐻,®𝑏 =

{
®𝑥 = (𝑥𝑖 )𝑖=1,...,𝑁 ∈ D :

𝑠 −𝑚 ⩽ (∑𝑖 (𝑐𝑖𝑥𝑖 )) mod 𝑠 < 𝑠 ∧ ®𝑥 + ®𝑏 ∈ D
};

end
end
𝜑𝑂 =

⋃
𝐻 ∈H

⋃
®𝑏∈𝐵 𝐹𝐻,®𝑏 ;

return 𝜑𝑂

Following Algorithm 1, the flow-out is then the union of
the contributions of all dependences to it:

𝜑𝑂 =
⋃
𝐻 ∈H

⋃
®𝑏∈𝐵

𝐹
𝐻,®𝑏

and then the flow-out of a given tile is given by intersect-
ing the domain of a tile with the flow-out iterations of the
entire domain:

𝜑𝑂 (𝑆) = 𝜑𝑂 ∩ 𝑆

4.3.2 MARS partitioning of the flow-out set. We ex-
plain how our partitioning scheme is done in this subsection.

Principle. The flow-out set can be partitioned into MARS
so that, for any given tile, all iterations any given tile pro-
duces in a MARS have the exact same consumer tiles. The
partitioning idea is illustrated in Figure 3.
The partitioning is done by computing those subsets of

the flow-out for which, given select tiling hyperplanes, any
dependence crosses all these tiling hyperplanes, and no de-
pendence crosses any other tiling hyperplane.

We browse all possible consumers by applying the above
on all combinations of tiling hyperplanes. As there are 𝑇
tiling hyperplanes, there are 2𝑇 − 1 possible consumer tiles,
and therefore at most 22𝑇 −1 − 1MARS.

Example. We can construct theMARS for a Smith-Waterman
kernel, which has the following characteristics:

• Domain: D =

{(
𝑖

𝑗

)
: (𝑖, 𝑗) ∈ [0, 100]2

}
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Figure 3. Flow-out set of a tile intersected with each con-
sumers tile’s flow-in set. The breakup we propose splits iter-
ations that have different consumer tiles.

• PRDG: 𝐵 =

{
®𝑏1 =

(
1
0

)
, ®𝑏2 =

(
0
1

)
, ®𝑏3 =

(
1
1

)}
(𝐷 = 3)

• Tiling hyperplane families:
H = {{H1 : 𝑖 ≡ 0[4]} , {H2 : 𝑗 ≡ 0[4]}} (𝑇 = 2)

• Normal vectors:
{
®𝑐1 =

(
1
0

)
, ®𝑐2 =

(
0
1

)}
• Tile sizes: {4, 4}

We can first notice that dependence ®𝑏1 does not cross
hyperplaneH2, and likewise dependence ®𝑏2 does not cross
hyperplane H1.
Let us start by considering those dependences that cross

any hyperplane of the H1 family and none ofH2.
To have a dependence cross hyperplane H1, the source

iteration ®𝑥 =

(
𝑖

𝑗

)
must be such that, if ®𝑏 =

(
𝑏𝑖
𝑏 𝑗

)
, then

(𝑖 mod 4) + 𝑏𝑖 ⩾ 4 or (𝑖 mod 4) + 𝑏𝑖 < 0. Because all ®𝑏s
only have positive coordinates, let us only consider the case
(𝑖 mod 4) + 𝑏𝑖 ⩾ 4.
From dependence ®𝑏1, we get 𝑖 mod 4 ⩾ 3; from depen-

dence ®𝑏3, we also get 𝑖 mod 4 ⩾ 3. Therefore, the set of
points such that any dependence crosses H1 is:{

®𝑥 =

(
𝑖

𝑗

)
∈ D : 𝑖 mod 4 ⩾ 3

}
or equivalently {

®𝑥 =

(
𝑖

𝑗

)
∈ D : 𝑖 ≡ 3[4]

}
We compute the subset of these points for which H2 is

crossed. The condition to cross H2 is that, if ®𝑥 =

(
𝑖

𝑗

)
and

®𝑏 =

(
𝑏𝑖
𝑏 𝑗

)
, then ( 𝑗 mod 4) +𝑏 𝑗 ⩾ 4, which means 𝑗 mod 4 ⩾ 3

with both dependences ®𝑏1 and ®𝑏2. We therefore get that the
points from which H1 is crossed and notH2 is:{

®𝑥 =

(
𝑖

𝑗

)
∈ D : 𝑖 ≡ 3[4] ∧ ¬( 𝑗 ≡ 3[4])

}
We can do the same procedure to cross onlyH2, and both

ofH1 andH2, which yield the following sets:

Figure 4.MARS and their consumers for Smith-Waterman
using square tiling.

