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Abstract
This paper describes a way to count instructions executed
by a loop nest, and assign a sequence number to each one of
them. It is restricted to a specific class of affine loop nests,
and uses an uncompromising representation of integer poly-
nomials, which is described in detail. The general focus is
on mathematical and algorithmic simplicity, searching for
easy to implement methods under acceptable restrictions.

1 Motivation
The polyhedral model establishes a correspondence between
sets of integer points delimited by hyperplanes and various
characteristics of affine loop nests, such as iteration domains,
all sorts of dependencies, or scheduling functions [5]. It ex-
cels at representing and transforming multi-dimensional
integer sets, and has been used extensively in a variety of
compilation tasks [8]. Much less studied are the quantitative
aspects of polyhedra and/or the corresponding loop nests.
Counting [1, 15] consists in determining a formula rep-

resenting the number of integer points inside a bounded
polyhedron, as a function of the parameters appearing in the
polyhedron’s description. The result can be used for com-
plexity analysis, to predict various types of performance
metrics, or as heuristics to guide optimization.
Ranking consists in assigning a unique, sequentially in-

cremented number to each integer point inside a bounded
polyhedron. As such, it only makes sense with respect to a
schedule, when the traversal order has been fixed. The rank-
ing function can be seen as a “flat” version of the schedule.
The inverse action, called unranking, transforms a sequential
index into a multi-dimensional iteration vector. It essentially
provides random access to instruction instances, or slices
thereof, for example for sampling or parallel execution.
The counting problem has been solved in a general poly-

hedral setting, in two different ways. Clauss [1], building
on work by Ehrhart, has formulated a solution producing
Ehrhart pseudo-polynomials, and Verdoolaege et al. [15],
building on work by Barvinok, have given a solution pro-
ducing step-polynomials. In both cases, the mathematical
concepts involved are far from trivial, the result has a (nec-
essarily) unusual form, and the algorithms are complex. De-
fined on top of counting, ranking also needs an additional
scheduling step, which often makes it application-specific.
Therefore, these remarkable scientific achievements have
found little application beyond counting.
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Our approach in this paper is to offer alternative counting,
ranking and unranking algorithms that are conceptually and
technically simple and allow lightweight and fast implemen-
tations. We achieve this by sacrificing generality. First and
foremost, the algorithms operate on loops, not unrestricted
polyhedra. Second, the general approach is similar in spirit
to that pioneered by Pugh [12] (which was also targeting
polyhedra, but was apparently never fully implemented). It
consists in considering an isomorphism between a loop nest
and an algebraic expression of the count of atomic instruc-
tions the loop nest executes. Counting a loop amounts to
translating it into a sum, in a syntactic way, and then apply-
ing algebraic manipulations to put the result in a form that
is suitable for further processing.

The running example in this paper is the Cholesky kernel
from the Polybench suite [11] version 3. It is shown below,
along with its translation into a counting expression (note
that, by convention, upper bounds are always excluded from
the iteration range):

for 𝑖 = 0 to 𝑛
∑𝑛−1

𝑖=0 (
S1 1
for 𝑗 = 0 to 𝑖 +∑𝑖−1

𝑗=0 (
S2 1)

S3 +1
for 𝑗 = 𝑖 + 1 to 𝑛 +∑𝑛−1

𝑗=𝑖+1 (
S4 1
for 𝑘 = 0 to 𝑖 +∑𝑖−1

𝑘=0 (
S5 1)

S6 +1))
After translation, the expression on the right-hand side can
be turned into whatever form is most convenient, typically
a polynomial. Once the counts (at all levels) are computed,
they serve as a basis to compute ranks, which in turn are
used for unranking.
This paper goes through the details of this process. Sec-

tion 2 lists the conditions a loop nest must respect for its
transformation into a sum to have a meaning, and briefly
explains how to enforce them. Section 3 introduces an exotic
representation of integer polynomials (not a representation
of exotic polynomials, for once); this representation makes
it easy to build sums like the above and transform them into
a standard form of multivariate polynomials. Section 4 de-
scribes counting, ranking, and unranking algorithms, and
gives detailed results for the previous example. The paper
ends by discussing the importance of the trade-offs conceded,
speculating on some applications, and pointing to a straight-
forward implementation of everything that is exposed.
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2 Simple Loops
We consider programs made only of loops and basic instruc-
tions, collectively called statements. Every loop has a lower
bound and an upper bound, and a body that is an arbitrary
(but non-empty) sequence of statements. A basic instruc-
tion will be represented by an identifier, and its details are
immaterial. A full program has a list of constant symbolic
parameters, a context, which is a set of conditions on the
values of the parameters, and a sequence of statements.

