Algebraic Tiling

Clément Rossetti Philippe Clauss

ICube ICPS, Inria Camus, University of Strasbourg, France

Impact 2023
January 16th, 2023

Loop Tiling

A powerful \& well-known loop optimising transformation

- to improve data locality
- to adjust the grain of parallelism

However

- What about load balancing among threads/cores?
- Tile sizes have huge impact over performance

Loop Tiling

- Workload imbalance and partial tiles issues

Example : program syr2k (polybench) onto 5 parallel threads

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++ \text {) } \\
& \text { for }(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++ \text {) } \\
& \text { for }(k=0 ; k<M ; k++) \\
& C[i][j]+=A[j][k] * a l p h a * B[i][k] \\
& +B[j][k] * \text { alpha*A[i][k]; }
\end{aligned}
$$

Loop Tiling

- Load imbalance \& partial tiles issues Example : syr2k (polybench) among 5 parallel threads

$$
\begin{aligned}
& \text { for (it=0; it }<=(N-1) / 32 ; i t++)\{ \\
& \text { for (} \mathrm{jt}=0 \text {; } \mathrm{jt}<=\mathrm{it} ; \mathrm{j} \mathrm{t}+\mathrm{+} \text {) \{ } \\
& \text { for }(k t=0 ; k t<=(M-1) / 32 ; k t++) \text { \{ } \\
& \text { for (} \mathrm{i}=32 * \mathrm{it} \text {; } \\
& \mathrm{i}<=\min (\mathrm{N}-1,32 * \mathrm{it}+31) ; \mathrm{i}++)\{ \\
& \text { for } \quad(j=32 * j t \text {; } \\
& j<=\min (\mathrm{i}, 32 * j \mathrm{t}+31) ; \mathrm{j}++ \text {) \{ } \\
& \text { for (} k=32 * k t \text {; } \\
& \mathrm{k}<=\min (\mathrm{M}-1,32 * \mathrm{kt}+31) ; \mathrm{k}++ \text {) \{ } \\
& \mathrm{C}[\mathrm{i}][\mathrm{j}]+=\mathrm{A}[\mathrm{j}][\mathrm{k}] * \operatorname{alpha*B[i][k]} \\
& +\mathrm{B}[\mathrm{j}][\mathrm{k}] * \text { alpha*A[i][k]; }
\end{aligned}
$$

Loop Tiling

- Load imbalance \& partial tiles issues Example : syr2k (polybench) among 5 parallel threads
\#pragma omp parallel for private (jt,kt,i,j,k)
for (it=0; it $<=(N-1) / 32 ; i t++)\{$
for ($\mathrm{jt}=0$; $\mathrm{jt}<=\mathrm{it} ; \mathrm{j} \mathrm{t}++$) \{
for $(k t=0 ; k t<=(M-1) / 32 ; k t++)\{$ for ($\mathrm{i}=32 * \mathrm{it}$;

$$
\mathrm{i}<=\min (\mathrm{N}-1,32 * \mathrm{it}+31) ; \mathrm{i}++)\{
$$

for ($\mathrm{j}=32 * \mathrm{j}$;

$$
\mathrm{j}<==\min (\mathrm{i}, 32 * \mathrm{j} \mathrm{t}+31) ; \mathrm{j}++)\{
$$

for ($k=32 * k t$;

$$
k<=\min (M-1,32 * k t+31) ; k++)\{
$$

$$
C[i][j]+=A[j][k] * \text { alpha*B[i][k] }
$$

$$
+\mathrm{B}[\mathrm{j}][\mathrm{k}] * \operatorname{alpha*} * \mathrm{~A}[\mathrm{i}][\mathrm{k}] ;
$$

Algebraic Tiling

- New approach based on tiles volumes (vs sizes)
\Longleftrightarrow dynamic tile sizes to reach a given volume
- Promotes load balancing and data locality
- adapted for nested parallelism: load-balancing at each depth
- Subject to the same conditions as classic tiling (data dependencies, vectorization, ...)

Algebraic Tiling

- Slices of quasi-equal volumes

Example : syr2k (polybench) among 5 parallel threads

$$
V_{0} \simeq V_{1} \simeq V_{2} \simeq V_{3} \simeq V_{4}
$$

Algebraic Tiling

- Why " \simeq " ?

- If targeted slice of $\mathrm{N}+\mathrm{k}<\mathrm{N}+5$, select either N or $\mathrm{N}+5$

Ehrhart Polynomials

Definitions

Ehrhart polynomial of a polytope P

Exact number of points in the intersection of...

- A finite convex polyhedron (polytope) and a regular grid of points, dilated by a factor N (classic math point of view)
- A polytope depending linearly on an unknown parameter N and the grid of integer points of \mathbb{Z}^{p}
\Rightarrow Ehrhart polynomial of one variable N

Ehrhart Polynomials

Definitions

Multi-variate Ehrhart polynomial

Extension to any number of parameters N_{1}, N_{2}, \ldots

- Intersection of a polytope depending linearly on several parameters N_{1}, N_{2}, \ldots and the grid of integer points of \mathbb{Z}^{p}
\Leftrightarrow Exact number of integer points that are inside a polytope which depends linearly on several parameters
\Rightarrow Multi-variate Ehrhart polynomial of variables N_{1}, N_{2}, \ldots

