
A Polyhedral Compilation Library with
Explicit Disequality Constraints

Sven Verdoolaege
Cerebras Systems

Belgium
sven@cerebras.net

Abstract
Polyhedral libraries usually have no explicit support for dis-
equality constraints, requiring them to be encoded as a dis-
junction of inequality constraints instead. Every additional
disequality constraint then typically leads to a doubling of
the size of the representation. This paper shows how the isl
library can be extended to support disequality constraints
natively, allowing for a significantly reduced computation
time due to the more efficient representation.

1 Introduction
Several support libraries have been used and have often
even been specifically designed for polyhedral compilation.
This includes libraries focused on actual polyhedra, i.e., ra-
tional sets bounded by affine constraints, such as PolyLib
(Wilde 1993) and PPL (Bagnara et al. 2008), as well as libraries
focused on sets of integer tuples described by Presburger
formulas, such as Omega (Kelly, Maslov, et al. 1996), isl (Ver-
doolaege 2010), Omega+ (Chen 2012) and FPL (Pitchanathan et
al. 2021). All these libraries have an explicit representation for
equality constraints, even though this is strictly speaking not
required since an equality constraint 5 (x) = 0 can be repre-
sented as a pair of inequality constraints 5 (x) ≥ 0∧ 5 (x) ≤ 0.
They do this because equality constraints can be manipu-
lated more efficiently, while, moreover, each (non-redundant)
equality constraint reduces the effective dimension by one,
further improving efficiency.

A disequality constraint 5 (x) ≠ 0 can also be represented
as a pair of inequality constraints

5 (x) ≥ 1 ∨ 5 (x) ≤ −1. (1)

This means that again an explicit representation is not re-
quired, but it can also lead to improved efficiency. In particu-
lar, since the libraries mentioned above move disjunctions
out, each additional disequality constraint doubles the num-
ber of disjuncts in the outer disjunction, which can quickly
become unmanageable.

While there has been some attention for explicit disequal-
ity constraints in the related field of abstract interpretation,
see, e.g., Péron and Halbwachs (2007), they appear to have
been mostly ignored within the field of polyhedral compila-
tion. In particular, none of the libraries above support explicit

IMPACT 2024, January 17, 2024, Munich, Germany

for (int i = 0; i < n; ++i) {

if (i == p0 || i == p1 || i == p2)

continue;

A[i] = i;

}

for (int i = 0; i < n; ++i) {

if (i == p0 || i == p1 || i == p2)

continue;

B[i] = A[i];

}

Listing 1.Motivating Example of Kulkarni and Kruse (2022)

disequality constraints. Seater andWonnacott (2005) describe
an (unimplemented) algorithm for detecting inert disequality
constraints, i.e., those that can safely be ignored, but the “ert”
disequality constraints would still cause exponential behav-
ior. They do suggest that an alternative approach would be to
allow explicit disequality constraints, but do not provide any
details on the implications. The present paper provides such
details. A PBDD (Kulkarni and Kruse 2022) is an alternative
representation for polyhedra using decision diagrams that
allows for an efficient representation of negations, including
specifically negations of equality constraints, i.e., disequality
constraints. Intersection, union, subtraction and complement
operations can be performed directly on this representation.
For other operations, the implementation relies on isl.

Disequality constraints typically appear when a set satis-
fying an equality constraint is subtracted from some other
set. This can happen during dependence analysis (Seater and
Wonnacott 2005) or even in the representation of statement
instance sets such as in Listing 1, adapted from Kulkarni
and Kruse (2022), which they report commonly happens in-
side Polly (Grosser, Größlinger, et al. 2012). Klebanov (2015)
provides another example based on Meng and Smith (2011),
which is, essentially, to count the number of elements in the
set

{ [r1] } ∪ { [r2] } ∪ { [r3] } ∪ { [r4] } ∪ { [r5] } ∪ { [r10] },

with r1, r2, r3, r4, r5, r10 symbolic constants. This is a trivial
problem in terms of counting, but not in terms of represent-
ing the result, since the count depends on the number of the
symbolic constants that are equal to each other. Even with

1

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

explicit disequality constraints, it takes nearly 2s to compute,
but without, it takes nearly 2min because there are many
more cases to consider.

This paper describes how isl can be adjusted to support
explicit disequality constraints. In order to be able to explain
the modifications, some details about the base implementa-
tion are provided, i.e., the one without such support. Only
the ≠ -paragraphs should be considered as contributions of
this paper. No claim is made that the base implementation is
as efficient as possible, but it should be a reasonable starting
point. Most of the algorithms of this base implementation
have later also been reused in FPL.

2 Internal Representation
In isl, a set is represented as a union of basic sets of the
form
{ x : ∃" , # : �1n +�2x +�3" +�4# + a ≥ 0 ∧

= b(�1n + �2x + �3" + �4# + b)/dc }, (2)

where all matrices have integer elements, the division by d
is performed row-wise and �4 is strictly lower triangular so
that no V8 is defined in terms of itself or a later V 9 . The " are
called (proper) existentially quantified variables, while the
are called integer divisions. Together, they form the local
variables. As explained in Section 1, the description (2) may
also involve explicit equality constraints. The basic sets in a
union may overlap, but some operations (e.g., the counting
of Section 4.5) require the basic sets to be disjoint, which can
be achieved using set subtraction (Section 4.2). The integer
tuple x may be missing from the description to represent
constraints on only the symbolic constants, or it may be
split up into a pair of tuples x → y to represent a binary
relation on tuples. The tuples can also be named and nested,
while tuples with different names and/or sizes can appear
in the same (union) set (Verdoolaege 2011), but this is not
important for the present paper.
If the coefficients of a constraint have a non-trivial com-

mon divisor 6, then it is factored out. For inequality con-
straints, the constant term 0 is tightened to b0/6c. For equal-
ity constraints, the constant terms needs to be a multiple of
6 as well. Otherwise, the set is marked empty. Note that this
normalization implies that if a constraint only involves a
single symbolic constant or variable, then it has coefficient 1
or −1.

Besides sets and binary relations, isl also has object types
representing functions.The basic type is that of a quasi-affine
function, mapping the symbolic constants by themselves or
in combination with some set variables to some rational
value. It is called quasi-affine because it may involve integer
divisions similar to those of (2) (but no proper existentially
quantified variables). A piecewise quasi-affine function con-
sists of a subdivision of the domain into disjoint cells, each
represented by an isl set, with a quasi-affine function at-
tached to each cell. The function value at a given point is the

function value of the quasi-affine function attached to the
cell containing the point. It is undefined if there is no such
cell.
There are various constructors for sets, including one

called non_zero_set, which takes a quasi-affine function
5 and returns the set where this function is non-zero. In
the base isl implementation, this constructor returns a set
consisting of two disjuncts, one with 5 ≥ 1 and one with
5 ≤ −1.

≠ . The description of a basic set (2) can now also have ex-
plicit disequality constraints�z+ c ≠ 0, with z = (n, x," , #)
grouping the symbolic constants and all variables, i.e.,

{ z2 : ∃z3, z4 : �z+a ≥ 0∧�z+ c ≠ 0∧ z4 = b(�z + b)/d)c }.

If the constant term of a disequality constraint is not a mul-
tiple of the common divisor of the coefficients, then the con-
straint is simply dropped. The non_zero_set constructor
now returns a single-disjunct set with constraint 5 ≠ 0.

