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A Path to Polyhedral Compilation…
♦ Born in 1980 in France
♦ …
♦ 2001-03: 2 years preparatory classes at EPITA
♦ 2003: Start 3-years engineering school (CS focused)
♦ 2004: Start undergrad research in automata theory
♦ 2005: Decided I wanted to do a (French) PhD, designing medical devices to assist disabled 

people, so… med school or…
♦ 2005: Enroll concurrently in a MS at University Paris XI, on artificial learning and 

neurobiology
♦ 2006: MS/EPITA final internship time (6 months), went to INRIA to work on compilers!
♦ 2006-2009: PhD at INRIA
♦ 2010-2012: Postdoc at Ohio State University with P. Sadayappan, on HPC techniques
♦ 2012-2014: Visiting Assistant Prof. at UCLA, focus on FPGAs and high-level synthesis
♦ 2014-2016: Research Assistant Prof. at OSU
♦ Since 2016: at CSU
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Ø It will be (very) partial, biased and oriented much around work we did with 
colleagues

Ø This is NOT a complete survey of the successes and limitations of polyhedral 
compilation! It would be too long J

Ø I will NOT talk about so many impactful work in our community
Ø Foundational algorithms and results
Ø Tools and their implementation

Ø The work presented here would not have been possible without the foundations 
and tools (un)referenced above! J

Disclaimer about the Content of this Talk
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Ø Objective for today: pave a way of some uses of Polyhedral Compilation!
Ø Outline: first some background, then…

Ø A word on representing programs, using domain-specific languages
Ø And data, using union of polyhedral,
Ø Some optimization tools
Ø Representing hardware designs as polyhedral programs, and proving their equivalence

Outline of this Talk

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k]*B[k][j];

PROGRAM

DATA

Compiler

Target
Hardware
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But What is a Polyhedron?

i

j

Grid of 2D Integer points

Example
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But What is a Polyhedron?
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j

2D Integer points

Compact descriptionExample List of points
i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 } 

Polyhedron: described as the intersection 
of half-planes (e.g., i ≤ 2), all points in
the intersection are in the polyhedron

Dimensionality: 2

In this work: model only polyhedra of 
integer points 

i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 } 

Polyhedron: described as the intersection 
of half-planes (e.g., i ≤ 2), all points in
the intersection are in the polyhedron

Dimensionality: 2

In this work: model only polyhedra of 
integer points 

i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4

More complex shapes?
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
3 ≤ j ≤ 4 and
j ≥ i and j ≤ i+1 } 

Polyhedron: possibly many half planes
to describe it => affine inequalities

Inequalities may involve several 
variables / dimensions

i j
2 3
3 3
3 4
4 4
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

But what about holes in the shape?

Still describes 9 points!!

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 } 
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 } 

A polyhedron intersected with a lattice is a Z-Polyhedron

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

D contains 4 points, the lattice L
captures their exact coordinates 
(stride of 2 here)

i j
2 2
2 4
4 2
4 4
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But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

Z-Polyhedra can have “holes”, needed for “sparse” structures

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 } 

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

D contains 4 points, the lattice L
captures their exact coordinates 
(stride of 2 here)
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Z-Polyhedra are Code, Too

i

j

2D Integer points

Compact descriptionExample List of points

for (i = 1; i <= 2; i++)
for (j = 1; j <= 2; j++)

S(2i,2j); // x = 2i, y = 2j
This code traverses all and only points in the 

Z-polyhedron

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 } 

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }
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Z-Polyhedra are Code, Too

i

j

2D Integer points

Compact descriptionExample List of points

for (i = 1; i <= 2; i++)
for (j = 1; j <= 2; j++)

S(2i,2j); // x = 2i, y = 2j
This code traverses all and only points in the 

Z-polyhedron

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 } 

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }
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The 3 Stages of Polyhedral Optimization
1. Analysis: from code to model 

§ Existing tools 
● PET, PolyOpt
● URUK, Omega, ChiLL, PoCC

§ GCC GRAPHITE, LLVM Polly (now in mainstream)
§ Reservoir Labs R-Stream, IBM XL/Poly 

2. Transformation in the model
§ Build and select a program transformation 

3. Code generation: from model to code
§ "Apply" the transformation in the model 
§ Regenerate syntactic (AST-based) code 
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The Polyhedral Model in a Nutshell
Affine program regions: 
♦ Loops have affine control only (over-approximation otherwise) 
♦ Iteration domain: represented as integer polyhedra

Program Optimization Techniques: Polyhedral Compilation OSU

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =

2

66664

1 0 0 �1
�1 0 1 0

0 1 0 �1
�1 0 1 0
�1 �1 1 2

3

77775
.

0

BB@

i
j
n
1

1

CCA �~0

UCLA 29

D := [n] -> { [i,j] : 1 <= i <= n and 
1 <= j <= n and i <= n-j+2 }
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The Polyhedral Model in a Nutshell
Affine program regions: 
♦ Loops have affine control only (over-approximation otherwise) 
♦ Iteration domain: represented as integer polyhedra
♦ Array index functions: represented as functions of the loop iterators 

and parameters 

Program Optimization Techniques: Polyhedral Compilation OSU

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs( ~xS2) =
⇥

1 0 0 0
⇤
.

0

@
~xS2
n
1

1

A

fa( ~xS2) =


1 0 0 0
0 1 0 0

�
.

0

@
~xS2
n
1

1

A

fx( ~xS2) =
⇥

0 1 0 0
⇤
.

0

@
~xS2
n
1

1

A

UCLA 29

Fs := [n] -> { [i,j] -> s[i] }
Fa := [n] -> { [i,j] -> a[i][j] }
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The Polyhedral Model in a Nutshell
Affine program regions: 
♦ Loops have affine control only (over-approximation otherwise) 
♦ Iteration domain: represented as integer polyhedra
♦ Array index functions: represented as functions of the loop iterators 

and parameters 
♦ Data dependence between S1 and S2: a subset of the Cartesian 

product of DS1 and DS2 (exact analysis possible) 

Program Optimization Techniques: Polyhedral Compilation OSU

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis possible)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1dS2 :

2

66666664

1 �1 0 0
1 0 0 �1

�1 0 0 3
0 1 0 �1
0 �1 0 3
0 0 1 �1
0 0 �1 3

3

77777775

.

0

BB@

iS1
iS2
jS2
1

1

CCA
= 0
�~0

i

S1 iterations

S2 iterations

UCLA 29
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Affine Transformations

Program Optimization Techniques: Polyhedral Compilation OSU

Affine Transformations

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.
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(a) original polyhedron (b) transformation function (c) target polyhedron
A~x+~a �~0 ~y = T~x (AT�1)~y+~a �~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = 1, 3
do j’ = 1, 2

S(i=j’,j=i’)

UCLA 31
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Affine Transformations

Program Optimization Techniques: Polyhedral Compilation OSU

Affine Transformations

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by �1.
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(a) original polyhedron (b) transformation function (c) target polyhedron
A~x+~a �~0 ~y = T~x (AT�1)~y+~a �~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = -1, -2, -1
do j’ = 1, 3

S(i=3-i’,j=j’)

UCLA 31
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Affine Transformations

Program Optimization Techniques: Polyhedral Compilation OSU

Affine Transformations

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal
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do j = 1, 3
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do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

UCLA 31
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Affine Transformations

Program Optimization Techniques: Polyhedral Compilation OSU

Affine Transformations

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=)

2

64

1 0
�1 0

0 1
0 �1

3

75
✓

i
j

◆
+

0

B@

�1
2

�1
3

1

CA �~0

✓
i0
j0

◆
=

h 0 �1
1 0

i✓
i
j

◆
2

64

0 �1
0 1
1 0

�1 0

3

75
✓

i0
j0

◆
+

0

B@

�1
2

�1
3

1

CA �~0

(a) original polyhedron (b) transformation function (c) target polyhedron
A~x+~a �~0 ~y = T~x (AT�1)~y+~a �~0

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

UCLA 31



24

The Polyhedral Model in a Nutshell
Affine program regions: 
♦ Loops have affine control only (may over-approximate otherwise) 

♦ Iteration domain: represented as union of integer polyhedral and lattices (always possible, 
but may be inefficient) 

♦ Array index functions: represented as functions of the loop iterators and parameters 
♦ Data dependence between S1 and S2: a subset of the Cartesian product of DS1 and DS2 

(exact analysis possible) 

♦ Precise dataflow analysis [Feautrier,88]
♦ Efficient algorithms for data locality [Bondhugula,08] 
♦ Effective code generation [Bastoul,04]
♦ Computationally expensive algorithms (ILP/PIP) 

Benabderrahmane, Mohamed-Walid, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 
"The polyhedral model is more widely applicable than you think." In International Conference on Compiler Construction, 2010.

Rodríguez, Gabriel, and Louis-Noël Pouchet. "Polyhedral modeling of immutable sparse matrices." 
In 8th International Workshop on Polyhedral Compilation Techniques. Manchester, UK. 2018.
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Outline: Modeling PROGRAMs

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k]*B[k][j];

PROGRAM

DATA

Compiler

Target
Hardware
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Health Image Speech Music Browser
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Motifs In Applications (Berkeley Motifs)

Source: J. Demmel
♦ Berkeley motifs identify key algorithmic paradigms, but not directly useful for 

code optimization
♦ Stencil abstraction is useful for compiler transformation: can we identify a 

small number of such abstractions with broad coverage?
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Domain-Specific vs. Pattern-Specific Compilation

♦ One pattern can occur in many domains! 
§ Simple example: stencils on dense/regular grids 
§ Seen in image processing, physics simulation / PDE solving, etc. 

♦ All such stencils benefit from the same optimizations BUT 
not to the same extent! 
§ problem size, stencil shape, number of time steps, kind of 

convergence check, etc all depend on the domain, not the pattern 
§ Ex: time-tiling, reduction optimization, etc. 

Open question: is there a common optimization framework 
across domains? 
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Pattern: Static Control Flow Programs 
♦ In a nutshell: the set of programs whose control flow can be entirely 

predicted at compile-time 
♦ Polyhedral framework: a subset of SCF where expressions are affine 

§ Otherwise use affine over-approximations 
§ Or Union of small SCFs

♦ Encapsulates with full accuracy numerous computation patterns: 
§ Stencils on dense grids 
§ Dense linear algebra 
§ Graph algorithms on adjacency matrix 
§ Dense convolutions
§ etc.
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But What is Optimizing Compilation?
Main idea: ask a computer to find an equivalent program which 

executes faster than your own program
§ Must preserve the program semantics, exploit parallel/distributed architectures, etc.
§ Multiple disciplines are leveraged: algorithmic, programming, architecture, 

mathematics, machine learning, experimental computer science, etc.
♦ A compelling example: programming distributed systems (PIPES)

§ Input: 20 lines, nearly identical to textbook, compiler generates 2000+ lines of code!

3) Optionally, graph transformations for coarsening and
coalescing of tasks are performed automatically and/or
guided by user-provided directives. This leverages the
power of polyhedral transformations to increase the ap-
plicability of transformations such as polyhedral tiling,
targeted at dataflow graphs. We outline these optimiza-
tions as well as analyses of data liveness for storage
optimization in Sec. IV-B onwards.

4) Finally, a full C++ program is generated, implement-
ing the task graph defined in the PIPES program. It
aggregates the generated C++ code with user-provided
functions to implement the task bodies, as at the PIPES
level tasks are black-boxes where only the inter-task
dataflow is known. PIPES exploits the Intel CnC C++
runtime tuner primitives for improved performance. This
is discussed in Sec. V, showing the overall flow of the
PIPES compiler implementation.