Ehrhart Polynomials

Ranking Ehrhart Polynomials

Position (or rank) of an integer point

- Inside a polytope
- whose integer points are ranked following the lexicographic order

$$
(i, j) \leq_{\text {lex }}\left(i^{\prime}, j^{\prime}\right) \text { if }\left\{\begin{array}{l}
i<i^{\prime} \\
\text { or } \\
i=i^{\prime} \text { and } j \leq j^{\prime}
\end{array}\right.
$$

Trahrhe Expressions

Inverse problem

- Given a rank of an integer point in \mathbb{P}, what are its integer coordinates?
\Rightarrow Inverting the ranking polynomial
- Let p be a rank and $R(I)$ be the ranking polynomial \Rightarrow solve the equation $R(I)=p$ whose unknown is I
- Find the inverse function $R^{-1}(p)=T(p)$
$=$ a sequence of algebraic expressions $t_{1}(p), t_{2}(p), \ldots$
= Trahrhe expressions

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

$$
\left\lfloor\frac{\sqrt{8 M p c+M^{2}-8 M}-M}{2 M}\right\rfloor
$$

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

- floating-point operations

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

- floating-point operations
- requiring sufficient precision

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

- floating-point operations
- requiring sufficient precision
- in order for the floor to be correct

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

- floating-point operations
- requiring sufficient precision
- in order for the floor to be correct
- at least long double variables

Algebraic Tiling

- trahrhe_i (pc) ? Computation of a Trahrhe Expression
$=$ value i for which there exist j and k such that: at iteration $(i, j, k), p c$ iterations have been run
- trahrhe_i (pc) expression for syr2k loop nest:

- floating-point operations
- requiring sufficient precision
- in order for the floor to be correct
- at least long double variables
- multi-precision arithmetic for some cases

Algebraic Tiling

syr2k (polybench)

```
i_pcmax = i_Ehrhart(N, M); /* Loop Trip Count */
TILE_VOL_L1 = i_pcmax / DIV1; /* Outermost Slices' Targeted Volume */
ubit = DIV1 - 1; /* Number of Outermost Slices */
#pragma omp parallel for firstprivate(i_pcmax, TILE_VOL_L1) \
    private(i, j, k, lbi, ubi, lbj, ubj, jt, ubjt, j-pcmax, TILE_VOL_L2)
for (it = 0; it <= ubit; it++) { /* Loop Scanning the Outermost Slices */
    lbi = trahrhe_i (max(it*(TILE_VOL_L1+1),1),N,M); /* bounds of the it th slice */
    ubi = trahrhe_i(min((it+1)*(TILE_VOL_L1+1), i_pcmax),N, M) - 1;
    if (it = = ubit) ubi = N-1; /* last slice adjustment */
    j_pcmax = j_Ehrhart(N, M, lbi, ubi); /* Loop Trip Count of the current outermost slice */
    TILE_VOL_L2 = j_pcmax/DIV2; /* Tiles' Targeted Volume */
    ubjt = DIV2 - 1; /* Number of Tiles in the current slice */
    for (jt = 0; jt <= ubjt; jt++) { /* Loop Scanning the Tiles */
        lbj = trahrhe_j (max (jt*(TILE_VOL_L2+1),1),N,M, lbi,ubi); /* bounds of the jt th tile */
        ubj = trahrhe_j (min((jt+1)*(TILE_VOL_L2+1), j_ pcmax) ,N,M,Ibi,ubi) - 1;
        if (jt = = ubjt) ubj = ubi; /* last tile adjustment */
        for (i = max(0,lbi); i <= min(N - 1,ubi); i++) { /* inner tile loop */
            for (j = max(0,lbj ); j <= min(i, ubj); j++) { /* bounded by the tile bounds */
            for (k= 0; k<= M - 1; k++) {
            C[i][j] += A[j][k]*alpha*B[i][k] + B[j][k]*alpha*A[i][k];
                }
            }
    }
    } /* end for jt */
```


Implementation

Trahrhe software

- Trahrhe software
- Bash script and few C parsers
- Intensive use of
- Maxima : a free computer algebra system
- iscc : the interactive interface to the barvinok counting library
- Input : Iteration domain using isl syntax
e.g., $[\mathrm{N}, \mathrm{m}] \rightarrow\{[\mathrm{i}, \mathrm{j}, \mathrm{k}]$: $0<=\mathrm{i}<=\mathrm{N}-1$ and $0<=\mathrm{j}<=\mathrm{i}$ and $0<=\mathrm{k}<=\mathrm{M}-1\}$
- Compute trahrhe expressions and generate C header file containing the required functions

Implementation
 Pluto extension

- Experimental pluto integration:
- New --atiling option
- Algebraic bounds are described as parameters of the iteration domain
- Add tiling statements
- Calls trahrhe software
- Transparent, works like standard tiling

Experiments

Figure: Speed-ups resulting from comparing algebraic tiling vs standard tiling with non-vectorized codes (64 threads)

Experiments

Figure: Speed-ups resulting from comparing algebraic tiling vs standard tiling with vectorized codes (64 threads)

Conclusion

- General comments:
- Load balancing is crucial
- Dynamic tile sizes provide significant performance improvement
- Dynamic schedule becomes useless for polyhedral loops
- Further developments:
- Automatic number of slices per depths using an analytic model of memory accesses
- Investigate other applications of trahrhe expressions

Thank you!