2.1 Parallel Constraints
Various simplifications are performed on the constraint rep-
resentation, including Gaussian elimination using the equal-
ity constraints as well as the removal of duplicate constraints.
If, after Gaussian elimination, an inequality constraint is sim-
plified to 0 ≥ 0, with 0 a constant, then the constraint is
dropped if 0 is non-negative and the basic set is marked
empty if 0 is negative. If there are two inequality constraints
5 (z) + 01 ≥ 0 and 5 (z) + 02 ≥ 0, then only the one with
the smallest constant term is kept. Similarly, if there are two
inequality constraints 5 (z) + 01 ≥ 0 and −5 (z) + 02 ≥ 0,
then if 01 + 02 < 0, the basic set is marked as empty. If
01 + 02 = 0, the pair of inequality constraints is replaced by
an equality constraint. Otherwise, if there is some existen-
tially quantified variable U8 with a coefficient 58 in 5 that is
greater than 01 + 02, then U8 can only attain the single value
U8 = b(−5 ◦ (z) + 02)/58c, with 5 ◦ (z) = 5 (z) − 58U8 , and U8 is
turned into an integer division, provided the constraint on
�4 is not violated.

≠ . If a disequality constraint is simplified to 0 ≠ 0, with 0
a constant, then the constraint is dropped if 0 is not zero and
the basic set is marked empty if 0 is zero. A disequality con-
straint can only be removed based on some other disequality
constraint if the two are completely identical. However, if
there is a disequality constraint 5 (z) +01 ≠ 0 and an inequal-
ity constraint 5 (z) + 02 ≥ 0, then the disequality constraint
can be dropped if 02 < 01. If 02 = 01, then the inequality
constraint can first be replaced by 5 (z) +02−1 ≥ 0. Similarly
for the same disequality interpreted as −5 (z) − 01 ≠ 0

3 Incremental LP Solver
Many operations in isl rely on an incremental LP solver
based on the description of Detlefs et al. (2005).

2

A Polyhedral Compilation Library with
Explicit Disequality Constraints IMPACT 2024, January 17, 2024, Munich, Germany

3.1 Tableau
The incremental LP solver operates on a representation of
a basic set called a tableau. In its basic form, no distinction
is made between symbolic constants, variables and local
variables, so that description (2) simplifies to { z : �z+0 ≥ 0 },
where each integer division V = b(�z + 1)/3c is encoded as
�z + 1 − (3 − 1) ≤ 3V ≤ �z + 1. Let

f = �z + a (3)

and let z and f be of sizes< and = respectively. Both z and
f are considered tableau variables. The only difference is
that the f variables are marked as being non-negative. The
tableau is essentially an = × (< + 1) matrix that defines =
of the tableau variables in terms of the other <, with an
extra column for the constant term. In principle, the entries
in the tableau are rational numbers, but isl maintains a
single shared denominator for all the entries in a row so that
the numerators are all integers. The variables that appear
in columns are called the column variables. Initially, these
are the variables z, but this can change as described below.
Similarly for the variables in the rows. When the column
variables are assigned the value zero, the value of the the row
variables is given by the constant column. This assignment is
called the sample value of the tableau and can easily be read
off. A tableau is in a valid state if the sample value is non-
negative for all non-negative variables. If a tableau is not in
a valid state, then pivots can be performed until a valid state
is reached, where each pivot interchanges a row variable and
a column variable. In essence, the row that defines the row
variable in terms of the column variables is used to define
the selected column variable in terms of the row variable
and the remaining column variables and this definition is
plugged into the remaining rows. The details of which row
and column variable to interchange are beyond the scope of
this paper. If no valid state can be reached, then the tableau
(as well as the set it represents) is empty. (Note that this
particular tableau representation has no specific notion of
an objective function. If one is needed, it is just added as a
row with a variable that is not marked non-negative.)
Any variable corresponding to an equality constraint is

moved into a column and then this column is killed, meaning
that the variable is assigned the fixed value zero and that the
column is (effectively) removed.

A tableau is a representation of a rational set. If a tableau
can be put into a valid state, then the set has rational ele-
ments, but not necessarily integer elements. However, if the
sample value of a valid tableau happens to consist of integer
values for all of the original set variables z, then these entries
form an element of the set and the set is non-empty. Such
a sample value is considered valid. Note that due to (3), the
variables f will also have integer values.

Additional row variables can be added to the tableau after
its initial creation. An undo stack keeps track of this addition,
along with any conclusion that was drawn after the addition

of the constraint so that they can all be undone when the
tableau is reverted to the state before the addition. For ex-
ample, some non-zero variables may have been determined
to be redundant, some variables may have been determined
to be zero or the tableau may have been determined to be
empty. If no undo stack has been set up, then the rows cor-
responding to redundant variables, as well as dead columns
are simply removed. Otherwise, they are preserved for a
potential later revival. However, these rows and columns are
ignored for pivot selection.

≠ . If there are =≠ disequality constraints in total, then
the tableau is extended with =≠ rows and =≠ variables g =

�z + c that are marked non-zero. A non-zero variable is
allowed to attain a zero sample value and is never selected
for pivoting. This means non-zero variables will always be
row variables. They are otherwise treated in the same way
as other (row) variables. Whenever a column is killed, the
non-zero variables with a zero sample value are inspected.
If any of them has only zero coefficients for the non-dead
columns, then the tableau is marked empty. A sample value
is only considered valid if, besides having integer values for
the original set variables, it also has non-zero values for all
non-zero variables.

3.2 Detecting Implicit Equality Constraints
Some of the inequality constraints may actually be equal-
ity constraints when combined with other inequality con-
straints. They can be detected by iterating through all non-
negative variables that have a sample value smaller than 1
and checking if they can attain a value greater than or equal
to 1 through pivoting. If not, a new row variable is added
that is opposite to the given non-negative variable. By defi-
nition, this new variable cannot attain positive values. If it
cannot attain the value zero either, the tableau is marked
empty. Otherwise, it is moved into a column and the column
is killed.

3.3 Detecting Redundant Constraints
If, when a non-negative variable is first added or during
pivoting, a non-negative row variable is seen to be the sum
of a non-negative sample value and a non-negative combi-
nation of only non-negative variables, then this variable is
automatically marked redundant.
Non-negative variables can also be explicitly tested for

being redundant as follows. Temporarily ignoring the non-
negative character of a given variable, the tableau checks if
it is possible to attain a sample value smaller than or equal
to −1 through pivoting, without violating the other (non-
redundant) non-negative variables. If not, the corresponding
constraint is redundant since it can only attain non-negative
values at integer points.

3

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

≠ . The detection of redundant non-negative variables is
not affected by the addition of disequality constraints, but the
corresponding non-zero variables could also be redundant.
If the sample value of a non-zero variable is zero, then the
variable is not redundant. If it is negative, then an attempt
is made to attain a non-negative sample value. If this fails,
the constraint is redundant. Similarly, if the sample value is
positive, then an attempt is made to attain a non-positive
sample value. If this fails, the constraint is again redundant.

3.4 Detecting Redundant Local Variables
Projecting out a variable itself is a trivial operation as it
simply involves existentially quantifying the variable, i.e.,
moving it from x to " in (2). However, isl performs various
simplifications on a set description, including the detection
of redundant local variables.
The procedure for detecting redundant local variables is

similar to part of the Omega test (Pugh 1991). Consider all
pairs of lower and upper bounds on a given local variable
U in a given disjunct (2). If each such pair is such that there
is at least one integer value between the bounds, then U

can safely be eliminated (using Fourier-Motzkin) without
introducing any other (integer) values for the other variables.
This includes the case where there are only lower bounds or
only upper bounds since then there are no pairs of lower and
upper bounds. Consider a pair=lU+ 5 l ≥ 0 and −=uU+ 5 u ≥ 0
with =l, =u ≥ 0 and 5 l, 5 u not involving U . Let 6 = gcd(=l, =u),
<l = =l/6 and <u = =u/6. Then <u 5 l ≤ <u<l6U ≤ <l 5 u,
or, equivalently (since <G ≤ <5 is equivalent to <G ≤
<5 + (< − 1)),

−<u 5 l − (<u − 1) ≤ <u<l6U ≤ <l 5 u + (<l − 1). (4)

If(
<l 5 u + (<l − 1)

)
−
(
−<u 5 l − (<u − 1)

)
+ 1 ≥ <u<l6 (5)

holds, then there is at least one integer value of U satisfy-
ing (4). If =l = 1 or =u = 1, then (5) is automatically satisfied
since it is then equivalent to the rational elimination of U
from the two constraints. If<l 5 u−<u 5 l = 0, then (5) involves
only numerical constants and can be directly evaluated. Oth-
erwise, condition (5) is evaluated in the tableau of the dis-
junct. For example, for ~ in (= { [G, I] : ∃~ : G ≤ ~ ≤ I },
condition (5) has the form I−G +1 ≥ 1, which holds in (and
the description can be simplified to (= { [G, I] : G ≤ I }.