III. PIPES DESCRIPTION LANGUAGE

Programs in our framework are specified in a high-level
textual form. PIPES programs directly extend DFGR programs
(the Data-Flow Graph Representation, proposed by Sbirlea et
al. [10]), in that all DFGR programs are PIPES programs.
DFGR excels at representing the data and control-flow re-
lations between tasks, that is the program description. But
implementing a parallel algorithm requires the specification
of placement, communication and scheduling strategies, that
is the mapping description. To the best of our knowledge there
has been no past work on supporting mapping descriptions in
an integrated way; at best, past approaches for CnC tuning
annotations [11], [12] provided placement strategies, but did
not provide explicit communication or scheduling descriptions.
PIPES overcomes these limitations.

A. PIPES by Example

We illustrate in Fig. 2 various key concepts of PIPES,
showing how to represent the Cannon matrix multiplication
algorithm [13]. Some lines have been omitted for the sake of
brevity (shown as ...). As in DFGR, dynamic instances (data,
operation) are uniquely identified by a tag value (e.g., (1, 1)).
Tag values are computed from tag functions (e.g., (i, j))
which can be arbitrary functions, known only at run-time. Tag
functions must produce integer tuples. Data collections are
arbitrary data structures, such that each entry in the collection
is uniquely identified by a tag value. Hashmaps and arrays
are two typical ways to implement item collections. In strict
DFGR, each tag in an item collection must be written exactly
once: the program models a dynamic single assignment form.
This is why we use a 3D tag space for the C collection;
however, this does not necessarily mean that we need to
allocate a 3D data structure for C. Each task instance must be
prescribed (created) before it can be executed. Furthermore,
it will execute only when the data it reads has been made
available. The runtime takes care of starting task instances
when their data is available. The environment env must
write to the item collections all the data that is input to the

computation explicitly. Conversely, all output data produced
by the computation must be written back to the environment.

Every executable task in PIPES must first be prescribed/cre-
ated. For the example programs considered in this paper, all
user-defined tasks are created by the environment. However,
from the language perspective we allow prescriptions from
user-defined tasks and from the environment task. A graph
starts as soon as some task is prescribed and its data is
available; a graph terminates when all the data written to the
environment has been produced.

1 Parameter N, P;

2 // Define data collections

3 [float* A:1..N,1..N];

4 ...

5 // Task prescriptions

6 env :: (MM:1..N,1..N,1..N);

7 // Input/Output:

8 env -> [A:1..N,1..N];

9 ...

10 [C:1..N,1..N,N] -> env;

11 // Task dataflow

12 [A:i,k],[B:k,j],[C:i,j,k] -> (MM:i,j,k) -> [C:i,j,k+1];

13 Topology Proc = Topo2D(P,P);

14 // Place the N tasks (i,j,*) to Proc((i/8)%P,(j/8)%P)

15 (MM:i,j,1..N)@Proc((i/8)%P,(j/8)%P);

16 // Circular communication pattern for Cannon algorithm

17 [A:i,k]@(MM:i,j,k) => (MM:i,(j-1)%P,k+1);

18 [B:k,j]@(MM:i,j,k) => (MM:(i-1)%P,j,k+1);

Fig. 2: Cannon Matrix Multiplication
Returning to Fig. 2, we can now demangle the code,

starting by the environment. Line 6 represents a prescription of
N⇥N⇥N instances of the task MM. The tag function associated
to MM is a 3-uple, each component of the tuple in the
prescription is a range, from 1 to N . That is when using a
symbol (e.g., i) to refer to this component in the graph, i
will range from 1 to N . Lines 8–10 declare the production
by/to the environment of elements to the data collections A,
B, C that is the input data. The data type for elements in
this collection is float*, each item in a collection is a tile
of data (using a linearized array in this case). Lines 11–12
describes the data being read/written by task instances, using
tag functions. Instance (i, j, k) of the task MM will read item
(i, k) from A, and write item (i, j, k+1) to C. Indeed, as DFGR
enforces that items in a collection (uniquely identified by the
value of their tag) are written only once, the reduction for
matrix-multiplication is modeled using a third index, k, for the
output matrix C. These form the program description, which
in a nutshell is the dataflow graph for a task-based matrix-
multiplication. One can observe that for many implementations
of a matrix multiplication algorithm, this graph stays the same.
What changes between algorithms (e.g., Johnson vs. Cannon)
is the mapping strategy. Cannon’s is described in lines 15–
18. First, a template topology (here, a 2D mesh) is used line
14, and tasks are placed on this topology line 15. Finally, the
specific Cannon’s communication pattern is depicted lines 17–
18. For instance line 18 reads “move the data [A:i,k] from
the location of (MM:i,j,k) right after the completion of
this task to the location of task (MM:i,(j-1)%P,k+1)”.

This example closely follows textbook writing of the Can-
non algorithm. As such, we claim this is a very natural way

tasks, the CnC context, the CnC graph, and the code to pre-
scribe the tasks. It uses a dedicated API we have implemented
once (it is independent of the PIPES program compiled) to
simplify and abstract the generation of instructions such as
put/get or prescription. This API is about 3,000 lines of C++.
Even using this API, the code automatically generated by
PIPES for Fig. 2 is still about 1,200 lines, from a 20+ lines
PIPES program as input.

We mention two important aspects of the Intel Concurrent
Collections run-time. First, the task mapping in PIPES is
translated directly to the CnC compute_on step tuner, which
means each task instance is set to be executed on a particular
MPI process. This is the task-to-process mapping, a logical
mapping. To have a complete specification of a distributed
memory program in PIPES each MPI process must be binded
to a set of cores in the cluster. This function from process-
to-cores is the physical mapping; the user can provide one
or use one of the predefined PIPES mappings. Indeed, using
a default MPI mapping (e.g., block-cyclic allocation) that
vastly differs from the virtual topologies used in PIPES may
negatively impact performance. Second, the CnC run-time
does not perform actual network transfers of data-blocks
when the producer task and consumer task of the block in
question are mapped to processes that execute within the
same node. Therefore, we do not need to optimize away these
communications explicitly in PIPES, and instead rely on the
Intel CnC runtime implementation.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
Target machine: The experiments were conducted on a

university research cluster, using 1, 2, 4 and 8 nodes, each with
a dual-socket quad-core Intel Xeon E5630 running at 2.5GHz
(32KB private L1, 256KB private L2 and 12MB shared L3,
25GB/s intra-node bandwidth), interconnected with InfiniBand
QDR (40 Gbps). The theoretical peak performance of each
node is 160 GF/s in single precision.

Software stack: Intel CnC 1.01, Intel MPI 5.0 and Slurm
2.6.5 were used for all experiments; benchmarks were com-
piled with Intel ICPC 13.0 and Intel MKL 11.3.

Software implementation: The PIPES compiler has been
fully implemented, and relies heavily on the Integer Set
Library [24] for polyhedral analysis and optimization. The
PIPES IR and runtime abstraction layer have been developed
from scratch for this work. The code generated can reach 2000
lines of C++ from a 60 line specification, and it is massively
error-prone to manually write such codes, justifying further
the need for an automated toolchain to produce this code.
In addition, as shown below, parameter explorations such as
2D versus 3D virtual topologies or tile sizes for coarsened
implementations are seamlessly handled and enable to easily
auto-tune distributed implementations.

Benchmarks evaluated: We evaluate on three classical
dense linear algebra benchmarks, providing each time a variety
of implementations for them. All use single-precision floating
point data, and N = 8000 (i.e., matrices of size 80002

elements. SGEMM is a classical matrix-multiplication, for
which we provide two implementations: a version of the 2D
Cannon algorithm, and a version of the 3D Johnson algorithm.
These form two “extremes” where in the case of Cannon, no
data is replicated but there is O(N) communications between
nodes, while for Johnson data is replicated O(N) times but
there is no communication between nodes (apart from the
final reduction along the k dimension). Each was implemented
in PIPES, the Cannon version is outlined in Fig. 2 and the
Johnson version has an extra step to model the reduction
along k, that is, there is parallelism between all iterations of
(MM:i,j,k). Johnson is also mapped to a 3D virtual processor
topology, and does not contain any communication instruction.

SSYR2K is the symmetric rank-2 update on dense matrices.
Similarly as for SGEMM, we evaluated both a Cannon and
a Johnson variant, on two different distributed methods as
shown below. The PIPES programs has a high similarity with
the GEMM ones. Finally, 2-SGEMM is a sequence of two
GEMMs, implementing the operation Res = A ⇤B ⇤ C.

0"
100"
200"
300"
400"
500"
600"
700"

1x8" 2x8" 4x8" 8x8"

Pe
rf
or
m
an

ce
*(G

F/
s)
*

Number*of*nodes*x*number*of*cores*per*node*

SGEMM*

Cannon0PIPES"

Johnson0PIPES"

ScalaPack"

Fig. 4: SGEMM results

B. SGEMM Experimental Results

Fig. 4 reports the performance on 1, 2, 4 and 8 nodes (i.e.,
8, 16, 32 and 64 cores) of three implementations: Cannon and
Johnson are PIPES-generated implementations (the Cannon
one corresponds exactly to Fig. 2), and ScalaPack [25] is the
PSGEMM performance. We use 2 flops per N3 operations to
compute the GF/s, and use N = 8000 with single-precision
data. We performed a simple tile size exploration for task
coarsening, evaluating 10 different square tile sizes for both
PIPES programs, and report the best performing one for
each processor count. For fair comparison with ScalaPack,
which assumes a block-cyclic initial data distribution, we only
report the performance of the actual computation (e.g., the
psgemm call) and do not account for the time to distribute
data to/from rank 0. For only the case of 1x8, we report the
result of sgemm (i.e., not using scalapack) in the “ScalaPack”
column, to observe the best achievable performance without
any distributed-memory execution.

The performance of our Cannon implementation shows
good scaling, however we observe our Johnson implementa-
tion stops scaling early. This is due to the degree of parallelism

M. Kong, L.-N. Pouchet, P. Sadayappan, V. Sarkar. "PIPES: A Language and Compiler for Task-based Programming on Distributed-Memory 
Clusters", to appear in IEEE/ACM Supercomputing (SC'16), Nov. 2016.
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StencilDSL: Embedded Domain-Specific Language

Multi-target
Optimization and
Code Generation

(source-to-source)

GPU (nvcc)

FPGA (Vivado)

Matlab/eSDSL

C/eSDSL

[ICS’13][PLDI’13&14]

[ICS’12]

[FPGA’13]

Multicore CPU (icc/gcc)

int Nr; int Nc;
grid g [Nr][Nc];
double griddata a on g at 0,1;

pointfunction five_point_avg(p) {
double ONE_FIFTH = 0.2;
[1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] 

+ [0]p[0][0] + [0]p[0][1] + [0]p[1][0]);
}
iterate 1000 {
stencil jacobi_2d {
[0     ][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
[Nr-1  ][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
[0:Nr-1][0     ] : [1]a[0][0] = [0]a[0][0];
[0:Nr-1][Nc-1  ] : [1]a[0][0] = [0]a[0][0];
[1:Nr-2][1:Nc-2] : five_point_avg(a);

}
reduction max_diff max {
[0:Nr-1][0:Nc-1] : fabs([1]a[0][0] - [0]a[0][0]);

}
} check (max_diff < .00001) every 4 iterations

Benefits of high-level specification of 
computations using domain-specific languages:
§ Ease of use (for mathematicians/scientists creating the 

code)
§ Ease of optimization (facilitate loop and data 

transformations)
§ Embedded DSL provides flexibility:
§ Generality of standard programming language
§ Automated transformation of embedded DSL region
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Stencil DSL Example
int Nr; int Nc;
grid g [Nr][Nc];

double griddata a on g at 0,1;

pointfunction five_point_avg(p) {
double ONE_FIFTH = 0.2;
[1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] 

+ [0]p[0][0] + [0]p[0][1] + [0]p[1][0]);
}

iterate 1000 {
stencil jacobi_2d {
[0     ][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
[Nr-1  ][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
[0:Nr-1][0     ] : [1]a[0][0] = [0]a[0][0];
[0:Nr-1][Nc-1  ] : [1]a[0][0] = [0]a[0][0];
[1:Nr-2][1:Nc-2] : five_point_avg(a);

}
reduction max_diff max {
[0:Nr-1][0:Nc-1] : fabs([1]a[0][0] - [0]a[0][0]);

}
} check (max_diff < .00001) every 4 iterations

Reference data over two time 
steps: current(0) and next (1)

Boundary

Interior

Time Loop
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Optimizations for High-Order Stencils
♦ Significance and Impact:

§ High-order stencils arise in high-accuracy methods for PDEs in various domains
§ Prior view: the higher the discretization order, the lower the throughput
§ With proposed optimization system: maintains throughput when using higher 

accuracy methods!
♦ DSL Technologies for Exascale Computing

§ DoE XStack, w/ Dan Quinlan (LLNL)
§ Chombo: high-order methods
§ PolyOpt: key technology in DTEC
§ Reusable PSL optimizer across a 

range of DSLs
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K. Stock, M. Kong, L.N. Pouchet, T. Grosser, F. Rastello, J. 
Ramanujam, and P. Sadayappan, “A Framework for Enhancing 
Data Reuse via Associative Reordering“  (PLDI 2014)
Available in ROSE/D-TEC branch.