{
®𝑥 =

(
𝑖

𝑗

)
∈ D : ¬(𝑖 ≡ 3[4]) ∧ ( 𝑗 ≡ 3[4])

}
and {

®𝑥 =

(
𝑖

𝑗

)
∈ D : 𝑖 ≡ 3[4] ∧ 𝑗 ≡ 3[4]

}
Those sets are the MARS we were looking for, and corre-

spond to those in Figure 4.

Algorithm. Algorithm 2 gives the computation procedure
to construct all MARS for all tiles.
In this algorithm, crossing a hyperplane is a shortcut for

the property used in Algorithm 1. Assume ®𝑐 = (𝑐𝑖 ) is the
normal vector to a hyperplane 𝐻 , 𝑠 is the tile size along that
hyperplane, ®𝑏 is a dependence vector, and ®𝑥 = (𝑥𝑖 ) ∈ D. Let
𝑚 = ®𝑐 · ®𝑏 assuming𝑚 > 0. Then:

®𝑥 + ®𝑏 crosses 𝐻 ⇔ 𝑠 −𝑚 ⩽ (∑𝑖 (𝑐𝑖𝑥𝑖 )) mod 𝑠 < 𝑠

By intersecting the MARS obtained from Algorithm 2 with
individual tiles, we obtain a decomposition of every tile’s
flow-out set into tile-wise MARS. These then satisfy the
following two properties:

• Each tile-wise MARS is composed of iterations from a
single tile,

• Each tile-wise MARS is entirely consumed by every of
its consumer tiles.

4.4 Dual view: flow-in
Equivalently to partitioning the flow-out set into MARS, it
is possible to compute the partitioning of the flow-in set of
each tile into MARS. The flow-in set is computed with the
same algorithm as the flow-out, using the opposite of the
dependence vectors.
Intersecting the MARS created by Algorithm 2 (not bro-

ken up into individual tile-wise MARS) with the obtained
tile-wise flow-in set then gives a breakup into MARS. This
partitioning can be used to figure out which MARS every
tile should fetch from other tiles as an input.
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Algorithm 2: Computing the MARS

Input:

D = iteration space,

𝐵 =

{
®𝑏𝑖 : 𝑖 = 1, . . . , 𝐷

}
= PRDG,

H = {𝐻𝑖 : 𝑖 = 1, . . . ,𝑇 } = tiling hyperplane families
Result:M = partition of flow-out into MARS
M = ∅;
T = P𝑛 (H); /* All neighboring tiles */

for 𝐼 ∈ P𝑛 (T ) do
𝐸 = T\𝐼 ;
// 𝐴: all tiles in 𝐼 must be reached by

⩾ 1 dependence

for 𝐶𝑇 ∈ 𝐼 do
𝑁𝐶𝑇 = H\𝐶𝑇 ;
for ®𝑏 ∈ 𝐵 do

// 𝑃
𝐶𝑇,®𝑏:

®𝑏 crosses all hyperplanes

of 𝐶𝑇 and no others

𝑃
𝐶𝑇,®𝑏 =

{
®𝑥 ∈ D :

∧
𝐻 ∈𝐶𝑇

(
®𝑥 + ®𝑏 crosses 𝐻

)
∧∧

𝐻 ∈𝑁𝐶𝑇 ¬
(
®𝑥 + ®𝑏 crosses 𝐻

)
∧ ®𝑥 + ®𝑏 ∈ D

};
end

end
𝐴 =

⋂
𝐶𝑇 ∈𝐼

⋃
®𝑏∈𝐵 𝑃𝐶𝑇,®𝑏 ;

// 𝑆: no tiles in 𝐸 may be reached by

any dependence

for ®𝑏 ∈ 𝐵 do
for 𝐶𝑇 ∈ 𝐸 do

𝑁𝐶𝑇 = H\𝐶𝑇 ;
// 𝑄

𝐶𝑇,®𝑏:
®𝑏 crosses a hyp. in 𝑁𝐶𝑇

or doesn’t cross a hyp. in 𝐶𝑇

𝑄
𝐶𝑇,®𝑏 =

{
®𝑥 ∈ D :

[∨
𝐻 ∈𝐶𝑇 ¬

(
®𝑥 + ®𝑏 crosses 𝐻

)
∨∨

𝐻 ∈𝑁𝐶𝑇

(
®𝑥 + ®𝑏 crosses 𝐻

)]
∧ ®𝑥 + ®𝑏 ∈ D

};
end

end
𝑆 =

⋂
𝐶𝑇 ∈𝐸

⋂
®𝑏∈𝐵 𝑄𝐶𝑇,®𝑏 ;

M = M ∪ {𝐴 ∩ 𝑆};
end
return M

5 Implementation and Analysis
It is possible to express all MARS using polyhedral tools (ISL)
provided the tile sizes are constant. However, using the idea
from [16], it is possible to use parametric tile sizes by adding
those sizes as additional parameters. We have implemented
a MARS calculator in Python using ISLPy.