≠ . In the presence of disequality constraints, it is not
sufficient to have a gap that holds at least one integer value
since that integer value may not satisfy one of the disequality
constraints. However, for any value of the other variables, a
given disequality constraint can only invalidate a single value
of the local variable. Let =≠ be the number of disequality
constraints involving U . Condition (5) can be replaced by(
<l 5 u + (<l − 1)

)
−
(
−<u 5 l − (<u − 1)

)
+1 ≥ (1+=≠)<u<l6

to ensure that elimination is still performed correctly, with
the elimination of a local variable causing all disequality
constraints involving that variable to be removed as well.
For (′ = { [G, I] : ∃~ : G ≤ ~ ≤ I ∧ ~ ≠ 0 }, the modified
condition is I − G + 1 ≥ 2, which is not valid on the entire (′.
That is (′ ≠ { [G, I] : G ≤ I }. In particular, [0, 0] ∉ (′. On the
other hand, { [G] : ∃~ : 0 ≤ ~ ≤ 9 ∧ ~ ≠ G } = { [G] } since
0− (−9) + 1 ≥ 2. Still, in general, the presence of disequality
constraints reduces the opportunity for detecting redundant
local variables.

3.5 Emptiness and Sampling
Emptiness of a basic set is determined by looking for an
element satisfying the constraints, i.e., a sample. If no sample
can be found, the set is empty. First, an attempt is made to
write the basic set as a Cartesian product of lower-dimension-
al sets (Verdoolaege and Bruynooghe 2008, Section 7). Each
of these lower-dimensional sets is then handled separately.
Zero- and one-dimensional sets have a trivial solution. A
zero-dimensional set has an integer point if and only if it is
rationally non-empty. A one-dimensional set has either no
constraints, in which case any value will do, a single equality
constraint, which fixes the single variable to a single (integer)
value, or one or two inequality constraints, in which case a
value saturating an inequality constraint can be chosen. Note
that in a one-dimensional set all constraints are parallel, so
that redundant and conflicting constraints are automatically
removed (see Section 2.1).
Next, the bounded dimensions are separated from the

unbounded dimensions. This is achieved by computing the
recession cone of the set (, i.e., the set bounded by all equality
and inequality constraints with the constant terms replaced
by zero. The (implicit) equality constraints of the recession
cone (as computed in Section 3.2) determine the bounded
directions. Let =′ ≤ = be the number of linearly indepen-
dent equality constraints and let =′′ = = − =′. A unimodular
transformation moves these =′ directions into the first di-
mensions z′. The problem is then decomposed into sampling
a bounded =′-dimensional set (′, defined by the constraints
not involving the unbounded dimensions z′′, and sampling
an =′′-dimensional cone obtained by plugging in the sample
value (if any) for the bounded dimensions.

To find a sample in a bounded set, a backtracking search
is performed. In each level, the minimal and maximal ratio-
nal values are determined in a given direction and then all
integer values in between are considered, fixing the value
for lower levels by killing a column in the tableau. Note that
there may be no such integer values, in which case the pro-
cedure backtracks immediately. This happens in particular if
fixing a value causes the tableau to become empty. The direc-
tions in which to search are determined by generalized basis
reduction (Cook et al. 1993). As soon as an integer sample is
found, either because some intermediate state of the tableau

4

A Polyhedral Compilation Library with
Explicit Disequality Constraints IMPACT 2024, January 17, 2024, Munich, Germany

has a valid sample or because the lowest level of the search
has been reached, the search is terminated.

As soon as a sample value s′ of (′ has been found, the orig-
inal set is known to be non-empty. In fact, if =′′ > 0, it will
have an infinite number of integer points. It is just a matter
of selecting one of them. Plugging in s′ in the unimodularly
transformed original set yields a polyhedron (′′ in the z′′
variables. Pick a rational point r′′ in (′′, e.g., by reading it
off from the corresponding tableau. If this happens to be
an integer point, a sample of (′′ has been found. Otherwise,
consider the (unimodularly transformed) recession cone, pro-
jected onto the final =′′ dimensions and shifted to r′′, which
forms a subset of (′′. If the recession cone is defined by
�z′′ ≥ 0, then the shifted cone is defined by �z′′ ≥ �r′′.
In order not to have to scale the coefficients to handle the
denominator of r′′, this affine cone can be further restricted
to �′′ = { z′′ : �z′′ ≥ d�r′′e }. Let) be the cone of elements
t such that the entire unit cube at t lies inside �′′, i.e.,

) = { t : ∀� ⊆ N≤=′′ : t +
∑
8∈�

e8 ∈ �′′ }, (6)

with N≤=′′ the natural numbers smaller than or equal to
=′′ and e8 the unit vectors in the space. The constraints of
) are all shifted copies of those of �′′. In particular, for a
constraint � 9z ≥

⌈
� 9 r′′

⌉
of �′′, the shifted copies are � 9z ≥⌈

� 9 r′′
⌉
−∑

8∈� 0 98 of�′′. The most restrictive of these shifted
copies is

� 9z ≥
⌈
� 9 r

′′⌉ − ∑
8:0 98<0

0 98 (7)

and the constraints of the form (7) are therefore sufficient to
define) . Now take any rational point t in) . By (6), s′′ = dte
is an element of �′′ and therefore of (′′. Concatenating s′

and s′′ and unimodularly transforming the result back to the
original space yields a sample of (.

≠ . Disequality constraints are ignored during the con-
struction of the recession cone. Disequality constraints in-
volving unbounded dimensions are left out of the description
of the bounded set, just like the other constraints involving
unbounded dimensions.These are the “inert” disequality con-
straints of Seater and Wonnacott (2005). They do not affect
emptiness, but they do affect the sample value when the
full-dimensional cone is sampled. During the search in the
bounded set, the remaining (ert) disequality constraints are
ignored, except for their effect on the interpretation of a valid
sample and on the killing of columns, potentially resulting
in an empty tableau during the search.
The original procedure for sampling (′′ may happen to

pick a point that lies on one of the =≠ inert disequality con-
straints. The cone) is therefore further restricted to a cone
that contains the base points of hypercubes of size 1 + =≠

rather than just 1. That is, the constraints (7) are replaced by

� 9z ≥
⌈
� 9 r

′′⌉ − (1 + =≠)
∑

8:0 98<0

0 98 . (8)

The disequality constraints are sorted based on the position
of their last non-zero coefficient. If s′′ = dte happens to lie on
one or more of the disequality constraints, then one with the
smallest position of the last non-zero coefficient is picked and
s′′ is incremented at that position. A disequality that has been
handled in this way never needs to be reconsidered because
s′′ will only be incremented at the same or a later position.
Incrementing the same position only moves the point further
away from the disequality constraint. Incrementing a later
position does not affect the disequality constraint at all. This
process needs to be repeated at most =≠ times and because
of (8), the entire sequence of points lies in �′′.
An alternative approach would be to break up the dise-

quality constraints on-the-fly. In the worst case, this results
in 2=

≠ subsets, but only a single subset would be active at
any time and the search can be terminated as soon as a sam-
ple has been found in any of the subsets. Furthermore, if all
subsets are empty, in which case all 2=≠ would have to be
considered, the emptiness is likely to be discovered early on
so that large pieces of the search tree could be cut. However,
the modifications to the original implementation described
above seemed easier to implement.