D-TEC
Techniques for Building 

Domain Specific Languages (DSLs)
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Outline: Modeling DATA

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k]*B[k][j];

PROGRAM

DATA

Compiler

Target
Hardware
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Application: Implement On-Chip Data Reuse

♦ Key ideas: 
§ Compute the set of data used at a given loop iteration 
§ Reuse data between consecutive loop iterations 
§ Process works for any loop in the program 
§ Natural complement of tiling: the tile size will determine how much 

data is read by a non-inner-loop iteration 
The polyhedral framework can be used to easily compute all 

this information, including what to communicate 
§ Address generation / data preloading functions / prefetching
§ Accelerator communication code (copy-in/copy-out)
§ …

Pouchet, Louis-Noel, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. "Polyhedral-based data reuse optimization 
for configurable computing." In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2013.
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

// Two-dimensional Jacobi-like stencil
for (t = 0; t < T; ++t)

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

B[i][j] = 0.2*( A[i][j-1]
+ A[i][j]
+ A[i][j+1]
+ A[i-1][j]
+ A[i+1][j]);

UCLA / OSU 6
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Compute the data space of A, at it-
eration~x = (t, i, j)

DSA(~x) =
[

s2S
FSs

A(~x)

F(~x) is the image of~x by the function
F.

UCLA / OSU 7
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Compute the data space of A, at it-
eration~y = (t, i, j�1)

DSA(~y) =
[

s2S
FSs

A(~y)

F(~x) is the image of~x by the function
F.

UCLA / OSU 7
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Reused data: red set

ReuseSet = DSA(~x)\DSA(~y)

UCLA / OSU 7
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Per-iteration communication: blue
set

PerCommSet = DSB(~x)�ReuseSet

UCLA / OSU 7
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Computing the Per-iteration Data Reuse

Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

These sets are parametric polyhedral
sets

I Use CLooG to scan them
I Work for any value of t,i,j

! an initialization copy is executed
before the first iteration of the loop,
and communications are done at
each iteration

UCLA / OSU 7

Pouchet, Louis-Noel, Peng Zhang, Ponnuswamy Sadayappan, and Jason Cong. "Polyhedral-based data reuse optimization 
for configurable computing." In Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays, 2013.
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Ø Easily represent data space touched by e.g. one iteration of loop i
Ø Polyhedral/Presburger set: can be code-generated by ISL, can be counted, etc.

Parametric Slicing: Easy Manipulation of Sub-Spaces

3.3.1 Parametric Data Spaces for On-Chip Buffer Sup-
port

We now present our formalization to effectively promote mem-
ory references for on-chip buffer usage. Our technique operates on
each array individually, and promotes optimally (under the frame-
work constraints) all references to this array into a dedicated on-
chip buffer for this array. Our approach is based on the concept of
parametric polyhedral sets to express the set of data elements being
used at various specific points of the computation. Those sets corre-
spond exactly to the data to be communicated, reused, or stored. We
then use a polyhedral code generator to scan those sets, and prop-
erly modify the program by inserting the code that scans commu-
nications sets, and change main memory references in the modified
source code to on-chip buffer references.

We first define the data space of an array A for a program. The
data space is simply the set of all data elements accessed through the
various access functions referencing this array, for each value of the
surrounding loop iterators where the reference is done. We use the
concept of the image of a polyhedron (e.g., the iteration domain)
by an affine function (e.g., the access function). The image of a
polyhedron D by an affine function F is defined as the set {!y | ∀!x ∈
D , F(!x) =!y}.

DEFINITION 1 (DATA SPACE). Given an array A, a collection
of statements S , and the associated set of memory references FA

S
with S ∈ S , the data space of A is the set of unique data elements
accessed during the execution of the statements. It is the union of
the image of the iteration domain by the various access functions:

DS(A) =
⋃

S∈S

Image(FA
S ,D S)

We remark that DS(A) is not necessarily a convex set, but can still
be manipulated with existing polyhedral libraries. For example, in
Figure 1, the data space of DSR(B) for the first statement (R : line
4) is the 2-dimensional square set going from 1 to N − 2 in each
dimension. But for the second statement (S : line 7), DSS(B) is the
2D square set going from 0 to N. As we make the union, it means
DS(B) is the 2D square set going from 0 to N in each dimension.

In order to capture the data accessed at a particular loop level,
we must fix the value of the surrounding loop iterators to a certain
value in the data space expression, while preserving all inner loop
iterations. For the data space computation to be valid for any execu-
tion of this loop (nest), we resort to using parametric constants (i.e.,
whose value is fixed but unknown) in the formulation. All sets and
expressions computed will be parametric forms of those constants,
and therefore valid for any value these constants can take; they will
consequently be valid for any value the surrounding loop iterators
can take during the computation.

We first define the parametric domain slice, that will be the en-
abler for defining the data space of a loop iteration.

DEFINITION 2 (PARAMETRIC DOMAIN SLICE). Given a loop
nest with a loop l of depth n surrounded by k− 1 loops, and an
integer constant α, the parametric domain slice (PDS) of loop l is a
subset of Zn defined as follows:

Pl,α = {(x1, . . . ,xn) ∈ Z
n|x1 = p1, . . . ,xk−1 = pk−1,xk = pk +α}

where p1, . . . , pn are parametric constants unrestricted on Z.

For example, for loop i in line 3 of Figure 1, we have:

Pi,1 = {(t, i, j) ∈ Z
3|t = p1, i = p2 +1}

This is a (parametric) set of 3D integer points with the first two com-
ponents of each point always having the same (parametric) values.

This set contains an infinite number of points, as the third compo-
nent takes any value in Z.

We can now adapt the definition of a data space to the subset of
data which is accessed by a loop iteration.

DEFINITION 3 (DATA SPACE OF A LOOP ITERATION). Given an
array A, a collection of statements S surrounded by a loop l and
their associated set of memory references FA

S with S ∈ S ′, and !Pl,0 a
PDS for loop l, the data space of A is the set of unique data elements
accessed during one iteration of l:

DS(A,!Pl,0) =
⋃

S∈S

Image
(

FA
S ,

(

D S∩Pl,0
)

)

To illustrate the power and generality of this approach, in Figure 2
we show the sets DS(A,!Pj,0) (left) and DS(A,!Pj,−1) (center), the
data space of the immediately preceding iteration, for the first j loop
(line 3) in the Jacobi2D example. By computing the difference or
intersection between those sets (right), we can capture naturally the
data reused between two consecutive iterations, as well as the data
that is not alive at the previous iteration.
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Figure 2: Computation of the Reuse (top) and PerIterC (bottom)
sets for the j loop of jacobi2D

Formally, the reused data space between consecutive iterations of
a loop is defined as follows. All data which is reused does not need
to be communicated at the next iteration.

DEFINITION 4 (REUSE SPACE). Given an array A, and !Pl,0

and !Pl,−1 two PDS for loop l, the reused data space between two
consecutive iterations of l is:

Reuse(A,!Pl,0) = DS(A,!Pl,−1)∩DS(A,!Pl,0)

The communication required for each loop iteration is defined as
follows. It consists in only the data elements that were not accessed
by the previous iterations.

DEFINITION 5 (PER-ITERATION COMMUNICATION). Given an
array A, and !Pl,0 a PDS for loop l, then assuming the data reused
between two consecutive iterations is still in local memory, the data
space required to communicate in order to compute a given iteration
of l is:

PerIterC(A,!Pl,0) = DS(A,!Pl,0)−Reuse(A,!Pl,0)

Finally, to ensure that for the first loop iteration, all data is ready
in the on-chip buffer, we must communicate the per-iteration data
set but also initialize the on-chip buffer with the reuse set at the first
loop iteration, as no previous iteration has already loaded the data.

DEFINITION 6 (INITIALIZATION). Given an array A, the data
to be stored in the buffer before the loop starts is:

Init(A, l) = Reuse(A,!Pl,c)

32

PDS_TIJ := [T,I,J,TN,N] -> { [t,i,j] : t = T and i = I and j = J };
PDS_TIJm1 := [T,I,J,TN,N] -> { [t,i,j] : t = T and i = I and j = J-1 };
DS := [T,I,J,TN,N] -> { [t,i,j] : 0 <= t < TN and 1 <= i,j < N - 1 };
FA := [T,I,J,TN,N] -> { [t,i,j] -> A[i-1][j]; [t,i,j] -> A[i][j]; [t,i,j] -> 

A[i+1][j]; [t,i,j] -> A[i][j-1]; [t,i,j] -> A[i][j+1] };  

curiter := FA(DS * PDS_TIJ);
previter := FA(DS * PDS_TIJm1);
reuseset := curiter * previter;
card reuseset;
codegen reuseset;
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Experimental Results
Experimental Results: FPGA’13

Performance Results
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Figure 5: Communication time vs. Communication volume
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Figure 6: Total time vs. On-Chip Buffer Size Requirement, Pareto-optimal points

5.2.4 Complete Results
Table 2 summarizes the best version found by our framework,

for each tested benchmark. We report #PEs the number of replica-
tions of the full computation we have been able to place on a single
Virtex-6 FPGA as in the Convey HC-1, showing the level of coarse-
grain parallelization we have achieved. BRAM and LUT are totals
for the set of PEs placed on the chip.

Table 2: Characteristics of Best Found Versions
Benchmark tile size #PEs #BRAM #LUT
denoise 4�8�128 2 132 178544

segmentation 4�8�256 8 584 177288
DGEMM 8�256�32 16 320 112672
GEMVER 128�128 10 500 140710

Table 3 reports the performance, in GigaFlop per second, of nu-
merous different implementations of the same benchmark. out-of-
the-box reports the performance of a basic manual off-chip-only im-
plementation of the benchmark, without our framework. PolyOpt/HLS-
E reports the performance achieved with our automated framework.
Those are AutoESL results obtained with our fast DSE framework.
Hand-tuned reports the performance of a manually hand-tuned ver-
sion serving as our performance reference, from Cong et al. [17]. It
has been designed through time-consuming source code level man-
ual refinements, specifically for the HC-1ex machine. It demon-
strated that a 4-FPGA manual design for denoise and segmentation
systematically outperforms a CPU-based implementation, both in
terms of performance improvement (from 2� to 20�) and energy-
delay product (up to 2000�), therefore showing the great poten-
tial of implementing such 3D image processing algorithms on FP-
GAs [17].
We observe that for denoise (only 2 PEs were generated by Poly-

Opt/HLS) the final performance, despite being significantly better
than an off-chip-based solution, remains far from the manual design
(which uses 4 PEs). On one hand, the code we generate, and espe-
cially the loop structures, are more complex for denoise than, e.g.,
segmentation. This leads to under-performing execution for our au-

tomatically generated code. On the other hand, the reference man-
ual implementation uses numerous techniques not implemented in
our automatic framework, such as in-register data reuse, fine-grain
communication pipelining, and algorithmic modifications leading to
near-optimal performance for this version.
For segmentation, we outperform the manual design, despite the

clear remaining room for improvement our framework still has, as
shown by the denoise number. We mention that semi-automated
manual design can be performed on top of our framework, to address
optimizations we do not support, such as array partitioning.

