Sparse Tetris

Reconstructing Sparse Matrices with Polyhedra

Gabriel Rodríguez Louis-Noël Pouchet

13th International Workshop on Polyhedral Compilation Techniques, IMPACT 2023 Toulouse, FR, January 16th, 2023

Motivation

- Sparse data structures are central to scientific computing:

■ Graph processing, neural net inference after weight pruning, etc.

- In order to save storage space and computations, sparse representation formats have been introduced, e.g., COO:


```
1 row_idx = [0,0,0,0,2,3]
2 col_idx = [1, 2,3,4,3,1]
3 data = [ .. ]
```


Motivation

- Index arrays can be compressed to reduce storage footprint, e.g., CSR:

- Many different compression schemes are possible, e.g., DIA, CSC, BCRS, CDS, etc.

Motivation

■ Index arrays can be compressed to reduce storage footprint, e.g., CSR:

$$
\begin{aligned}
& 1 \begin{array}{ll}
1 & \text { row_ptr }
\end{array}=[0,4,4,5,6] \\
& 2 \\
& 3 \\
& \text { col_idx }
\end{aligned}=[1,2,3,4,3,1]
$$

■ Many different compression schemes are possible, e.g., DIA, CSC, BCRS, CDS, etc.

Core idea

- Encode sparsity structure as convex polyhedra.

$$
\{i, j \mid(i=0 \wedge 1 \leq j \leq 4) ;(i=2, j=3) ;(i=3, j=1)\}
$$

An application: SpMV

■ Typically, code is generic for any sparsity structure, e.g., CSR:

```
for (i = 0; i < nrows; i++)
    for (j = pos[i]; j <= pos[i+1]; j++)
        y[i] += A[j] * x[cols[j]];
```

- Data-specific codes (DSCG) ${ }^{1}$: program specialized for sparse structure:

${ }^{1}$ [T. Augustine et al. Generating Piecewise-Regular Code from Irregular Structures. PLDI19]

An Application: SpMV

Motivation

Figure: M. Horro et al. Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations. PACT 2022.
■ Good performance demonstrated for SpMV-DSCG codes.

- Ad-hoc vectorization can be used to push the limits of the technique.

Sparse-Polyhedral Format

■ In previous work, the polyhedral description was attached to a CSR file.

- The CSR data vector was NOT reordered.

■ Need to find regularity over three streams:

```
row_idx = [0,0,0,0,2,3]
col_idx = [1,2,3,4,3,1]
data_idx = [0,1,2,3,4,5]
```

```
1 for (j = 1; j <= 4; j++)
2 y[0] += A[j-1] * x[j];
3 y[2] += A[4] * x[3] ;
4 y[3] += A[5] * x[1];
```


Sparse-Polyhedral Format

Informal specification

■ Encode sparsity as polyhedra.

- A matrix is a dictionary of shapes, including:
- Dimensionality.

■ Shape encoding (rectangle, vertices, ISL).

- List of origins.
- Pointer to start of data in reordered data array.

■ Need to find regularity over two streams only.

```
row_idx = [0,0,0,0,2,3]
col_idx = [1,2,3,4,3,1]
data_idx = [0,1,2,3,4,5]
```

Finding polyhedra in sparsity

Finding polyhedra in sparsity

Mining for

Finding polyhedra in sparsity
Mining for
regularity
Mining for regularity

Finding polyhedra in sparsity

Finding polyhedra in sparsity

Finding polyhedra in sparsity

Two complementary approaches

Trace compression

■ Find multidimensional polyhedra that generate a sequence of points.
■ Fewer pieces, higher dimensionality, irregular.
■ Leads to smaller codes with inefficient loops.
e.g., Ketterlin \& Clauss, CGO08; Rodríguez et al., CGO16.

Pattern-matching

■ Pre-defined set of patterns of interest.
■ Matching applied over entire sparse structure.
■ Many pieces, regular, predefined dimensionality.
■ Leads to larger codes with no loops, just SIMD (for 1-d pieces).
■ Can be fused into higher dimensional, regular pieces.

Finding polyhedra in sparsity
Pattern-matching

Finding polyhedra in sparsity
Pattern-matching

Finding polyhedra in sparsity
Trace reconstruction
Mining for
regularity
Mining for regularity

Finding polyhedra in sparsity
Trace reconstruction

Finding polyhedra in sparsity
Trace reconstruction

Finding polyhedra in sparsity
Hybrid approach
Mining for
regularity
Mining for regularity

Finding polyhedra in sparsity
Hybrid approach
Mining for
regularity
Mining for regularity

Finding polyhedra in sparsity
Hybrid approach

Finding polyhedra in sparsity
Hybrid approach

Finding polyhedra in sparsity

Hybrid approach

■ Sparse-polyhedral format captures 99.9\% of the sparsity structure as polyhedra.
■ Each polyhedron captures 101.35 data points on average.

- 726674 NNZs.

■ 7170 polyhedra.
■ 2-dimensional reconstruction: increasing does not provide benefit.

- Storage size:

■ Dense: 84 GiB

- DIA size: 25 GiB

■ CSR size: 8.89 MiB (2.77 MiB data, 6.12 MiB sparsity structure)
■ SPF size: 5.64 MiB (2.77 MiB data, 2.87 MiB sparsity structure)
■ Compression ratio: 1.58 (2.13 on sparsity structure).

Experimental Setup

Matrix selection

Experimental results

Compression

Experimental results

Compression

Experimental results

Compression

Challenges and remarks

■ Problem is (most likely :-)) NP-complete: merging points into a piece affects the selection of other pieces.

- Shape selection driven by target:
- Compression.

■ Kernel-specific approaches (e.g., data locality).
■ Domain-specific approaches (e.g., typical shapes).

- Hardware-specific approaches (e.g., SIMD).

■ Code generation approach for sparse linear algebra.
■ Extensive study on 200+ matrices demonstrates potential benefits.
■ Applications of the polyhedra-over-CSR representation have demonstrated good performance.

Sparse Tetris

Thank you for your time!

Gabriel Rodríguez Louis-Noël Pouchet

13th International Workshop on Polyhedral Compilation Techniques, IMPACT 2023 Toulouse, FR, January 16th, 2023