3.6 Scanning
Scanning iterates over all integer points in a (bounded) set. It
applies the same procedure as sampling a bounded set from
Section 3.5, except that the search is not terminated when a
sample has been found.

≠ . Scanning is unaffected by disequality constraints as
long as no hidden assumptions are made that only apply
to convex sets. In particular, in the absence of disequality
constraints, at the innermost level, all integer values between
the minimal and maximal rational value are in the set, but if
there are any disequality constraints, then the tableau may
be empty for some of those values.

3.7 Hull Operations
While isl provides a convex hull operation, it is rarely used
in practice since it is very much an operation on rational
sets and tends to result in constraints with large coefficients.
The “simple” hull provides an alternative and consists of only
constraints that already appear in the original set description,
possibly shifted by a constant. This simple hull may then of
course be much larger than the convex hull. The (integer)
affine hull is computed by starting from and an initial (un-
der)approximation, typically a single sample point, looking
for a sample that violates any of the equality constraints
defining the current approximation and then updating the
approximation with this sample using the procedure of Karr
(1976) until no more outside samples can be found.

≠ . The computation of the convex hull is unaffected
and ignores disequality constraints. The computation of the

5

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

affine hull is also unaffected, except for the changes to the
sampling procedure of Section 3.5. For example, consider the
set { [G,~] : −1 ≤ G + ~ ≤ 1 ∧ −1 ≤ G − ~ ≤ 1 ∧ G ≠ 0 }.
An initial sample point could be { [1, 0] }, i.e., { [G,~] : G =

1∧~ = 0 }. No sample points in the original set can be found
satisfying ~ < 0, ~ > 0 or G > 1. Only G < 1 yields a new
sample point, { [−1, 0] }, and the approximation is updated to
{ [G, 0] }. This is the final affine hull since no further sample
points can be found satisfying~ < 0 or~ > 0. As a side-effect
of the affine hull computation, the description of the original
set is simplified to { [G, 0] : −1 ≤ G ≤ 1 ∧ G ≠ 0 }.

The simple hull computation requires a bit more thought
since this operation is defined in terms of the representation
of the set and it is not immediately obvious how to extend
that to disequality constraints. Two sensible options are to
either ignore disequality constraints or to only preserve dis-
equality constraints that are valid in all disjuncts. The first
option seems the safest since some users may be assuming
that the result is convex (in its local variables). However,
the operation is sometimes “abused” to turn a set with a
single disjunct into an object of type basic set. In this case,
the disequality constraints of that single disjunct should be
preserved, so a separate operation has been added to perform
the type conversion.

3.8 Coalescing
Coalescing consists of replacing a pair of disjuncts by a single,
equivalent disjunct (Verdoolaege 2015). As a trivial example,
{ [G] : 0 ≤ G ≤ 10 } ∪ { [G] : 5 ≤ G ≤ 15 } can be replaced
by the single disjunct { [G] : 0 ≤ G ≤ 15 }. Coalescing is im-
plemented in isl by first determining the relation between
a disjunct and the constraints of the other disjunct and then
handling different patterns, possibly combined with some
further validity checks. In particular, a constraint of one dis-
junct may be valid for the other disjunct (i.e., redundant
as in Section 3.3), it may separate the second disjunct from
the first (i.e., it may be invalid for the entire disjunct), or
it may cut the second disjunct (i.e., be valid for only part
of this disjunct). For certain patterns, some special cases of
separation are also considered, but these are not relevant
here. One of the more trivial patterns is where all constraints
of one disjunct are valid for the other disjunct. In this case,
the second disjunct is a subset of the first and the pair can
be replaced by just the first disjunct.
A disjunct that involves (proper) existentially quantified

variables is not considered for coalescing. Disjuncts involv-
ing integer divisions are handled, but only if the two disjuncts
have the same integer divisions or if they can easily be made
to be the same.

≠ . The type of a disequality 5 ≠ 0 is determined as
follows. If the corresponding equality 5 = 0 conflicts with
the other disjunct, i.e., adding the equality makes the tableau
empty, then the disequality 5 ≠ 0 is considered valid for this

other disjunct. If, on the other hand, the equality 5 = 0 is a
linear combination of the equality constraints of the other
disjunct, then the disequality 5 ≠ 0 is considered to separate
the other disjunct. Otherwise, the disequality is considered
to cut the other disjunct.
If any disequality constraint of either disjunct cuts the

other disjunct, then the two disjuncts are not coalesced. If
all disequality constraints of both disjuncts are valid for the
other disjunct, the coalescing is performed as before. The
only minor adjustment is that the disequality constraints are
also taken into account if the two disjuncts are replaced by
a single disjunct with constraints from both disjuncts. The
only new pattern is one where a single disequality constraint
5 ≠ 0 of disjunct � separates disjunct �, while all other
constraints of � are valid for �. The tableau of � is then
modified to represent a set �′ where 5 ≠ 0 is replaced by
5 = 0. Note that � ⊆ �′ because 5 ≠ 0 separates � and all
other constraints of � are valid for �. If all constraints of �
are valid in this tableau, i.e., also �′ ⊆ �, then the pair is
replaced by a single disjunct defined by all valid constraints
of � and �, i.e., those of �, except the disequality 5 ≠ 0. As
an example, consider the set

{ [G,~] : ~ ≥ −2G ∧ ~ ≥ 2G ∧ ~ ≠ 3 } ∪ { [−1:1, 3] }. (9)

The constraints ~ ≥ −2G and ~ ≥ 2G are valid for � =

{ [−1:1, 3] }, while ~ ≠ 3 separates �. The modified tableau
represents �′ = { [G, 3] : 3 ≥ −2G ∧ 3 ≥ 2G }. Note that no
tightening is performed in the tableau representation. Still,
the constraints G + 1 ≥ 0 and −G + 1 ≥ 0 are valid in this
tableau because they do not attain a value smaller than or
equal to −1.

4 Quantifier Elimination
The operations in this section require the removal of (proper)
existentially quantified variables, either because constraints
need to be transplanted from one set to another (e.g., set
subtraction of Section 4.2) or because local variables are
treated as regular variables and can only be allowed to at-
tain a single value to avoid overcounting in Section 4.5. In
theory the gist operation of Section 4.3 could simply ignore
constraints involving existentially quantified variables, but
the isl implementation removes them instead.

The problem with existentially quantified variables is that
they can attain more than one value for fixed values of the
other variables and that these possible values depend on all
the constraints. In isl, they are removed by selecting one
particular value for them that can moreover be described as
a quasi-affine expression of the other variables. In particular,
parametric integer programming (Feautrier 1988) is used to
compute the (lexicographically) minimal value that can be at-
tained by these variables, as a function of the other variables.
This may result in a split of a disjunct into multiple disjuncts
and in the introduction of additional integer divisions, but it
will remove all existentially quantified variables.