Table 3: Side-by-side comparison
Benchmark out-of-the-box PolyOpt/HLS-E hand-tuned [17]
denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s

segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s
dgemm 0.04 GF/s 22.72 GF/s N/A
gemver 0.10 GF/s 1.07 GF/s N/A

Finally Table 4 compares the latency as reported by AutoESL us-
ing our memory latency framework for fast DSE, against the wall-
clock time observed on the machine after full synthesis of the gen-
erated RTL. We report the performance of a single PE call executing
a subset (slice) of the full computation.

Table 4: AutoESL vs. full synthesis comparison (in cycles)
Benchmark AutoESL only full synthesis

denoise-1PE (1/32 slice) 23732704 25254164 (+6%)
segmentation-1PE (1/32 slice) 131984559 148878928 (+12%)
dgemm-1PE (1/64 slice) 5022287 5055335 (+1%)

6. CONCLUSION
High Level Synthesis (HLS) tools for synthesizing designs spec-

ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
HLS systems have now reached a level of advancement to be able
to generate RTL that comes quite close to hand generated designs.

Benchmark Description basic off-chip PolyOpt hand-tuned [17]

denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s

DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A
GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

I Convey HC-1 (4 Xilinx Virtex-6 FPGAs), total bandwidth up to 80GB/s

I AutoESL version 2011.1, use memory/control interfaces provided by Convey

I Core design frequency: 150MHz, off-chip memory frequency: 300HMz

UCLA / OSU 10
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Data-Specific Compilation

Ø Irregular and sparse data structures are central in scientific computing and in 
machine learning
Ø Graph processing, neural net inference after weight pruning, etc.

Ø Typical approach: encode the sparse structure in some format, and provide a 
generic executor code to traverse the data

Ø Proposed approach: encode the sparse structure with polyhedra, and generate a 
specialized executor code for that structure

Ø Tunable: target SIMD / performance, target compression / code size, etc.
Ø General: works for n-dimensional sparse data structures (e.g., sparse tensors)

Main idea: synthesize code that is specialized to a specific 
sparse data structure, using polyhedra

T. Augustine, J. Sharma, L.-N. Pouchet, G. Rodriguez, “Generating Piecewise-regular code 
from Irregular Structures”  (PLDI 2019)
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Computing on Sparse Structures

for (i = 0; i < nrows; i++)
for (j = pos[i]; j <= pos[i+1]; j++)

y[i] += csr_data[j] * x[cols[j]];

Compressed Sparse Row (CSR) code for sparse matrix vector multiply 

Ø Code is generic for any sparse matrix
Ø For every nonzero of the matrix, performs 4 memory reads
Ø SIMD vectorization requires gather/scatter, code is not regular/polyhedral

for (j = 2; j <= 5; j++)
y[1] += csr_data[j-2] * x[j];

y[3] += csr_data[5] * x[4];
y[4] += csr_data[6] * x[2];

Code specialized for one specific sparsity structure:

i

j

1
2
3

1 2 3 …

…

T. Augustine, J. Sharma, L.-N. Pouchet, G. Rodriguez, “Generating Piecewise-regular code 
from Irregular Structures”  (PLDI 2019)
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And What is a Sparse Structure?

Here, a sparse structure is simply a series of integer tuples

Example: a sparse matrix is represented by the tuple (i,j,data)

HB/nos1 matrix from SuiteSparse

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd ) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1  i  4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0  i  1 ^ 1  j  2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.

We handle sparse structures of arbitrary dimensionality, 
this includes sparse tensors

… ………

j

i
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Encoding Sparsity with Polyhedra

HB/Nos1 matrix from SuiteSparse

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd ) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1  i  4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0  i  1 ^ 1  j  2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.

D1 : { [i,j,k] : i = 2 and 4 <= j <= 5 and k = 4j + 8 }

D2: { [i,j,k] : 2 <= i <= 3 and i = j and k = 16i – 12 }

When modeling problems like SpMV, we consider the trace reorderable
That is, non-consecutive points in the original trace may be grouped together

j

i
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Representing Integer Tuples as Z-Polyhedra
Ø A Z-Polyhedron models sets of integer tuples, with “holes”
Ø A sparse structure is a list of integer tuples, or points
Ø So we can represent a sparse structure as a union of Z-polyhedra!

Ø Target scenario: many points can be captured in a single polyhedron
Ø Performance objective: polyhedra should be easy to SIMD vectorize

Ø Challenges:
1. How to determine the shapes (polyhedron and lattice) that captures the largest 

number of points, efficiently?
2. How to reach good performance for e.g. SpMV programs encoded as polyhedra?
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Complexity Trade-Off [1/2]
Ø A Z-Polyhedron may use more dimensions than the tuple size 

Ø Think tiling a 2D iteration space: you obtain a new 4D iteration space, but that still 
describes exactly the same original set of 2D points

Ø Using more variables/dimensions in the polyhedron (maxd) reduces 
the number of polyhedra needed (pieces) to capture the full matrix
Ø Leads to better compaction (LoC)

Ø But it does not necessarily lead to better performance

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd ) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1  i  4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0  i  1 ^ 1  j  2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.



50

Complexity Trade-Offs [2/2]
Ø Complex sparse structures need many polyhedra to capture them

Ø This sparse matrix, HB/can_1072 is 
reconstructed with 870 polyhedra, of up
to 8 dimensions
Ø Code size is directly related to the 
number of polyhedra needed

Ø In this work, we design a series of algorithms that trade-off the 
number of polyhedra needed versus their “complexity”
Ø Try simple shape first: “rectangles”, with regular strides (SIMD-friendly)
Ø Try more complex shapes afterwards (skewed ones, with many dimensions)
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MACVETH: Automatic SIMD Vectorization for Codelets
Anon.
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2 Data-Speci!c Compilation of Sparse
Structures

In this work we target the optimization of sparse (tensor) computa-
tions, exempli!ed with the Sparse Matrix - dense Vector product
(SpMV) kernel using the CSR format shown in Listing 1.

1 for (int i = 0; i < N; ++i) {

2 y[i] = 0.0;

3 for(int j = row_ptr[i]; j < row_ptr[i + 1]; ++j)

4 y[i] += A[j] * x[cols[j]];

5 }

Listing 1: Standard SpMV kernel using CSR format.

In typical practice, some discrete representation of the set of
always-zero values (or, conversely, always-nonzero values) is as-
sumed to be known a priori. Then, a compressed sparse represen-
tation can be built, using a variety of formats trading o" memory
footprint for the compressed structure versus ease to produce high-
performance code scanning the nonzero elements of the structure.
We note the cost of modifying the sparsity is typically prohibitive
for most sparse formats (e.g., CSR, COO, etc.) as inserting or re-
moving a nonzero element implies growing/reducing, and then
shifting, the arrays used to index elements. For example, adding
one nonzero element to a CSR representation requires updating
A, row_ptr, and cols. Therefore many practical use cases repeat
computations over the same sparsity pattern, only modifying the
!elds (i.e., the data values in the arrays) which are computed on.
Generic executors, as in Listing 1, present the advantage to be
sparsity-independent (the code is the same for any sparse matrix)
and therefore generic [5, 6, 8, 16, 31, 40], but at the cost of using
indirection arrays, limiting the performance.

2.1 Reconstruction by Codelets
In order to avoid the use of indirection arrays, Augustine et al.
[4] developed a system for automatically building sets of regular
subcomputations by mining regularly strided subregions on the
irregular data structure, i.e., on a sparse tensor. This approach gen-
erates data-speci!c code for each input sparse structure, such as in
those included in the SuiteSparse collection [10]. An example of the
output of this system for the input sparse matrix JGD_Kocay/Trec5
is depicted in Listing 2. At compile-time, the nonzero coordinates
are inspected and a code scanning the exact same coordinates is pro-
duced, but without any indirection array. In essence, the nonzero
coordinates stored in row_ptr and cols are replaced by their actual
values in the code generated, making it specialized to this speci!c
sparsity pattern.

Listing 2 depicts a very simple and intuitive example of code
fragment that is reconstructed using rectangular template shapes
being mined over the full set of nonzero coordinates [4]. The set of
nonzero coordinates (!, ") in the 2D sparse matrix leading to such
code is, for the !rst loop, ((1, 0); (1, 1)), then ((2, 0); (2, 1); (2, 2))
for the second loop, etc. Taking into account the # data vector,
where non-zero values are typically stored in contiguous fashion,
is required to emit correct code manipulating the CSR representa-
tion. 3D Codelets are mined for, for the (!, ",#_$%&) coordinates.
Precisely in the example above, we have (1, 0, 0); (1, 1, 1) for the
!rst loop, (2, 0, 2); (2, 1, 3); (2, 2, 4) for the second, etc.

1 void kernel_spmv_fragment_0(float *__restrict A,

2 float *__restrict x,

3 float *__restrict y) {

4 register int i0;

5 for (i0 = 0; i0 <= 1; ++i0)

6 y[1] += A[i0] * x[i0];

7 for (i0 = 0; i0 <= 2; ++i0)

8 y[2] += A[i0 + 2] * x[i0];

9 for (i0 = 0; i0 <= 1; ++i0)

10 y[3] += A[i0 + 5] * x[i0 + 1];

11 for (i0 = 0; i0 <= 1; ++i0)

12 y[4] += A[i0 + 7] * x[i0 + 1];

13 y[5] += A[9] * x[1];

14 for (i0 = 0; i0 <= 1; ++i0)

15 y[5] += A[i0 + 10] * x[2]; }

Listing 2: Code generated for matrix JGD_Kocay/Trec5

With these coordinates known at compile-time, the above code
is produced by mining for the existence of (hyper-)rectangles con-
taining regularly strided coordinates (i.e., the values indexing y, x
and A above) that can be expressed as simple a#ne functions of
loop iterators [4].

2.2 Performance Trade-o"s
The simple loop-based codes above present a di#cult performance
trade-o" to navigate: on the one hand, more specialized code, with
regular loops and no indirection arrays, should be amenable to
high-performance SIMD implementation. On the other hand, the
program remains entirely functionally equivalent to Listing 1 if it is
invoked on the JGD_Kocay/Trec5 sparse matrix, up to a reordering
of the iterations.

In general, even after reordering, it does performnon-consecutive
(scattered) memory accesses, especially along the dense vector x,
following the sparsity pattern of the input matrix. Furthermore,
loops generated have typically a very small trip count, insu"cient to
pack a full SIMD vector, and contain numerous short reductions.

Augustine et al. remarked several sources of ine"ectiveness of
these data-speci!c codes. First, and most importantly, code size ex-
plosion, as the sparsity information is now encoded in the form of
specialized loop nests. This triggers performance issues related
to instruction cache prefetching (or lack thereof): as code is
typically not reused, for good performance one shall implement
a form of software prefetching for the code itself [4]. They also
relied on existing auto-vectorizers for the generated code, which
limits performance due to generic cost models and the small size
of the loops to optimize. Compilers’ auto-vectorizers synthesize
machine-speci!c assembly code exploiting SIMD units of the target
processor. Most of these techniques are conservative and are only
applied if certain patterns are found in the code, and if a cost model
has assessed their pro!tability. For instance, GNUGCC and Clang/L-
LVMuse both Loop-Level Vectorization (LLV) and Superword-Level
Parallelism (SLP) [15, 22, 24].

