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Context and Motivation

Context

Legality is a key feature in most Polyhedral scheduling algorithms,
but :
o Initially, the Legality constraints on the scheduling coefficients
are non-linear constraints
o Farkas lemmal® is used to linearize the constraints

@ New variables " Farkas multipliers” are therefore introduced to
define the resulting linear system

1 Julius Farkas. “Theorie der einfachen Ungleichungen.”. In: Journal fiir die reine und angewandte Mathematik
(Crelles Journal) 1902.124 (1902), pp. 1-27. DOI: doi:10.1515/cr11.1902.12471:
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Context and Motivation

Motivation

Carrying Farkas multipliers as part of the scheduling problem is
problematic and inefficient :

@ We do not care about their values

@ They increase the number of variables in the linear system
considerably:
e The problem becomes Harder to solver for ILP solvers

e Longer compilation time

e Source of errors and risk of reliability

What is the best way to eliminate them 7!
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Existing Farkas Elimination Methods Fourier-Motzking-Elimination

Farkas multipliers elimination methods - FME

The idea of Fourier-Motzkin-Elimination:?
Given a system of inequalities with k + 1 variables, it possible to

obtain a system with k variables with no alteration to the solution
space (in R¥).

However, our system involves equalities and inequalities.
— Many ways to handle the equalities ¢; = 0:

@ Naive: ¢ >0/N\e <0 2n new inequalities
@ Smart: ¢ >0A> e <0 n+ 1 new inequalities

@ Leveraging the equalities to pre-eliminate some Farkas
multipliers by applying a series of linear combinations.
0 new inequalities

2George B. Dantzig and B. Curtis Eaves. “Fourier-Motzkin elimination and its dual”. In: Journal of
Combinatorial Theory, Series A 14.3 (1973), pp. 288-297. 1ssN: 0097-3165. DOI: (10x 10167 0097-3165 (73390004 =6.
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Existing Farkas Elimination Methods Cone Projection & Chernikova's Algorithm

Farkas multipliers elimination methods - Cone Projection

Projection using Cones and Chernikova’s algorithm:
It is possible to project Farkas multipliers from the system using
polyhedra and cone representatios with PolyLib3
@ The constraints are translated from the Matrix form
AX > B|CX = D to Cone from using rays and vertices.
@ The produced constraints are guaranteed to be minimal
e Chernikova's algorithms* is used to assure the minimality
(O(n®) complexity)

3Vincent Loechner. PolyLib: A library for manipulating parameterized polyhedra. 1999. URrL:
https://icps.u-strasbg.fr/polylib/ (visited on 2022).

4NV Chernikova. “Algorithm for Finding a General Formula for the Non-Negative Solutions of a System of Linear
Inequalities”. In: USSR Computational Mathematics and Mathematical Physics 5.2 (1965), pp. 228-233. DOI
10.1016/0041-5553(65)90045-5.
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Evaluation

Experimental setup

To determine which Farkas multipliers elimination method is the
best:

o We evaluated the 5 Farkas Elimination methods
Naive, Smart, Elimination, Fast_Elimination & ConeProjection
on 7500 Kernels (extracted from Deep Learning models from
MindSpore-Akg [2])

@ 5 distinct ILP solvers were used to eliminate the solver bias
[Piplib [6], Fpl [9], QiuQi, Cbc [7] & isl [10]]

@ More than 200 000 executions were performed on a 32 cores
Intel Xeon Silver 4215 CPU at 2.50GHZ

@ In a Pluto® style algorithm

5Uday Bondhugula et al. “A practical automatic polyhedral parallelizer and locality optimizer”. In: PLD/ '08:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation. Tucson
AZ, USA, June 2008, pp. 101-113. 1sBN: 978-1-59593-860-2. DOI: 10.1145/1375581+ 1375595.
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Evaluation Reliability and errors

Comparing the number of errors
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@ Cone_Projection is less reliable across all solvers
@ FME variations are equally the most reliable
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Evaluation
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(e) with QiuQi solver

Global scheduling-time

Comparing global scheduling-time
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(b) with FPL solver

@ Fast_Elimination is the fast elimination method just slightly

better.

@ Cone_Projection is x3 to x9 slower than Naive.

Why and how ?
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Evaluation ILP time

ILP solving time
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@ The influence of the number of constraints generated by the

different Farkas multipliers elimination methods is limited.
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Evaluation Farkas multipliers Elimination time

Farkas multipliers Elimination time
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@ The overhead of Cone_Projection makes is x20 slower than
other methods
@ Fast_Elimination > Smart > Elimination > Naive >>

Cone_Projection
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Conclusion
Conclusion

@ Pre-elimination of Farkas multipliers using explicit equalities
and no Cost function is the best strategy for all solvers

@ ConeProjection improves the ILP resolution time by 14%
(because constraints are minimal) but the overhead is too high
(x20 slower in Farkas Elimination) which makes is unusable in
practice

@ The Elimination method has very limited impact on ILP solving
time (14% improvement with minimal constraints & 2%
between FME variants)

e Optimizing Farkas multipliers Elimination method is key to
achieve efficient scheduling-time.
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Conclusion

Thank You !
Questions ?

5contact : gn_tchoulak@esi.dz
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