6

A Polyhedral Compilation Library with
Explicit Disequality Constraints IMPACT 2024, January 17, 2024, Munich, Germany

4.1 Parametric Integer Programming
The isl implementation of parametric integer programming
uses essentially the same tableau of Section 3.1, but the
variables are split into two types: the parameters and the
optimization variables. The parameters always remain col-
umn variables, while the optimization variables can become
row variables through pivoting. For computing the (lexico-
graphic) minimum of a set, the symbolic constants are the
parameters, while the set variables (along with any local
variables) are optimization variables. For computing the min-
imum range element of a binary relation, both the symbolic
constants and the domain variables of the binary relation
are considered parameters. For quantifier elimination, the
symbolic constants and all tuple variables are parameters,
while the local variables are optimization variables. Integer
divisions that are defined in terms of only parameters can
also be considered parameters.
Similarly to Section 3.1, pivoting is based on the signs of

the row variables. However, in this case, the signs cannot
simply be read off from the sample value of the tableau. In-
stead, the sign is now determined by a parametric constant
term, i.e., an affine expression in the parameter, and the ques-
tion is then whether there are any values of the parameters
where this expression is negative or non-negative. A sep-
arate “context” tableau is maintained in terms of only the
parameters of the main tableau. An affine expression 5 (n)
can be non-negative if adding the constraint 5 (n) ≥ 0 to
the context tableau does not make it empty. In the original
piplib (Feautrier et al. 2007) implementation, emptiness of
the context tableau is performed through a non-parametric
lexicographic optimization. In isl, an incremental variant
of the procedure of Section 3.5 is used.

If the parametric constant term 5 (n) can attain both neg-
ative and non-negative values, then the context is split into
5 (n) ≥ 0 and 5 (n) ≤ −1 and a (possibly) different solution
is computed. This naturally leads to a decision tree with such
splits in the nodes and solutions in the leaves. In the isl
implementation, this is immediately converted to either a
set/binary relation representation or a piecewise quasi-affine
function.

When using parametric integer programming for quanti-
fier elimination, these splits, if there are any, cause the single
disjunct of which the existentially quantified variables are
eliminated to be split into multiple disjuncts. Extra integer
divisions can get introduced when the candidate solution is
non-integral and a parametric cut is introduced to cut away
some rational solutions (without cutting out any integral
solutions).
When the minimum of a set is computed that consists

of multiple disjuncts, then the minima of all disjuncts are
first computed individually and then combined. Feautrier
(1991) describes a procedure for combining decision trees.
In isl, a piecewise quasi-affine function representation is

computed for the minimum of each disjunct and pairs of
such functions are then successively combined into a single
function.This function is then optionally converted to a set or
binary relation. Given two piecewise quasi-affine functions
?1 (x) and ?2 (x), with =8 cells (89 with associated function 5 89 ,
the representation of the minimum has at most 2=1=2 cells,
half of which of the form (19 ∩ (2

:
∩ { x : 5 19 (x) 4 5 2

:
(x) }

with associated function 5 19 and the other half of the form
(19 ∩ (2

:
∩ { x : 5 19 (x) � 5 2

:
(x) } with associated function 5 2

:
.

≠ . If a disjunct involves any disequality constraint, then
the solution is computed in the form of a piecewise quasi-
affine function. Just as in Section 3.1, the tableau keeps track
of the disequality constraints in extra rows, updating them
when pivoting, but otherwise ignoring them until an integral
solution has been found in some subset of the original con-
text. Each disequality is then represented as 5 (n) +6(c) ≠ 0,
with c the current column variables. These column variables
are set to zero in the solution, so the disequality is violated if
5 (n) = 0. This constraint is evaluated in the context tableau.
If it can never hold, the original disequality is respected by
the current solution. Otherwise, the context is again split,
but now into 5 (n) ≠ 0 and 5 (n) = 0. In the first part the
disequality is satisfied and the other disequality constraints
are evaluated, potentially resulting in further splits. In the
second part, two separate solutions are computed, one where
5 (n) +6(c) ≠ 0 is replaced by 5 (n) +6(c) ≥ 1 and one where
it is replaced by 5 (n) + 6(c) ≤ −1. These two solutions are
then locally combined using the procedure above into a sin-
gle solution for the part 5 (n) = 0. The two cases are the same
as those of (1), but they are only considered if and when they
are needed.

4.2 Set Subtraction
Subtracting a set � =

⋃
8 �8 from a set � =

⋃
9 � 9 is per-

formed by successively subtracting the disjuncts of � from
those of �, where the disjuncts �8 and � 9 are basic sets.
Quantifier elimination is first applied to� so that the descrip-
tion of � can be assumed to be free of (proper) existentially
quantified variables. This means the constraints of �8 can be
evaluated in the context of � 9 . Each redundant constraint is
ignored since its negation conflicts with � 9 . The disjuncts
of the difference � 9 \ �8 correspond to the non-redundant
constraints 5: (z) ≥ 0. In particular, each disjunct is equal to
� 9 with an extra constraint 5: (z) ≤ −1. Since set subtraction
is also used to make the disjuncts of a set disjoint, the dis-
juncts of the difference are made disjoint by also adding the
constraints 5ℓ (z) ≥ 0 for all ℓ < : . An equality constraint is
treated as a pair of inequality constraints, with each leading
to an extra disjunct if it is individually non-redundant.
The same procedure is also used for checking if one set

is a subset of another, but the difference is not computed
7

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

completely. Instead, the computation is terminated as soon
as one of the pieces is determined to be non-empty.

≠ . A disequality 5 ≠ 0 in the description of �8 is consid-
ered redundant for � 9 if adding the constraint 5 = 0 makes
� 9 empty. A non-redundant disequality results in a disjunct
in the difference with 5 = 0 and is added to each subse-
quent disjunct in the difference. The handling of equality
constraints 6 = 0 is slightly modified when computing a
set difference. If both corresponding inequality constraints
are non-redundant for � 9 then they now result in a single
disjunct in the difference with extra constraint 6 ≠ 0, rather
than two disjuncts with extra constraints 6 ≥ 1 and 6 ≤ −1
respectively. When evaluating a subset relation, an equality
constraint continues to be treated as a pair of inequality con-
straints. This can lead to additional cases being considered,
but the extra cases are necessarily empty and are usually
obviously so.

4.3 Gist
The gist operation is based on that of Omega (Pugh and Won-
nacott 1995), where the gist of� given a context � is intended
to describe the extra information in � not already provided
by �. In essence, it is a set �′ such that �′ ∩ � = � ∩ � and
such that �′ has a description that is as “simple” as possible.
There are many possible such �′ and the isl implementa-
tionmainly tries to remove redundant constraints.Quantifier
elimination is applied to both � and � in order to be able
to compare their respective constraints. This means that the
final result of the gist may consist of more disjuncts than the
input. If, after quantifier elimination, � consists of multiple
disjuncts, then it is replaced by its simple hull so that redun-
dancy can be evaluated in the tableau of this single disjunct.
Some special cases have also been implemented such as one
where � ⊆ �, in which case the universe set is used for �′.

≠ . Care needs to be taken not to apply the simple hull
indiscriminately. That is, if the context consists of a single
disjunct already, then the disequality constraints should be
preserved. It could also be useful to preserve disequality con-
straints that are valid for all disjuncts. Another change is that
disequality constraints of � that are redundant with respect
to � are also removed using the mechanism of Section 3.3.