When accessing scattered (non-consecutive) memory addresses,
gather is a convenient but complex x86 macro-instruction, intro-
duced in AVX2 for loading random data points given a starting
address and a set of indices. This instruction has been reported to
deliver variable latencies [1], depending on the source and destina-
tion operands. Hofmann et al. [18] demonstrate the performance
variability of the gather instruction for the Intel Knights Corner and
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classes where there is no speedup from the candidates generated,
to favor also reducing the !nal binary size.

3.4 Fusion and Vectorization of Independent
Reductions

In the middle-end of MACVETH, the packing cost model tries to
maximize the vector occupancy for reductions. MACVETH consid-
ers two forms of fusing independent reductions: using the same
vector register (intra-register), and using multiple vector registers
(inter-register). For the !rst case, the back-end just performs a par-
tial reduction on the register to be reduced. In the second case, the
compiler uses the same operations to simultaneously compute both
independent reductions. This approach has a limitation: the num-
ber of values in each independent reduction must be the same, and
the values must be placed contiguously. This is why the packing
cost model must pack, typically, a multiple of 2 reductions together.
Following the example, packing 5 reductions on tmp0 and 3 on
tmp1 cannot be done with the approach proposed here. We have
developed fully automated algorithms to detect opportunities (and
pro!tability of) packing independent reductions together. For the
sake of space saving we limit to displaying Listing 4 to illustrate
the code we can generate for fusing such reductions3.

1 __vop2 = _mm256_loadu_ps (&z[0]);

2 __vop0 = _mm256_hadd_ps(__vop0 , __vop2);

3 __mv_lo128 = _mm256_castps256_ps128(__vop0);

4 __mv_hi128 = _mm256_extractf128_ps(__vop0 , 0x1);

5 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

6 __mv_hi128 = _mm_shuffle_ps(__mv_lo128 , __mv_lo128 ,

7 0b00110001);

8 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

9 tmp0 = tmp0 + __mv_lo128 [0];

10 tmp1 = tmp1 + __mv_lo128 [2];

Listing 4: Example of synthesis in MACVETH for the fusion
of two independent reductions of 8 32-bit elements each, in
two di!erent vectors

3.5 SIMD Code Generation
MACVETH relies on the Clang AST for parsing the input code.
Instead of lowering this abstraction to the LLVM IR, our compiler
rewrites the original code using SIMD directives in an Intrinsics
style whenever pro!table, thanks to the Clang’s LibTooling library
that supports rewriting the original source code. The high-level
picture of the system’s architecture is depicted in Figure 1. We
logically divide our source-to-source compiler architecture into
front-end, middle-end and back-end.

MACVETH uses di"erent abstraction levels and IRs in order to
facilitate the vectorization process. The input AST is obtained with
Clang. From there, MACVETH generates three-address code in
SSA form, which itself facilitates the creation of a Directed Acyclic
Graph (DAG) for the computation, after unrolling loops as needed.
Typically MACVETH operates on a window of the AST at a time, to
limit the size of the DAGmanipulated, especially for large programs.

This DAG structure is suitable for !nding patterns in the code
such as reductions and long-distance load sharing opportunities.
The operations and operands in this DAG are packed when possible
to generate vector operations, based on the measured pro!tability

3Full details and all algorithms are available in an unpublished non-anonymous
manuscript
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Figure 1: High-level diagram of MACVETH’s architecture
showing the di!erent IRs used by the system.

of the corresponding vector packing recipes. These are generated
in the SIMD back-end. Then, using the Clang framework, the front-
end rewrites the original source code synthesizing the SIMD code
generated in the back-end.

4 Experimental Results
MACVETH was used to vectorize the data-speci!c programs gen-
erated from the sparse matrix – vector multiplication of the 200
matrices by Augustine et al. [4]4. These are selected from the full
SuiteSparse [10] by applying a sieve process in which matrices are
classi!ed according to the decile they belong to in terms of matrix
size and the percentage of points that are issued as micro-codelets.
This sieve yields 100 categories. Inside each category, !-means
clustering is used to select representative matrices. The number of
representatives per cluster is selected so that the probability density
of the sample matches the original one.

Experiments were executed on an Intel Core i9 12900K (Alder
Lake) with 128 GiB of RAM memory. All runs were repeated 10
times, reporting the best performance achieved for each experi-
ment after removing outliers, identi!ed as those measurements
that deviate more than 3" from the mean. The CPU frequency
was !xed at the base of 3.2 GHz to prevent thermal constraints
a"ecting experimental variability. The data and code segments
are stored into 2 MiB hugepages. The data-speci!c codes imple-
menting SpMV for each selected matrix were synthesized using
the DSCG tool that applies the shape-based mining approach by
Augustine et al. [4] (763 di"erent hyper-rectangular shapes with in-
creasingly large sizes and strides). Codes were compiled with GCC
v11.2.0 with -Ofast -march=alderlake. All vectorization #ags
were enabled when compiling baseline codes. The PolyBench [27]
and uBENCHTOOL testing harnesses were used for performance
measurements. Prefetching of the text segment was included in the
linking process [4]. Other CPUs and compilers were used for sensi-
tivity studies, detailed in Section 4.5. Using these same basic setup

4The full list of matrices used in these experiments can be double-blindly consulted at
https://pastebin.com/kqMABFUQ.
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classes where there is no speedup from the candidates generated,
to favor also reducing the !nal binary size.

3.4 Fusion and Vectorization of Independent
Reductions

In the middle-end of MACVETH, the packing cost model tries to
maximize the vector occupancy for reductions. MACVETH consid-
ers two forms of fusing independent reductions: using the same
vector register (intra-register), and using multiple vector registers
(inter-register). For the !rst case, the back-end just performs a par-
tial reduction on the register to be reduced. In the second case, the
compiler uses the same operations to simultaneously compute both
independent reductions. This approach has a limitation: the num-
ber of values in each independent reduction must be the same, and
the values must be placed contiguously. This is why the packing
cost model must pack, typically, a multiple of 2 reductions together.
Following the example, packing 5 reductions on tmp0 and 3 on
tmp1 cannot be done with the approach proposed here. We have
developed fully automated algorithms to detect opportunities (and
pro!tability of) packing independent reductions together. For the
sake of space saving we limit to displaying Listing 4 to illustrate
the code we can generate for fusing such reductions3.

1 __vop2 = _mm256_loadu_ps (&z[0]);

2 __vop0 = _mm256_hadd_ps(__vop0 , __vop2);

3 __mv_lo128 = _mm256_castps256_ps128(__vop0);

4 __mv_hi128 = _mm256_extractf128_ps(__vop0 , 0x1);

5 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

6 __mv_hi128 = _mm_shuffle_ps(__mv_lo128 , __mv_lo128 ,

7 0b00110001);

8 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

9 tmp0 = tmp0 + __mv_lo128 [0];

10 tmp1 = tmp1 + __mv_lo128 [2];

Listing 4: Example of synthesis in MACVETH for the fusion
of two independent reductions of 8 32-bit elements each, in
two di!erent vectors

3.5 SIMD Code Generation
MACVETH relies on the Clang AST for parsing the input code.
Instead of lowering this abstraction to the LLVM IR, our compiler
rewrites the original code using SIMD directives in an Intrinsics
style whenever pro!table, thanks to the Clang’s LibTooling library
that supports rewriting the original source code. The high-level
picture of the system’s architecture is depicted in Figure 1. We
logically divide our source-to-source compiler architecture into
front-end, middle-end and back-end.

MACVETH uses di"erent abstraction levels and IRs in order to
facilitate the vectorization process. The input AST is obtained with
Clang. From there, MACVETH generates three-address code in
SSA form, which itself facilitates the creation of a Directed Acyclic
Graph (DAG) for the computation, after unrolling loops as needed.
Typically MACVETH operates on a window of the AST at a time, to
limit the size of the DAGmanipulated, especially for large programs.

This DAG structure is suitable for !nding patterns in the code
such as reductions and long-distance load sharing opportunities.
The operations and operands in this DAG are packed when possible
to generate vector operations, based on the measured pro!tability

3Full details and all algorithms are available in an unpublished non-anonymous
manuscript
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Figure 1: High-level diagram of MACVETH’s architecture
showing the di!erent IRs used by the system.

of the corresponding vector packing recipes. These are generated
in the SIMD back-end. Then, using the Clang framework, the front-
end rewrites the original source code synthesizing the SIMD code
generated in the back-end.

4 Experimental Results
MACVETH was used to vectorize the data-speci!c programs gen-
erated from the sparse matrix – vector multiplication of the 200
matrices by Augustine et al. [4]4. These are selected from the full
SuiteSparse [10] by applying a sieve process in which matrices are
classi!ed according to the decile they belong to in terms of matrix
size and the percentage of points that are issued as micro-codelets.
This sieve yields 100 categories. Inside each category, !-means
clustering is used to select representative matrices. The number of
representatives per cluster is selected so that the probability density
of the sample matches the original one.

Experiments were executed on an Intel Core i9 12900K (Alder
Lake) with 128 GiB of RAM memory. All runs were repeated 10
times, reporting the best performance achieved for each experi-
ment after removing outliers, identi!ed as those measurements
that deviate more than 3" from the mean. The CPU frequency
was !xed at the base of 3.2 GHz to prevent thermal constraints
a"ecting experimental variability. The data and code segments
are stored into 2 MiB hugepages. The data-speci!c codes imple-
menting SpMV for each selected matrix were synthesized using
the DSCG tool that applies the shape-based mining approach by
Augustine et al. [4] (763 di"erent hyper-rectangular shapes with in-
creasingly large sizes and strides). Codes were compiled with GCC
v11.2.0 with -Ofast -march=alderlake. All vectorization #ags
were enabled when compiling baseline codes. The PolyBench [27]
and uBENCHTOOL testing harnesses were used for performance
measurements. Prefetching of the text segment was included in the
linking process [4]. Other CPUs and compilers were used for sensi-
tivity studies, detailed in Section 4.5. Using these same basic setup

4The full list of matrices used in these experiments can be double-blindly consulted at
https://pastebin.com/kqMABFUQ.
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Ø Extensively profile the machine to get best way to 
pack randomly placed data into SIMD vectors

Ø Use synthesis for specific SIMD packing recipe (SMT 
solver for masks, etc.)

Ø At compile-time, use the recipes with MACVETH, and 
pack multiple small reductions on same SIMD vector
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Figure 3: Speedup of instruction count-based MACVETH w.r.t. CSR and MKL (left) and raw performance (right). Log axes.

been generated bymicro-benchmarking theAlder Lake architecture,
and will not generalize to others.

Figure 3 shows the speedups obtained for this new MACVETH
version. The new geometric mean speedup relative to the CSR
and DSCG versions is 1.5x, with a geometric mean reduction in the
number of executed instructions of 4.7x and 1.8x, respectively. With
respect to the DSCG version, the number of L2 misses attributable
to code blocks is reduced by 3.6x, and the total L3 misses by 1.7x.
For the particular case of the GHS_psdef/apache2 matrix, the new
instruction count-based version achieves now a raw performance
of 3.0 GFLOPS, a 3.8x speedup relative to the TSC-based version,
which represents a speedup of 1.2x and 1.5x with respect to the
CSR and DSCG versions, respectively.

MACVETH achieves good results even for matrices with virtu-
ally no operations recognized as codelets. E.g., Mittelmann/fome13
features an SpMV kernel with 570K FLOPs, out of which 99.8% are
written as scalar operations in DSCG codes. MACVETH manages
to execute 86% of them as vector operations (versus 78% by the CSR
executor and 18% by the GCC-compiled DSCG code), achieving a re-
duction in the number of executed instructions of 4.5x and 1.5x with
respect to the CSR and DSCG versions, respectively, and a speedup
of 2.5x and 1.6x. The raw performance achieved by MACVETH
increases from 1.67 GFLOPS using TSC-based packing recipes to
2.40 GFLOPS using instruction count-based recipes. This exempli-
!es how the performance improvements obtained by MACVETH
are not dependent on the regularity of the sparsity patterns
exhibited by the input matrix.