5.1 Usage of the MARS calculator
A MARS calculator is available at https://github.com/cferr/
mars.git.

To compute the MARS for a given program and tiling hy-
perplanes, it needs input that can be computed using publicly
available tools:

• The polyhedral model of a program, to be extracted
for instance using PET [17];

• Dependence vectors, obtained using array dataflow
analysis e.g. using iscc;

• Legal tiling hyperplanes, found for instance by calling
PLuTo; the standard equation and the normal vectors
to these hyperplanes are to be provided.

The MARS calculator then runs Algorithm 2. A visualiza-
tion of the MARS is given with islplot when the iteration
space is two- or three-dimensional. For two-dimensional it-
eration spaces, the MARS in the entire iteration space can be
visualized; for three-dimensional spaces, a sample tile needs
to be provided and the MARS specific to that tile will be
shown.

5.2 Results
We have run the MARS calculator against a series of uniform
dependence benchmarks. This section evaluates the result
on the following questions:

• How many MARS are there per tile?
• What is the dimensionality of the result MARS? In
particular, how many singleton MARS are there?

5.2.1 Evaluated applications. The MARS calculator has
been used on the following applications:

• sw: Smith-Waterman dynamic programming algorithm
for sequence alignment;

• jacobi-1d: Jacobi 1D stencil;
• canonical-3d: Artificial 3-dimensional example that
has a dependence along each canonical axis;

• gemm: GEMM (BLAS) implementation from PolyBench
[11];

• seidel-2d: Seidel 2D stencil implementation from
PolyBench;

• jacobi-2d: Jacobi 2D stencil implementation from
PolyBench;

The jacobi-2d benchmark is exploited twice, with differ-
ent tiling schemes: one is rectangular tiling combined with
skewing, the other one is diamond tiling [2]. We will refer
to them respectively as jacobi-2d-r and jacobi-2d-d.

Table 1 shows the results obtained by running the MARS
calculator on the selected applications, and Figure 5 shows
the MARS for a single tile of every application.
Table 1 gives the number of dimensions of the iteration

space, the dependence pattern, tiling hyperplanes, the num-
ber of consumer tiles per tile (# Cons. Tiles), the number of

https://github.com/cferr/mars.git
https://github.com/cferr/mars.git
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Figure 5. Visualization of MARS generated using the MARS calculator (https://github.com/cferr/mars.git). Note that ®𝑥 + ®𝑏 ∈ D
isn’t checked, the iteration space being assumed to be infinite by the computer.

https://github.com/cferr/mars.git
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Dims Application Dependences Tiling hyperplanes # Cons. tiles Nb MARS Singletons
2 sw (1, 0), (0, 1), (1, 1) 𝑖 + 𝑗 , 𝑗 3 4 2
2 jacobi-1d (1,−1), (1, 0), (1, 1) 𝑡 + 𝑖 , 𝑡 − 𝑖 3 4 2
3 canonical-3d (1, 0, 0), (0, 1, 0), (0, 0, 1) 𝑖 , 𝑗 , 𝑘 3 7 1
3 gemm (0, 1, 0) 𝑖 , 𝑗 , 𝑘 1 1 0
3 seidel-2d (0, 1, 1), (0, 0, 1), (1,−1, 1),

(0, 1, 0), (1, 0, 0), (1,−1, 0),
(0, 1,−1), (1, 0,−1),
(1,−1,−1)

𝑡 , 𝑡 + 𝑖 , 4𝑡 + 2𝑖 + 𝑗 7 13 2

3 jacobi-2d-r (1, 0, 1), (1, 1, 0), (1, 0, 0),
(1,−1, 0), (1, 0,−1)

𝑡 , 𝑡 + 𝑖 , 𝑡 + 𝑗 7 13 4

3 jacobi-2d-d (1, 0, 1), (1, 1, 0), (1, 0, 0),
(1,−1, 0), (1, 0,−1)

𝑡 + 𝑖 , 𝑡 + 𝑗 , 𝑡 − 𝑖 , 𝑡 − 𝑗 15 34 (26 non-empty) 6

Table 1. Results obtained from the MARS calculator

computed MARS (Nb MARS) and the number of singleton
MARS (that have a single point per tile).

5.2.2 Analysis. Two observations can be made out of the
MARS, on their number and the tiles that consume them. As
a general rule, the consumer tiles of a MARS are adjacent to
each other, and the more cutting hyperplanes surrounding
a MARS, the fewer dimensions it has. One notable case is
seidel-2d (Figure 5e) where a two-dimensional MARS is
surrounded by two one-dimensional ones, close to the 𝑡 + 𝑖
and 4𝑡 + 2𝑖 + 𝑗 hyperplanes intersection, and close to the 𝑡
and 4𝑡 + 2𝑖 + 𝑗 intersection.