4.4 Transitive Closure
In general, the transitive closure of a binary relation cannot
be represented exactly using Presburger formulas (Kelly,
Pugh, et al. 1996). The isl implementation described by
Verdoolaege, Cohen, et al. (2011) always produces a result
that contains the exact transitive closure as a subset, along
with an indication of whether this is an approximation. Most
of the implementation applies operations to sets and binary
relations as a whole and only one part needs to consider
the constraint representation. This happens in particular in
the computation of (an approximation of) :(, with (some

single-disjunct set and : ≥ 1. Quantifier elimination is first
applied so that this representation does not involve proper
existentially quantified variables. If the constraints�x+a ≥ 0
of disjunct (do not involve any symbolic constants, then
the constraints of :(are �x + :a ≥ 0, : ≥ 1. Otherwise,
a case distinction is made. Constraints that do not involve
symbolic constants also have their constant terms multiplied
by : . Constraints that only involve symbolic constants are
simply copiedwithoutmodification. For any other constraint,
if the symbolic constant term is non-positive over (, then
the constraint is copied since that means that the linear
expression in the set variables is non-negative and therefore
: times the set variables will satisfy the same constraint.
Otherwise, the constraint is dropped from the approximation
of :(.

≠ . Since 5 ≠ 0 is just 5 ≥ 1∨ 5 ≤ −1, the same reasoning
can be applied to the two inequality constraints separately.
The conclusion (multiplying constant term by : or not) is
usually the same for both of them and can therefore be ap-
plied directly to the disequality constraint. Only the case of
a non-positive symbolic constant term cannot be applied di-
rectly. The symbolic constant term of the disequality would
need to only attain values between −1 and 1 for the cor-
responding terms of the inequality constraints to both be
non-positive. This case is therefore not currently considered
for disequality constraints. Note also that, in general, if the
transitive closure cannot be computed exactly, then breaking
up the input into subsets typically leads to more accurate
results. A single disjunct with a disequality will therefore
also typically lead to less accurate results than two disjuncts
with inequality constraints.

4.5 Counting
While isl does not currently support any counting itself, the
counting library barvinok (Verdoolaege, Seghir, et al. 2007)
does use isl for some set manipulations. This includes quan-
tifier elimination and then on each disjunct parameter and
variable compression (Meister 2004; Meister and Verdoolaege
2008) and decomposing the disjunct into a Cartesian prod-
uct of lower-dimensional sets (Verdoolaege and Bruynooghe
2008, Section 7). In particular, isl provides a function that
takes a basic set and a callback returning a piecewise quasi-
polynomial. The isl function calls the callback zero or more
times and combines the result, i.e., it multiplies the results
obtained for the factors in the Cartesian product.

≠ . The core counting algorithm in barvinok, i.e., the
callback mentioned above, does not know or even need to
know about disequality constraints. Instead, the isl function
handles the disequality constraints using a variant of the
inclusion-exclusion principle (Andreescu and Feng 2004).
For example, if (= (′ ∩ { x : 51 (x) ≠ 0 ∧ 52 (x) ≠ 0 }, then

card (= card (′ − card (′1 − card (′2 + card (′1,2
8

A Polyhedral Compilation Library with
Explicit Disequality Constraints IMPACT 2024, January 17, 2024, Munich, Germany

with (′8 = (′ ∩ { x : 58 (x) = 0 } and (′1,2 = (′ ∩ { x : 51 (x) =
0 ∧ 52 (x) = 0 }. If there are =≠ disequality constraints, then
there are 2=≠ cases to consider. Splitting up each disequality
constraint into a pair of inequality constraints would result in
the same number of cases. However, all but one of the cases
considered here are of a lower dimensionality since they
have one or more additional equality constraints. This means
computing the cardinality of these other cases is (much)
cheaper. Furthermore, some combinations of corresponding
equality constraints may conflict with each other and then
any case with additional equality constraints no longer needs
to be considered, cutting off a branch from the tree of cases.

5 Polyhedral Compilation
Most isl operations are generic operations on integer sets,
but some are more specific to polyhedral compilation. They
are briefly described in this section and are not heavily af-
fected by the presence of disequality constraints.

5.1 Scheduling
The support for scheduling in isl is described in detail by
Verdoolaege and Janssens (2017). The search for schedule co-
efficients is based on the collection of inequality constraints
that are valid for all points in a set.

≠ . Internal disequality constraints have no effect on the
collection of valid (affine) inequality constraints. Redundant
disequality constraints are removed in Section 3.3 and dise-
quality constraints that cut off an entire facet cause a tighten-
ing of the corresponding inequality constraint in Section 2.1.
It would also be possible to detect disequality constraints
5 ≠ 0 that are equivalent to either 5 ≥ 1 or 5 ≤ −1 given
the other constraints. This could be done in a way that is
similar to the detection of redundant disequality constraints.

5.2 AST generation
AST generation takes a schedule and generates an AST that
visits the scheduled elements in the order specified by the
schedule. The isl implementation is described by Grosser,
Verdoolaege, et al. (2015). While generating loops at a cer-
tain level, the inner schedule dimensions are projected out.
The strategy for breaking up the sets of values of the cur-
rent schedule dimension is selected through an option. The
“atomic” setting ensures that a single loop is generated for
each scheduled domain, “separate” means that each loop
executes a fixed set of scheduled domains (so that the body
is free of if-conditions) and “unroll” that each loop consists
of a single iteration. If the option is not specified explicitly,
then the sets of values are simply broken up into disjoint
subsets, with an effect that is somewhat similar to “separate”,
but without any guarantees. When using the atomic option,
a simple hull is computed and any constraints not covered
by this simple hull will get inserted as if-conditions in the
generated AST. At several points during the construction, a

for (int c0 = 0; c0 < n; c0 += 1)

if (c0 != p0 && c0 != p1 && c0 != p2) {

A[c0] = (c0);

B[c0] = A[c0];

}

Listing 2. Optimized Example

set not involving the inner schedule dimensions is split up
into a list of (disjoint) basic sets that then undergo further
processing, including sorting them in the scheduling order.

≠ . By default, disequality constraints involving the cur-
rent schedule dimension are removed when constructing
loops. The disequality constraints may then appear as if-
conditions in the generated AST, meaning that a new type
of operation representing != needs to be added to the AST
representation. If the separate option is specified, disequal-
ity constraints involving the current schedule dimension
are first split up into a disjunction of inequality constraints,
ensuring the body remains free of if-conditions. The same
split of disequality constraints is performed whenever a set
is split up into a list of basic sets. This removes disequality
constraints that get introduced through set subtractions and
ensures that the resulting basic sets continue to satisfy the
assumptions of the operations performed on them. In partic-
ular, it ensures that the basic sets can continue to be sorted
along the current schedule dimension.

6 Related Work
In terms of rational sets, Imbert (1993) considers negations of
systems of equality constraints to be able to support variable
elimination in the presence of negations of equality con-
straints. Péron and Halbwachs (2007) focus on disequality
constraints of the form G ≠ ~ or G ≠ 0 in the context of
difference-bound matrices. Ghorbal et al. (2012) propose an
abstract representation that is the difference of two convex
sets, i.e., a polyhedron with a hole. Kulkarni and Kruse (2022)
propose an alternative representation for (the integer points
in) a union of polyhedra consisting of a decision diagram
with constraints in the nodes. They support a more general
form of negation, i.e., not just the negation of an equality
constraint. However, they only support a limited number
of operations and do not support existentially quantified
variables. Seater and Wonnacott (2005) do consider general
Presburger sets, but focus on the detection of disequality
constraints that can be safely ignored.

7 Experiments
The changes described above have been implemented on

top of a development version of isl. Users of isl need lit-
tle to no modifications. The only change required for the
polyhedral model extractor pet (Verdoolaege and Grosser

9

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

0 2 4 6 8 10 12 14

10−1

100

Number of disequality constraints

Ti
m
e
in

se
co
nd

s

allow ≠

disallow ≠

Figure 1. Execution time of PPCG on variants of Listing 1

2012) is that one of the test cases is further simplified due to
a gist with a context involving a disequality. The polyhedral
code generator PPCG (Verdoolaege, Juega, et al. 2013) does
not require any adjustments to take the code in Listing 1 and
produce the code in Listing 2. Note that PPCG does not specify
the “separate” AST generation option and therefore allows
the AST generator to generate if-conditions inside loop
bodies. The code in Listing 1 has 3 disequality constraints.
Figure 1 shows the PPCG execution time when varying the
number of disequality constraints, both with support for dise-
quality constraints and without. Without explicit disequality
constraints, the representation of the statement instance sets
and derived information quickly grows out of control.