Note that, when using instruction count-based packing recipes,
MACVETH generates vector code for exactly the same operations
as in Section 4.1, just using packing instructions that minimize exe-
cutable size. For comparison and as a sanity check we compare the
results achieved by the instruction count-based version with the
ones obtained by a version which only uses _mm256_i32gather_ps
for data packing. The version employing MRKVS recipes achieves

Figure 4: Hot cache speedup of MACVETH w.r.t. CSR (left)
and raw performance (right). Log axes.

a 1.12x geometric mean speedup with respect to the gather-only
version, with a 1.18x reduction in the number of executed instruc-
tions.

4.2.1 Hot cache Finally, we analyze the performance obtained by
these codes under hot cache conditions. For this, we execute the
same SpMV operation 100 times, without "ushing the cache after
each repetition. Note that these are the usual experimental condi-
tions when computing tensor operations on batches of data, as in,
e.g., the inference of neural networks. Likewise, these are the ex-
perimental conditions for the Intel HPCG benchmark that provided
the reference performance of 5.5 GFLOPS. As expected, we observe
signi!cantly increased bene!ts for the DSCG and MACVETH codes
with respect to the CSR baseline, as the main bottleneck for these
codes, i.e., text segment sizes, is now alleviated by the 30 MiB LLC
cache in the 12900K processor. The speedups and raw performance
are detailed in Figure 4. Geometric mean speedups are now 2.0x
and 1.2x with respect to the CSR and DSCG baselines, respectively,
while, as was to be expected, the relationship between the number
of executed instructions among the di#erent code versions remains
identical as under cold cache conditions.
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Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

1 sparse_matrix_t M;

2 mkl_sparse_s_create_csr (&M, ...); // Inspector phase

3

4 polybench_start_instruments; // Starts timed scope

5 mkl_sparse_s_mv (...); // Executor phase

6 polybench_stop_instruments; // Stops timed scope

Listing 6: MKL executor.

4.3 Intel Math Kernel Library
While the previous results are informative of the performance

of the DSCG codes compiled with MACVETH with respect to a
default CSR executor, the current state-of-pratice standard is to
employ the Intel Math Kernel Library (MKL) [35], a C++-based
library designed to enable HPC. In particular, MKL provides a set of
SparseBLAS routines, including SpMV.We used Intel MKL v2022.0.2
in our experiments. The SparseBLAS part of the library works in an
inspector-executor fashion. The inspection part was left out of the
timed scope to ensure fair comparisons. The MKL code employed
in these experiments, linked against the single-threaded MKL li-
braries, is detailed in Listing 6. Multithreaded results are presented
in Section 4.4.

Since only 12 out of 200 matrices in the original set had code
sizes above the LLC size of 30 MiB, we added 30 matrices in between
10M and 20M nonzeros. These new matrices were selected using
the same original notion of fairly sampling the SuiteSparse domain
according to matrix sizes and regularity of their sparsity structure.

Figure 3 details the results obtained in these experiments. MKL
achieves a geometric mean speedup of 0.8x with respect to the CSR
executor, i.e., a slowdown. This is due to signi!cant initialization
overhead of the executor function, which is not o"set until matrix
sizes are signi!cantly large, approximately above 10K nonzeros. If
we consider only that subset, then MKL achieves a geometric mean
speedup of 1.19x. The speedup of the MACVETH codes with respect
to this subset is 1.33x. Generally speaking, in single-threaded exe-
cutions MACVETH keeps a signi!cant lead over MKL for matrices
below 2M nonzeros. After that point, it depends on the particular
characteristics of each input matrix, with MACVETH leading by a
geometric mean speedup of just 1.02x, being faster in 27 out of 47
matrices. The superiority of each version for a particular matrix de-
pends on how the complex execution trade-o"s play o" for a given
matrix size and sparsity structure. MACVETH achieves a reduction
of 6.07x in the number of instructions executed, while MKL features
a better execution schedule that incurs 1.33x less L2 misses and
1.50x less L3 misses than the CSR version. Table 1 summarizes raw
performance in single-threaded executions for each experimental
version, including the larger matrices and performance under hot
cache conditions, measured in a similar way as in Section 4.2.

4.4 Multithreaded Results
We parallelize codes using OpenMP in order to evaluate the scaling
of the speedups observed for single-threaded versions of these
codes. We target the hot cache setup, with 100 repetitions of the
multiplication kernel, in order to ensure that computations are
substantial enough to bene!t from parallelization. The CSR baseline
is parallelized by performing a static block distribution of the sparse
matrix rows among the di"erent threads, as seen in Listing 56. The

6We empirically observed the dynamic distribution to be slightly less performant for
our experimental set.

Table 1: GFLOPS for each SpMV version. Columns labeled
“> !” are geometric means restricted to matrices with more
than ! nonzeros.

Cache Version
Performance (GFLOPS)

>1 >10K >1M > 10M Peak

C
ol
d

CSR 1.43 2.15 2.27 2.39 5.26
DSCG 1.42 2.03 2.00 2.07 4.55
MKL 1.15 2.56 3.07 3.29 5.31

MACVETH 2.16 3.41 3.30 3.37 7.91

H
ot

CSR 2.55 2.70 2.48 2.50 6.80
DSCG 3.81 3.45 2.29 2.12 11.48
MKL 3.29 3.81 3.33 3.31 7.13

MACVETH 4.91 5.27 3.92 3.53 17.48

Figure 5: Hot cachemultithreaded performance. Each of the
four series represents the speedup obtained for 1, 2, 4, and 8
threads. Higher thread count corresponds to higher perfor-
mance. Log axes.

DSCG andMACVETH codes are parallelized by dividing the number
of FLOPs fairly among the di"erent threads. Note that neither
approach guarantees fair schedules: heterogeneous distribution
of nonzeros among the matrix rows will cause load imbalance
between di"erent threads of the CSR executor. Similarly, for the
DSCG and MACVETH codes the number of FLOPs does not drive
performance, which depends essentially on the access patterns
performed by each thread, determining the vectorization recipes
and size of its code block. We observe a 1% di"erence among the
average standard deviation in both parallelization approaches, and
conclude that the experimental setup is fair in this regard. MKL
schedules computations across threads according to the inspection
phase.

We observe noticeable performance di"erences between the
parallel codes executed with one thread and the single-threaded
versions. In the CSR case, this di"erence is due to GCC disabling
vectorization of the irregular loop when compiling with -fopenmp.7

The number of LLC misses increases by 1.07x, and the executed
instructions by 1.21x. As for MKL, there is a 1.06x overhead incurred
by the parallel version, driven by a 1.15x increase in the LLC misses.
Besides these, all code versions perform signi!cantly worse for
smaller matrices due to the overhead of spawning the threads.

We execute the experimental set using 1, 2, 4, 8, and 16 threads,
pinned to di"erent physical performance cores in the processor
except for the case of 16 threads, where each of the 16 physical

7It is not possible to turn vectorization on again using ivdep or other pragmas.
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Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations

1 sparse_matrix_t M;

2 mkl_sparse_s_create_csr (&M, ...); // Inspector phase

3

4 polybench_start_instruments; // Starts timed scope

5 mkl_sparse_s_mv (...); // Executor phase

6 polybench_stop_instruments; // Stops timed scope

Listing 6: MKL executor.

4.3 Intel Math Kernel Library
While the previous results are informative of the performance

of the DSCG codes compiled with MACVETH with respect to a
default CSR executor, the current state-of-pratice standard is to
employ the Intel Math Kernel Library (MKL) [35], a C++-based
library designed to enable HPC. In particular, MKL provides a set of
SparseBLAS routines, including SpMV.We used Intel MKL v2022.0.2
in our experiments. The SparseBLAS part of the library works in an
inspector-executor fashion. The inspection part was left out of the
timed scope to ensure fair comparisons. The MKL code employed
in these experiments, linked against the single-threaded MKL li-
braries, is detailed in Listing 6. Multithreaded results are presented
in Section 4.4.

Since only 12 out of 200 matrices in the original set had code
sizes above the LLC size of 30 MiB, we added 30 matrices in between
10M and 20M nonzeros. These new matrices were selected using
the same original notion of fairly sampling the SuiteSparse domain
according to matrix sizes and regularity of their sparsity structure.

Figure 3 details the results obtained in these experiments. MKL
achieves a geometric mean speedup of 0.8x with respect to the CSR
executor, i.e., a slowdown. This is due to signi!cant initialization
overhead of the executor function, which is not o"set until matrix
sizes are signi!cantly large, approximately above 10K nonzeros. If
we consider only that subset, then MKL achieves a geometric mean
speedup of 1.19x. The speedup of the MACVETH codes with respect
to this subset is 1.33x. Generally speaking, in single-threaded exe-
cutions MACVETH keeps a signi!cant lead over MKL for matrices
below 2M nonzeros. After that point, it depends on the particular
characteristics of each input matrix, with MACVETH leading by a
geometric mean speedup of just 1.02x, being faster in 27 out of 47
matrices. The superiority of each version for a particular matrix de-
pends on how the complex execution trade-o"s play o" for a given
matrix size and sparsity structure. MACVETH achieves a reduction
of 6.07x in the number of instructions executed, while MKL features
a better execution schedule that incurs 1.33x less L2 misses and
1.50x less L3 misses than the CSR version. Table 1 summarizes raw
performance in single-threaded executions for each experimental
version, including the larger matrices and performance under hot
cache conditions, measured in a similar way as in Section 4.2.

4.4 Multithreaded Results
We parallelize codes using OpenMP in order to evaluate the scaling
of the speedups observed for single-threaded versions of these
codes. We target the hot cache setup, with 100 repetitions of the
multiplication kernel, in order to ensure that computations are
substantial enough to bene!t from parallelization. The CSR baseline
is parallelized by performing a static block distribution of the sparse
matrix rows among the di"erent threads, as seen in Listing 56. The

6We empirically observed the dynamic distribution to be slightly less performant for
our experimental set.

Table 1: GFLOPS for each SpMV version. Columns labeled
“> !” are geometric means restricted to matrices with more
than ! nonzeros.

Cache Version
Performance (GFLOPS)

>1 >10K >1M > 10M Peak

C
ol
d

CSR 1.43 2.15 2.27 2.39 5.26
DSCG 1.42 2.03 2.00 2.07 4.55
MKL 1.15 2.56 3.07 3.29 5.31

MACVETH 2.16 3.41 3.30 3.37 7.91
H
ot

CSR 2.55 2.70 2.48 2.50 6.80
DSCG 3.81 3.45 2.29 2.12 11.48
MKL 3.29 3.81 3.33 3.31 7.13

MACVETH 4.91 5.27 3.92 3.53 17.48

Figure 5: Hot cachemultithreaded performance. Each of the
four series represents the speedup obtained for 1, 2, 4, and 8
threads. Higher thread count corresponds to higher perfor-
mance. Log axes.

DSCG andMACVETH codes are parallelized by dividing the number
of FLOPs fairly among the di"erent threads. Note that neither
approach guarantees fair schedules: heterogeneous distribution
of nonzeros among the matrix rows will cause load imbalance
between di"erent threads of the CSR executor. Similarly, for the
DSCG and MACVETH codes the number of FLOPs does not drive
performance, which depends essentially on the access patterns
performed by each thread, determining the vectorization recipes
and size of its code block. We observe a 1% di"erence among the
average standard deviation in both parallelization approaches, and
conclude that the experimental setup is fair in this regard. MKL
schedules computations across threads according to the inspection
phase.