In 2-dimensional iteration spaces, two tiling hyperplanes
are enough to tile all dimensions, in which case there are
a maximum of 222−1 − 1 = 7 MARS per tile. Our examples,
sw and jacobi-1d, only exhibit 4 MARS, each MARS being
consumed by two adjacent tiles.
In 3-dimensional iteration spaces, the number of MARS

goes up to 34 per tile on jacobi-2d-d out of a maximum
32767 (due to the 15 consumer tiles). Computing the MARS
took more than two hours for jacobi-2d-d on an Intel
Core i7-8665U CPU. As one can expect given the size of
P𝑛 (P𝑛 (H)), the complexity of the computation is such that
our computer will not find the MARS in a matter of hours if
there are 5 or more tiling hyperplanes. This is a strong call
to prune the search space.

There are several possible optimizations. The first one is to
figure out the actual consumer tiles instead of enumerating
P𝑛 (P𝑛 (H)). This is implemented in the MARS computer.
Then, not all tuples of consumer tiles will yield a MARS;

in particular, very specific dependence patterns will yield
MARS consumed by non-adjacent tiles (for instance, this
is the case in canonical-3d, and more generally in any
application where every dependence is orthogonal to a tiling
hyperplane). Figuring out preciselywhen this happenswould
drastically reduce the search space.

For the jacobi-2d-d instance, there were 34 MARS com-
puted, but only 26 of them would not be empty when inter-
secting them with the tile being shown. This is due to the
fact that the tiling hyperplanes are not linearly independent,
and create in this case three different tile shapes; not all
tile shapes yield all MARS. To correctly generate code with
MARS input / output, we will need to compute the MARS
per tile instead of for the entire iteration space.

6 Possible Applications
MARS can be used in a variety of applications where fine-
grain knowledge of the tile’s flow-in origin and flow-out
destination is known. In this paper, we detail two applica-
tions: compression, and memory allocation.

6.1 Compression
The fact that MARS are not redundant makes them suitable
for compression: in general, decompression of an entire block
of data is needed to access part of it. When using MARS, all
the data that is decompressed is actually needed, and there-
fore there is no compression-induced redundancy. Works
such as Ozturk et al. [10] could be extended with data tiles
of different sizes, where each data tile is actually a MARS.

Singleton and low-dimensional MARS are, however, going
to be detrimental to compression. The volume of each MARS
is a function of at least one tile size, with the exception of
singleton MARS which volume will not change as tile size
grows.

6.2 Memory Allocation
MARS can be used to construct a memory allocation for
inter-tile communication, similarly to what Zhao et al. [19]
have done with coarser-grain blocks. The idea is similar:
allocate contiguous blocks of memory for each MARS, and
find a suitable layout.

6.2.1 A case for merging MARS. In some cases, as it can
be observed in Figure 5, the no-redundancy property yielding
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singletons may cause performance penalties. This is notably
the case when creating access functions at the granularity
of MARS: such access functions will read or write the exact
access data for each tile, but unless singleton accesses are
merged with other accesses, these will incur a bandwidth
waste.

To alleviate the performance issues, we need to relax the
no-redundancy property, and allow for MARS to be merged
according to an objective function. This merge process yields
an intermediate partitioning between very fine-grain MARS
and the entire flow-out, which would be the result of merging
all MARS together.

6.2.2 Globalmemory allocation. The case of globalmem-
ory allocation uses the number of transactions as a metric:
the runtime of memory accesses is a function of the number
of transactions and the volume of each transaction. Because
global memories are behind shared buses, each transaction
costs a fixed initiation penalty caused by arbitration, plus
the number of cycles the actual transfer takes; the longer the
transfer, the more profitable it is and the better usage of the
bandwidth.

An optimization problem can be formulated with the fol-
lowing elements:

• Minimize the number of transactions,
• Maximize every transaction’s length (and therefore
bandwidth usage),

• Find an intra-MARS layout,
• Find an inter-MARS layout, possibly allowing inter-
leaving MARS from different tiles.

This is left for future work.

7 Conclusion
In this work, we have introduced an element of program
analysis, MARS, to determine sets of data communicated be-
tween tiles without redundancy. These sets can be computed
for certain programs with uniform dependence patterns, and
their computation can be automated.
A number of questions remain open with respect to the

use of these sets. The MARS are a fine-grain data structure
in terms of usage per tile, which means that they can yield
the minumum amount of inter-tile communcation; however,
the presence of singletons with high transfer cost means that
further manipulations on MARS are needed to make them
suitable for memory transfers or compression.
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