The use of explicit disequality constraints has not yet been
evaluated in the context of DTG (Verdoolaege, Kudlur, et al.
2020) because DTG has its own local isl changes, making
it more challenging to have it use the version of isl with
support for disequality constraints.

Figure 2 reproduces an experiment of Kulkarni and Kruse
(2022) building the set { [8] : ∧9≤=≠ 8 ≠ p9 } with PBDD using
islpy (Klöckner 2014) version 2023.2.5, which apparently
uses isl version 0.26. The same figure also shows the time
needed for the same construction using the development
version of isl, both with and without support for explicit
disequality constraints. Note that execution times between
the two pairs cannot be compared directly because PBDD has
been implemented in Python and because the underlying
version of isl is different. Note also that intersection in isl
implies an implicit emptiness check.

Figure 3 performs a similar experiment using lexicographic
minimization (Section 4.1) and cardinality (Section 4.5), op-
erations that are not (directly) supported by PBDD. Note
that the input set needs to be bounded for these opera-
tions to make sense, so the test set is first intersected with

0 2 4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

Number of disequality constraints

Ti
m
e
in

se
co
nd

s

isl, allow ≠

isl, disallow ≠

simplified PBDD
pure islpy

Figure 2. Iterative intersection of complement

1 2 3 4 5 6 7

10−4

10−3

10−2

10−1

100

101

102

Number of disequality constraints

Ti
m
e
in

se
co
nd

s

lexmin with ≠

lexmin no ≠

card with ≠

card no ≠

Figure 3. Lexicographic minimization and cardinality

{ [8] : 0 ≤ 8 < n }. In both cases, support for explicit dise-
quality constraints allows an extra disequality constraint to
be handled within the same time budget. The main limiting
factor here is the size of the result of the operation, which
would require more than disequality constraints to repre-
sent efficiently. Note, however, that such inputs represent
extreme cases that should be rare in practice.

8 Conclusion
This paper has shown that it is feasible to extend the internal
representation of isl with explicit disequality constraints
and to adjust all the operations supported by isl accord-
ingly, leading to significantly reduced computation times in
a realistic scenario. In future, it may be useful to consider
explicit representations of other constraint types that would
otherwise lead to disjunctions, e.g., lexicographic constraints.

10

A Polyhedral Compilation Library with
Explicit Disequality Constraints IMPACT 2024, January 17, 2024, Munich, Germany

A Prototype
The attached x86-64 ELF executable can be used to ex-
periment with the support for explicit disequality constraints,
by specifying or leaving out the --no-allow-disequality
option. Note that the executable bit may need to be turned
on after saving the attachment.

References
Andreescu, Titu and Zuming Feng (2004). “Inclusion-Exclusion
Principle.” In: A Path to Combinatorics for Undergradu-
ates: Counting Strategies. Boston, MA: Birkhäuser Boston,
pp. 117–141. doi: 10.1007/978-0-8176-8154-8_6.

Bagnara, Roberto, Patricia M. Hill, and Enea Zaffanella (2008).
“The Parma Polyhedra Library: Toward a Complete Set of
Numerical Abstractions for the Analysis and Verification
of Hardware and Software Systems.” In: Science of Com-
puter Programming 72.1–2, pp. 3–21. doi: 10.1016/j.scico.
2007.08.001.

Chen, Chun (June 2012). “Polyhedra scanning revisited.” In:
SIGPLAN Not. 47.6, pp. 499–508. doi: 10.1145/2345156.
2254123.

Cook, William, Thomas Rutherford, Herbert E. Scarf, and
David F. Shallcross (1993). “An Implementation of the Gen-
eralized Basis Reduction Algorithm for Integer Program-
ming.” In: ORSA Journal on Computing 5.2.

Detlefs, David, Greg Nelson, and James B. Saxe (2005). “Sim-
plify: a theorem prover for program checking.” In: J. ACM
52.3, pp. 365–473. doi: 10.1145/1066100.1066102.

Feautrier, Paul (1988). “Parametric Integer Programming.” In:
RAIRO Recherche Opérationnelle 22.3, pp. 243–268.

Feautrier, Paul (1991). “Dataflow analysis of array and scalar
references.” In: International Journal of Parallel Program-
ming 20.1, pp. 23–53. doi: 10.1007/BF01407931.

Feautrier, Paul, Jean François Collard, and Cédric Bastoul
(2007). PIP/PipLib: A Solver for Parametric Integer Program-
ming Problems.

Ghorbal, Khalil, Franjo Ivančić, Gogul Balakrishnan, Naoto
Maeda, and Aarti Gupta (2012). “Donut domains: efficient
non-convex domains for abstract interpretation.” In: Pro-
ceedings of the 13th international conference on Verification,
Model Checking, and Abstract Interpretation. VMCAI’12.
Philadelphia, PA: Springer-Verlag, pp. 235–250. doi: 10.
1007/978-3-642-27940-9_16.

Grosser, Tobias, Armin Größlinger, and Christian Lengauer
(2012). “Polly - Performing polyhedral optimizations on
a low-level intermediate representation.” In: Parallel Pro-
cessing Letters 22.04. doi: 10.1142/S0129626412500107.

Grosser, Tobias, Sven Verdoolaege, and Albert Cohen (July
2015). “Polyhedral AST generation is more than scanning
polyhedra.” In: ACM Transactions on Programming Lan-
guages and Systems 37.4, 12:1–12:50. doi: 10.1145/2743016.

Imbert, Jean-Louis (1993). “Variable elimination for disequa-
tions in generalized linear constraint systems.” In: The

Computer Journal 36.5, pp. 473–484. doi: 10.1093/comjnl/
36.5.473.

Karr, Michael (1976). “Affine Relationships Among Variables
of a Program.” In: Acta Informatica 6, pp. 133–151. doi:
10.1007/BF00268497.

Kelly, Wayne, Vadim Maslov, William Pugh, Evan Rosser,
Tatiana Shpeisman, and David Wonnacott (Nov. 1996).The
Omega Library. Tech. rep. University of Maryland.

Kelly, Wayne, William Pugh, Evan Rosser, and Tatiana Sh-
peisman (1996). “Transitive closure of infinite graphs and
its applications.” In: International Journal of Parallel Pro-
gramming 24.6, pp. 579–598. doi: 10.1007/BFb0014196.

Klebanov, Vladimir (2015). Personal communication.
Klöckner, Andreas (2014). “Loo.Py: Transformation-based
Code Generation for GPUs and CPUs.” In: Proceedings of
ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. ARRAY’14.
Edinburgh, United Kingdom: ACM, 82:82–82:87. doi: 10.
1145/2627373.2627387.

Kulkarni, Shubhang and Michael Kruse (June 2022). “Poly-
hedral Binary Decision Diagrams for Representing Non-
Convex Polyhedra.” In: 12th International Workshop on
Polyhedral Compilation Techniques (IMPACT 2022). Bu-
dapest, Hungary.

Meister, Benoît (Dec. 2004). “Stating and Manipulating Peri-
odicity in the Polytope Model. Applications to Program
Analysis and Optimization.” PhD thesis. Université Louis
Pasteur.

Meister, Benoît and Sven Verdoolaege (Apr. 2008). “Polyno-
mial Approximations in the Polytope Model: Bringing the
Power of Quasi-Polynomials to the Masses.” In: Digest of
the 6th Workshop on Optimization for DSP and Embedded
Systems, ODES-6. Ed. by Jagadeesh Sankaran and Tom
Vander Aa. doi: 10.5281/zenodo.10003255.