We observe noticeable performance di"erences between the
parallel codes executed with one thread and the single-threaded
versions. In the CSR case, this di"erence is due to GCC disabling
vectorization of the irregular loop when compiling with -fopenmp.7

The number of LLC misses increases by 1.07x, and the executed
instructions by 1.21x. As for MKL, there is a 1.06x overhead incurred
by the parallel version, driven by a 1.15x increase in the LLC misses.
Besides these, all code versions perform signi!cantly worse for
smaller matrices due to the overhead of spawning the threads.

We execute the experimental set using 1, 2, 4, 8, and 16 threads,
pinned to di"erent physical performance cores in the processor
except for the case of 16 threads, where each of the 16 physical

7It is not possible to turn vectorization on again using ivdep or other pragmas.

9

Single-core experiments

Multi-core experiments (hot cache)



53

Experimental Results: Compression

Ø Compression ratio: CSR footprint / size of data+code generated
Ø Best compression is achieved with different codelets, different objectives/trade-offs 

than for performance 
Ø For better results J see talk by Gabriel Rodriguez at 5pm today @ IMPACT’23!

Best compression achieved
(not necessarily best performance)

Generated code size versus
number of nonzeros
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Outline: Scheduling and Code Optimizations

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k]*B[k][j];

PROGRAM

DATA

Compiler

Target
Hardware
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On To Optimizing Compilers
♦ Focusing on loop-intensive programs 

§ Example: sequence of linear algebra operations
§ Usually, significant data reuse potential
§ Usually, significant inherent parallelism available 

♦ Program transformations may be required to: 
§ Exploit the data reuse (i.e., fusion and/or tiling)
§ Exploit coarse-grain parallelism (i.e., permutation)
§ Exploit fine-grain parallelism (i.e., permutation and/or distribution) 

♦ Key problems in mapping this software on hardware:
§ Challenge 1: conflicting objective (locality vs. SIMD) 
§ Challenge 2: different granularity (coarse-grain SMP vs. instruction selection) 
§ Challenge 3: optimality (global solution vs. multi passes) 
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Combining High-Level and Low-Level Transformations (1)

♦ High-level transformations are about program-wide 
restructuring 
§ Usually applied on a "large" sub-program 
§ Abstract metrics should be used (e.g., "parallelization") 

♦ Low-level transformations are about loop/statement 
compilation 
§ Smaller granularity/scope of application 
§ Constraints closer to the actual hardware (e.g., "aligned access") 

Issue: how to ensure maximal effectiveness 
of a “local” optimization? 
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Combining High-Level and Low-Level Transformations (2)

Main idea: Define a contract between the two compilers 
♦ This contract determines properties on the shape of the output code 

produced by the high-level transformation stage 

♦ By construction code segments fitting this contract can be 
effectively compiled to the target hardware 

♦ Example: contract for CPU SIMD synthesis using SPIRALgen

Research problem: what is this contract? 

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. 
"When polyhedral transformations meet SIMD code generation." In Proceedings of the 34th ACM SIGPLAN conference on 
Programming language design and implementation, 2013.
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The Contract With SPIRALgen
SPIRAL can effectively vectorize program regions of the form: 

§ A single, inner-most loop (requirement) 
§ No loop-carried dependence along this loop (requirement) 
§ As many instructions as possible in this loop (performance objective) 
§ No unaligned store (requirement) 
§ As few unaligned load as possible (performance objective) 
§ As much data reuse in the loop as possible (performance objective) 
§ Only stride-0 and stride-1 references (requirement) 

Problem: how to restructure the code 
to expose maximal candidate codelets? 
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Polyhedral Scheduling to The Rescue
♦ Use the polyhedral model to encode all requirements as constraints 

on the schedule of operations
♦ Ditto for performance objectives, encoded as optimization variables
♦ See paper for details (formulation is quite complex J )

♦ Other approach: specialize the scheduling strategy to the properties 
of the program

♦ Key to success: a single, convex formulation for all and only legal
schedules in a certain class (implemented in PoCC/PONOS)

Kong, Martin, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. 
"When polyhedral transformations meet SIMD code generation." In Proceedings of the 34th ACM SIGPLAN conference on 
Programming language design and implementation, 2013.

Kong, Martin, and Louis-Noël Pouchet. "Model-driven transformations for multi-and many-core CPUs." In Proceedings 
of the  40th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019

L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, P. Sadayappan, N. Vasilache “Loop Transformations: Convexity, Pruning 
and Optimization“  (POPL 2011)
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Detour: Building Rich Transformation Spaces
♦ Loop Fusion/Distribution/Code motion plays an essential role on the 

properties of the transformed code
§ Trade-off data locality / communications vs. buffer size vs. parallelism

♦ The number of alternatives is HUGE
§ Example: LU decomposition code, 11 loops >> 1,000,000,000,000 choices!

♦ Essential properties for tractability: build search spaces with:
§ Legality: only codes which respect all data dependences
§ Uniqueness: each point in the space is a distinct transformation
§ Expressiveness: all possible compositions of transformations considered
=> LU: this space contains only 20 points!

Challenge: modeling such search spaces 
to enable efficient traversal and ILP/PIP optimization
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Ø Efficient ILP formulation, models strong dependence satisfaction a la Feautrier

Convex Form of All, Distinct, Legal Bounded Affine Schedules
Affine Scheduling: Space of Semantics-Preserving Affine Schedules CS132

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules QR,QS . . . of dimension m, the program

semantics is preserved if the three following conditions hold:

(i) 8DR,S, dDR,S
p 2 {0,1}

(ii) 8DR,S,
m

Â
p=1

dDR,S
p = 1

(iii) 8DR,S, 8p 2 {1, . . . ,m}, 8h~xR,~xSi 2 DR,S,

QS
p(~xS)�QR

p (~xR)�dDR,S
p +

p�1

Â
k=1

dDR,S
k .(K.~n+K) � 0

! Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

! Bounded coefficients required [Vasilache,07]
UCLA 111

L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, P. Sadayappan, N. Vasilache
“Loop Transformations: Convexity, Pruning and Optimization“  (POPL 2011)
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Space of Semantics-Preserving Fusion Choices: Convex Set of All Unique Total Preorders POPL’11

Convex set of All Unique Total Preorders

O =

8
<

:

0 pi,j  1
0 ei,j  1
0 si,j  1

9
=

; constrained to: O =

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

0 pi,j  1
�

Variables are
binary0 ei,j  1

pi,j + ei,j  1
�

Relaxed mutual
exclusion

8k 2]j,n] ei,j + ei,k  1+ ej,k
�

Basic transitivity
on eei,j + ej,k  1+ ei,k

8k 2]i, j[ pi,k +pk,j  1+pi,j

�
Basic transitivity
on p

8k 2]j,n] ei,j +pi,k  1+pj,k
9
=

;

Complex
transitivity
on p and e

ei,j +pj,k  1+pi,k
8k 2]i, j[ ek,j +pi,k  1+pi,j

8k 2]j,n] ei,j +pi,j +pj,k  1+pi,k + ei,k

9
=

;

Complex
transitivity
on s and p

I Systematic construction for a given n, needs n2 Boolean variables
I Enable ILP modeling, enumeration, etc.
I Extension to multidimensional total preorders (i.e., multi-level fusion)

OSU / IBM / INRIA / LSU / Reservoir 17

Convex Space of All Distinct Total Preorders
♦ Fusion/distribution/code motion ó total preorder
♦ Modeling: 3 binary variables per distinct pairs

§ Example: {A}, {B}, {C}. {A,B},{C} is a TP, so is {C},{A,B}
§ pA,B = 1 iff A is before B, 0 otherwise
§ eA,B = 1 iff A is in the same class as B, 0 otherwise
§ sA,B = 1 iff A is after B, 0 otherwise
§ Example: {A,B},{C} is modeled as 
eA,B=1,  pA,C=1, pB,C=1 (all others = 0)

L.N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, R. Ramanujam, 
P. Sadayappan, N. Vasilache
“Loop Transformations: Convexity, Pruning and Optimization“  

(POPL 2011)
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The Convex Space of Fusions/Distributions
♦ Starting from Total Preorders, pruning algorithm based on careful 

dependence analysis
§ Exploit new properties on fusibility to accelerate the algorithm
§ Key feature: removing a class automatically removes all its superclasses

♦ Numerous practical applications
§ Find machine-specific fusion/distribution [SC’10]
§ Exploring fusion in RAJA
§ Explore function module decoupling (resource sharing) for SoCs
§ Explore operator/kernel fusion for deep learning
§ Tool fully automated and implemented in PoCC/PolyOpt

♦ But always more to be done! J
§ Build better integrated models to select fusion, more complex performance 

objectives
§ …
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Outline: Modeling and Reasoning on the Hardware

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

for (k = 0; k < N; ++k)
C[i][j] += A[i][k]*B[k][j];

PROGRAM

DATA

Compiler

Target
Hardware
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Source: Pr. Zhiru Zhang, Cornell

HeteroCL: Decoupling Algorithm from Hardware Customizations 

for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * kernel[r, c]

r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N), 

lambda y, x:
hcl.sum(image[x+r, y+c]*kernel[r, c], 

axis=[r, c]))

HeteroCL code

Declarative code 
(based on TVM)

Corresponding C code (original)

Unroll 
inner loops

Algorithm

s = hcl.create_schedule()
s[out].unroll([r,c])

Custom 
Compute

for i in range(2, 8):
s.quantize([out], Fixed(i, i-2))

Custom 
Data Type

linebuf = s[image].reuse_at(out, out.y)
winbuf = s[linebuf].reuse_at(out, out.x)

Custom 
Memory

github.com/cornell-zhang/heterocl

Y.-H. Lai, et al., HeteroCL: A Multi-Paradigm Programming Infrastructure for 
Software-Defined Reconfigurable Computing, FPGA’2019

https://github.com/cornell-zhang/heterocl
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Custom memory
(Reuse buffers)

Example: convolution

Accelerator Design with High-Level Synthesis (HLS)

for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * kernel[r, c]

Custom compute
(Loop tiling)

Custom data type
(Quantization)

#pragma HLS array_partition variable=filter dim=0
hls::LineBuffer<3, N, ap_fixed<8,4> > buf;
hls::Window<3, 3, ap_fixed<8,4> > window;
for(int y = 0; y < N; y++) {

for(int xo = 0; xo < N/M; xo++) {
#pragma HLS pipeline II=1

for(int xi = 0; xi < M; xi++) {
int x = xo*M + xi;
ap_fixed<8,4> acc = 0;
ap_fixed<8,4> in = image[y][x];
buf.shift_up(x);
buf.insert_top(in, x);
window.shift_left();
for(int r = 0; r < 2; r++)

window.insert(buf.getval(r,x), i, 2);
window.insert(in, 2, 2);
if (y >= 2 && x >= 2) {

for(int r = 0; r < 3; r++) {
for(int c = 0; c < 3; c++) {

acc += window.getval(r,c) * kernel[r][c];
}}
out[y-2][x-2] = acc;

}}}}

Algorithm#1
Compute Customization

Algorithm#2
Data Type Customization
Memory Customization

Algorithm#3

Entangled hardware 
customization and algorithm
• Less portable
• Less maintainable
• Less productive

Corresponding C code (transformed)

Source: Pr. Zhiru Zhang, Cornell
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How To Reduce Development Cost and Increase Correctness?

Ø Definition: Program Equivalence (in this talk):
Two programs A and B are said to be equivalent if they both 
compute the exact same expressions for every output memory cells 
written out, that is for every variable that is not local to the program.

§ If we can unambiguously determine (decide) that program A is equivalent to 
program B = transfo(A), then the transformation(s) have been correctly 
implemented and no bug was introduced.

§ Alternate approach: translation validation
§ Keep track of the series of elementary transformations implemented, ensure the 

sequence preserve semantics

Main idea: prove the transformed program 
is equivalent to the original program
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Why Transformed Programs May Be Incorrect
♦ You may transform the code with a correct/legal transformation, but the tool you 

use to implement the transformation may be buggy
§ Research compilers are often developed without rigorous testing practice
§ Tools ok for a publication may not mean tools ready for production use

§ Well, even production compilers are buggy!

♦ The generated program after a transformation may not implement correctly that 
transformation
§ Bug in the compiler, or anywhere else in the process
§ Ideally, check correctness “as late as possible” in the process, once as much 

transformations as feasible have been applied

♦ A designer used a tool to get a first transformed program, then manually edited it 
further (typical case in HW design)
§ Bug is introduced by the user!



69

import heterocl as hcl

r = hcl.reduce_axis(0, Q)
out = hcl.compute((P, R),

lambda x,y:hcl.sum(alpha *    
A[x,r]*B[r,y],axis=r))

s’ = hcl.create_schedule([A,B],gemm)
s’[out].reorder(out.axis[1],out.axis[0])
s’[out].pipeline(out.axis[1])
s’[out].unroll(1)

Verification Tasks for HeteroCL Program Correctness

import heterocl as hcl

r = hcl.reduce_axis(0, Q)
out = hcl.compute((P, R),

lambda x,y:hcl.sum(alpha *    
A[x,r]*B[r,y],axis=r))

s = hcl.create_schedule([A,B],gemm)

out = F(A, B)

out’ = G(A, B)
G = reorder➝pipeline➝unroll

for(x = 0; x < P; ++x){
for(y = 0; y < R; ++y) {

out[x][y] = 0.000000e+00f;
for(r = 0; r < Q; ++r)

out[x][y] +=(A[x][r]*1.5)*B[r][y];
}}

Task 1 Task 2

#pragma ii 1
for(y = 0; y < R; ++y){

#pragma unroll
for(x = 0; y < P; ++x) {

for(x1 = 0; x1 < 1; ++x1)
sum = 0.000000e+00f;

for(r = 0; r < Q; ++r)
sum =(A[x][r]*1.5)*B[r][y]+sum;

out[x][y] = sum;}}

O1

O2

Is O2 functionally equivalent to O1 ?Does G model F?

Source: Dr. Debjit Pal, Cornell
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import heterocl as hcl

r = hcl.reduce_axis(0, Q)
out = hcl.compute((P, R),

lambda x,y:hcl.sum(alpha *    
A[x,r]*B[r,y],axis=r))

s = hcl.create_schedule([A,B],gemm)
Algorithm 

specification

Extract affine 
schedule (S)

7 5
0  0  0  0  0  ## 0
0  1  0  0  0  ## x
0  0  0  0  0  ## 0
0  0  1  0  0  ## y
0  0  0  0  0  ## 0
0  0  0  1  0  ## x1
0  0  0  0  0  ## 0

Algo. spec + 
customization

import heterocl as hcl

r = hcl.reduce_axis(0, Q)
out = hcl.compute((P, R),

lambda x,y:hcl.sum(alpha *    
A[x,r]*B[r,y],axis=r))

s’ = hcl.create_schedule([A,B],gemm)
s’[out].reorder(out.axis[1],out.axis[0])
s’[out].pipeline(out.axis[1])
s’[out].unroll(1)

4 5
0  0  0  0  0  ## 0
0  1  0  0  0  ## y
0  0  0  0  0  ## 0
0  0  1  0  0  ## x

Convert 
primitives to 

affine schedule 
(S’)

Construct 
polyhedral model 

Solve ILP for 
violations

Yes: Customization primitives 
violates semantics

No: Customization primitives 
preserve semantics
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Analyze array 
dataflow

Formulate 
dependence 

violation as ILP

Checking Compute Customizations in HCL

♦ Typically compute customizations are loop transformations => can be represented as 
change of iterations schedule, and be verified “immediately”  (a few milliseconds)

♦ Ability to quickly display sets of valid customizations (10’s to 100’s to check only)
♦ Better approach: build the convex set of legal (affine) schedules [POPL11-PLDI19] directly 
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Program Equivalence with Hybrid Concrete-Abstract Interpretation
(unpublished yet)

Ø Program equivalence is a fundamental problem in modern computer science
Ø Need to ensure code transformations and optimizations are correct (environments are the same)
Ø Hardware design verification involves assessing the semantics of programs (equivalence)
Ø The cost of errors can be dramatic, and errors are often silent

Ø Program equivalence is more decidable than you think
Ø Combining partial evaluation, concrete interpretation of the control- and data-flow of the program, symbolic 

CDAG computation and tree isomorphism we can build a powerful program equivalence system
Ø Our system is limited to what it can compute: information on loop bounds, etc. may be needed. 

Typically, our proof is valid for a particular problem size, the process needs to be repeated for every 
concrete problem sizes needed.

Ø Our system can prove equivalence irrespective of how the control/data flow is implemented, 
provided it is statically computable using concrete interpretation.

Ø Many “basic” equivalences, (e.g., based on valid rewrite rules), are not recognized
Ø Possible solution by using deep learning techniques for pathfinding (Kommrusch et al.)
Ø Implement symbolic normalization of CDAGs?

Program Equivalence is Decidable for a large class 
of interesting programs, under reasonable assumptions
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Going Crazy… some example!
#pragma pocc-region-start liveout A,B,C,alpha,beta

P=32*32;
int n = P/4;
int q = n/72+43*35-n*P;
P = 1 + q/100000000;
int N = 9+P; P--;
float myqueue[2]; int queue_first = 1;
myqueue[0] = 0;
for (int i = 0; i < N; i++) {

int loop_lower_bound = 42/51 *  (123/456);
int confusing_bound = 1;
for (int j = loop_lower_bound; confusing_bound; j++) {

myqueue[0] = beta;
myqueue[1] = myqueue[0];
myqueue[0] = 0;
C[i + 2*P][j] *= myqueue[queue_first];
int k = 0;
if (k >= 0)

k+= 1;
do {

int tmp_jval = j + 1 + N;
tmp_jval -= N;
tmp_jval--;
float tmp_mul = A[i][k-1] * B[k-1][tmp_jval];
C[i][j] += tmp_mul * alpha;
k++;

}
while (k-1 < N);
// correct:
confusing_bound = (j+1 < N) && confusing_bound;
// Off-by-1:
// confusing_bound = (j < N);

}    }
#pragma pocc-region-end

#pragma pocc-region-start liveout A,B,C,alpha,beta
int N = 10;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {
C[i][j] *= beta;
for (k = 0; k < N; k++)

C[i][j] += A[i][k] * B[k][j] * alpha;
}

#pragma pocc-region-end

?

?
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Going Crazy… some example!
#pragma pocc-region-start liveout A,B,C,alpha,beta

P=32*32;
int n = P/4;
int q = n/72+43*35-n*P;
P = 1 + q/100000000;
int N = 9+P; P--;
float myqueue[2]; int queue_first = 1;
myqueue[0] = 0;
for (int i = 0; i < N; i++) {

int loop_lower_bound = 42/51 *  (123/456);
int confusing_bound = 1;
for (int j = loop_lower_bound; confusing_bound; j++) {

myqueue[0] = beta;
myqueue[1] = myqueue[0];
myqueue[0] = 0;
C[i + 2*P][j] *= myqueue[queue_first];
int k = 0;
if (k >= 0)

k+= 1;
do {

int tmp_jval = j + 1 + N;
tmp_jval -= N;
tmp_jval--;
float tmp_mul = A[i][k-1] * B[k-1][tmp_jval];
C[i][j] += tmp_mul * alpha;
k++;

}
while (k-1 < N);
// correct:
confusing_bound = (j+1 < N) && confusing_bound;
// Off-by-1:
// confusing_bound = (j < N);

}    }
#pragma pocc-region-end

#pragma pocc-region-start liveout A,B,C,alpha,beta
int N = 10;
for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {
C[i][j] *= beta;
for (k = 0; k < N; k++)

C[i][j] += A[i][k] * B[k][j] * alpha;
}

#pragma pocc-region-end

$> ./bin/pocc -t --tc-orig-file dgemm-original.c --tc-trans-file 
dgemm-transformed.c --tc-liveout-vars "A,B,C,alpha,beta" --quiet
[PoCC] Verify equivalence of programs by abstract interpretation.
[PoCC] YES => Programs dgemm-original.c and dgemm-
transformed.c are equivalent.
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Custom memory
(Reuse buffers)

Example: convolution

Another Example of Equivalence: Hardware Description

N = 512;
for (int y = 0; y < N; y++)

for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * kernel[r, c]

Custom compute
(Loop tiling)

Custom data type
(Quantization)

#pragma HLS array_partition variable=filter dim=0
N=512; M=32;
hls::LineBuffer<3, N, ap_fixed<8,4> > buf;
hls::Window<3, 3, ap_fixed<8,4> > window;
for(int y = 0; y < N; y++) {

for(int xo = 0; xo < N/M; xo++) {
#pragma HLS pipeline II=1

for(int xi = 0; xi < M; xi++) {
int x = xo*M + xi;
ap_fixed<8,4> acc = 0;
ap_fixed<8,4> in = image[y][x];
buf.shift_up(x);
buf.insert_top(in, x);
window.shift_left();
for(int r = 0; r < 2; r++)

window.insert(buf.getval(r,x), i, 2);
window.insert(in, 2, 2);
if (y >= 2 && x >= 2) {

for(int r = 0; r < 3; r++) {
for(int c = 0; c < 3; c++) {

acc += window.getval(r,c) * kernel[r][c];
}}
out[y-2][x-2] = acc;

}}}}

Algorithm#1
Compute Customization

Algorithm#2
Data Type Customization
Memory Customization

Algorithm#3

Entangled hardware 
customization and algorithm
• Less portable
• Less maintainable
• Less productive

Corresponding C code (transformed)

Two programs proved equivalent!
L.-N. Pouchet and Z. Zhang. Verifying Domain-Specific Optimization in HeteroCL using Polyhedral Analysis. Intel Strategic 
Research Alliance, 2020-2023
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Building a System for Automatic Program Equivalence

♦ When interpretation succeeds, our system can prove equivalence of programs 
(original and transformed) where:
§ Any iteration reordering transformation (eg, loop transformations, but way beyond this 

class also) was applied
● Loop permutation, loop tiling, fusion, distribution, etc.

§ “Any” control-flow implementation of the program
● while loops, for loops, recursive calls, obfuscated induction variables, etc.

§ “Any” local storage implementation of the program
● Scalarization, array expansion, local buffer insertion, etc.

♦ When interpretation fails, it cannot prove anything
§ Parametric loop bounds are not handled, we typically target a tile in a tiled code. 

Handling parametric loop bounds may be done in some cases, e.g.:
Verdoolaege, Sven, Gerda Janssens, and Maurice Bruynooghe. "Equivalence checking of static affine programs using 
widening to handle recurrences." ACM Transactions on Programming Languages and Systems (TOPLAS) 34, no. 3 (2012)
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Ø Polyhedral Compilation is more than Affine Scheduling
Ø It is about representing programs to extract detailed semantics, but also representing data,

and machine, accurately
Ø Scheduling for performance remains a key problem, contributions needed!

Ø Any program/data made of integer tuples can be represented as a union of 
polyhedra
Ø … because a single point is a polyhedron. But efficiency/usefulness is unlikely
Ø Need for effective algorithms to compress these points into polyhedral

Ø Hardware designs are often the result of affine transformations
Ø Can represent some hardware optimization in the polyhedral model, enabling quick 

verification and correctness checking
Ø When the algorithm implemented is also polyhedral in nature, complex program equivalence

can be proved, and properties transferred across implementations

Ø There is so much more I have not covered, go read the literature now J

Thank you J

Conclusion