Meng, Ziyuan andGeoffrey Smith (2011). “Calculating Bounds
on Information Leakage Using Two-Bit Patterns.” In: Pro-
ceedings of the ACM SIGPLAN 6th Workshop on Program-
ming Languages and Analysis for Security. PLAS ’11. San
Jose, California: Association for Computing Machinery.
doi: 10.1145/2166956.2166957.

Péron, Mathias and Nicolas Halbwachs (2007). “An Abstract
Domain Extending Difference-Bound Matrices with Dise-
quality Constraints.” In: Verification, Model Checking, and
Abstract Interpretation. Ed. by Byron Cook and Andreas
Podelski. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 268–282. doi: 10.1007/978-3-540-69738-1_20.

Pitchanathan, Arjun, Christian Ulmann,MichelWeber, Torsten
Hoefler, and Tobias Grosser (Oct. 2021). “FPL: Fast Pres-
burger Arithmetic through Transprecision.” In: Proc. ACM
Program. Lang. 5.OOPSLA. doi: 10.1145/3485539.

Pugh, William (1991). “The Omega test: a fast and practical
integer programming algorithm for dependence analy-
sis.” In: Proceedings of the 1991 ACM/IEEE conference on

11

iscc (x86-64 ELF executable)

https://doi.org/10.1007/978-0-8176-8154-8_6
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/2345156.2254123
https://doi.org/10.1145/2345156.2254123
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/978-3-642-27940-9_16
https://doi.org/10.1007/978-3-642-27940-9_16
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/2743016
https://doi.org/10.1093/comjnl/36.5.473
https://doi.org/10.1093/comjnl/36.5.473
https://doi.org/10.1007/BF00268497
https://doi.org/10.1007/BFb0014196
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.5281/zenodo.10003255
https://doi.org/10.1145/2166956.2166957
https://doi.org/10.1007/978-3-540-69738-1_20
https://doi.org/10.1145/3485539

IMPACT 2024, January 17, 2024, Munich, Germany Sven Verdoolaege

Supercomputing. Albuquerque, NewMexico, United States:
ACM Press, pp. 4–13. doi: 10.1145/125826.125848.

Pugh, William and David Wonnacott (1995). “Going beyond
integer programming with the Omega test to eliminate
false data dependences.” In: Parallel and Distributed Sys-
tems, IEEE Transactions on 6.2, pp. 204–211. doi: 10.1109/
71.342135.

Seater, Robert and David Wonnacott (2005). “Efficient Ma-
nipulation of Disequalities During Dependence Analysis.”
In: Proceedings of the 15th International Conference on Lan-
guages and Compilers for Parallel Computing. LCPC’02.
College Park, MD: Springer-Verlag, pp. 295–308. doi: 10.
1007/11596110_20.

Verdoolaege, Sven (2010). “isl: An Integer Set Library for the
Polyhedral Model.” In: Mathematical Software - ICMS 2010.
Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and
Nobuki Takayama. Vol. 6327. Lecture Notes in Computer
Science. Springer, pp. 299–302. doi: 10.1007/978-3-642-
15582-6_49.

Verdoolaege, Sven (Apr. 2011). “Counting Affine Calculator
and Applications.” In: First International Workshop on Poly-
hedral Compilation Techniques (IMPACT’11). Chamonix,
France. doi: 10.13140/RG.2.1.2959.5601.

Verdoolaege, Sven (Jan. 2015). “Integer Set Coalescing.” In:
Proceedings of the 5th International Workshop on Polyhedral
Compilation Techniques. Amsterdam,TheNetherlands. doi:
10.13140/2.1.1313.6968.

Verdoolaege, Sven and Maurice Bruynooghe (July 2008). “Al-
gorithms for Weighted Counting over Parametric Poly-
topes: A Survey and a Practical Comparison.” In: The 2008
International Conference on Information Theory and Statis-
tical Learning. Ed. by Matthias Beck andThomas Stoll. doi:
10.5281/zenodo.10031041.

Verdoolaege, Sven, Albert Cohen, and Anna Beletska (2011).
“Transitive Closures of Affine Integer Tuple Relations and
Their Overapproximations.” In: Proceedings of the 18th In-
ternational Conference on Static Analysis. SAS’11. Venice,
Italy: Springer-Verlag, pp. 216–232. doi: 10.1007/978-3-
642-23702-7_18.

Verdoolaege, Sven and Tobias Grosser (Jan. 2012). “Polyhe-
dral Extraction Tool.” In: Second International Workshop
on Polyhedral Compilation Techniques (IMPACT’12). Paris,
France. doi: 10.13140/RG.2.1.4213.4562.

Verdoolaege, Sven and Gerda Janssens (June 2017). Schedul-
ing for PPCG. Report CW 706. Leuven, Belgium: Depart-
ment of Computer Science, KU Leuven. doi: 10.13140/RG.
2.2.28998.68169.

Verdoolaege, Sven, Juan Carlos Juega, Albert Cohen, José
Ignacio Gómez, Christian Tenllado, and Francky Catthoor
(2013). “Polyhedral parallel code generation for CUDA.”
In: ACM Trans. Archit. Code Optim. 9.4, p. 54. doi: 10.1145/
2400682.2400713.

Verdoolaege, Sven, Manjunath Kudlur, Rob Schreiber, and
Harinath Kamepalli (Jan. 2020). “Generating SIMD Instruc-
tions for Cerebras CS-1 using Polyhedral Compilation
Techniques.” In: 10th International Workshop on Polyhedral
Compilation Techniques (IMPACT’20). Bologna, Italy. doi:
10.5281/zenodo.4295955.

Verdoolaege, Sven, Rachid Seghir, Kristof Beyls, Vincent
Loechner, and Maurice Bruynooghe (June 2007). “Count-
ing integer points in parametric polytopes using Barvi-
nok’s rational functions.” In: Algorithmica 48.1, pp. 37–66.
doi: 10.1007/s00453-006-1231-0.

Wilde, Doran K. (1993). A Library for doing polyhedral opera-
tions. Tech. rep. 785. IRISA, Rennes, France, 45 p.

12

https://doi.org/10.1145/125826.125848
https://doi.org/10.1109/71.342135
https://doi.org/10.1109/71.342135
https://doi.org/10.1007/11596110_20
https://doi.org/10.1007/11596110_20
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.13140/RG.2.1.2959.5601
https://doi.org/10.13140/2.1.1313.6968
https://doi.org/10.5281/zenodo.10031041
https://doi.org/10.1007/978-3-642-23702-7_18
https://doi.org/10.1007/978-3-642-23702-7_18
https://doi.org/10.13140/RG.2.1.4213.4562
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.13140/RG.2.2.28998.68169
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.5281/zenodo.4295955
https://doi.org/10.1007/s00453-006-1231-0

	Abstract
	1 Introduction
	2 Internal Representation
	2.1 Parallel Constraints

	3 Incremental LP Solver
	3.1 Tableau
	3.2 Detecting Implicit Equality Constraints
	3.3 Detecting Redundant Constraints
	3.4 Detecting Redundant Local Variables
	3.5 Emptiness and Sampling
	3.6 Scanning
	3.7 Hull Operations
	3.8 Coalescing

	4 Quantifier Elimination
	4.1 Parametric Integer Programming
	4.2 Set Subtraction
	4.3 Gist
	4.4 Transitive Closure
	4.5 Counting

	5 Polyhedral Compilation
	5.1 Scheduling
	5.2 AST generation

	6 Related Work
	7 Experiments
	8 Conclusion
	A Prototype