Variables are either parameters or loop counters. The
scope of a parameter is the entire program, while the scope
of a loop counter is the body of the loop that defines it. The
context is made of affine inequalities involving only the pa-
rameters. Loop bounds are affine expressions in the variables
in scope at the start of the loop. No integer function like min
or max, or any form of integer part, is allowed.

For the counting strategy outlined earlier to be valid, loops
have to respect certain criteria. Because loops are turned into
sums, there must be a perfect match between the operational
meaning of a loop and the mathematical semantics of the
resulting sum. Since we have adopted the convention that
loops iterate from their lower bound included to their upper
bound excluded, counting works by applying the rule:

for 𝑖=𝑙 to 𝑢 . . . ⇒ ∑𝑢−1
𝑖=𝑙

· · ·
This only makes sense if the input loop is simple, which here
means it respects the following validity constraints:

1. unit step: the loop counter is incremented by 1 from
one iteration to the next;

2. bounds coherence: every execution of the loop must
happen in a situation where 𝑙 ≤ 𝑢.

Bounds coherence essentially means that every instance of a
loop must “do something”. However, it also tolerates a loop
doing exactly nothing (when 𝑙 = 𝑢), thanks to a mathematical
peculiarity that makes a sum of the form

∑𝑎−1
𝑎 · · · resolve

to a meaningful result (namely, zero)—see Section 3.2. Such
unproductive loop instances are not rare in practice, because
they allow for simpler logic and shorter code; every single
inner loop of the Cholesky kernel in Section 1 has one.
The first constraint can be enforced syntactically by for-

bidding a non-unit iteration step. The second constraint how-
ever needs explicit verification, because it applies to every
instance of every loop. For instance, given:

for 𝑖=0 to 10
for 𝑗=0 to 5 − 𝑖

. . .

the loop on 𝑗 is invalid, because some of its instances are
absurd (those for 6 ≤ 𝑖 < 10).
Bounds coherence must be verified for each loop in the

program. For a given loop with bounds 𝑙 and 𝑢, both of
which being affine combinations of variables in scope, the
verification procedure proceeds by collecting the system of
inequalities that defines the problematic loop instances:

1. constraints on parameters (the context);
2. inequalities on the bounds of enclosing loops;
3. the inequality 𝑢 < 𝑙 , signaling an absurd instance.

This system of inequalities must then be proven false. In the
previous example, the system is {0 ≤ 𝑖, 𝑖 < 10, 5 − 𝑖 < 0}:
since this system has solutions, the loop is invalid. There
are many ways to perform this test: an easy one is repeated
Fourier-Motzkin elimination of variables and parameters
until false is inferred (or not), which may be inexact but
conservative.

Here is one last example illustrating the role of the context,
or absence thereof, about two parameters N and M:

for 𝑖=0 to 𝑁

for 𝑗=𝑖 to 𝑀

. . . 𝑖

M

First, the outer loop is invalid unless 𝑁 ≥ 0, and this condi-
tion (or a stronger condition on 𝑁 ) must appear in the con-
text. Second, testing the validity of the inner loop amounts
to testing the vacuity of {0 ≤ 𝑖, 𝑖 < 𝑁,𝑀 < 𝑖}, which after
elimination of 𝑖 leads to 𝑀 < 𝑁 − 1, from which the loop
is declared invalid in the absence of more context. Adding
𝑀 ≥ 𝑁 − 1 in the context would make the loop valid. Note
that when 𝑀 < 𝑁 − 1 actually holds, the outer loop needs
to be rewritten as “for 𝑖=0 to 𝑀 . . . ” to be considered
valid; there is no valid program covering both cases under
our definition of validity.

3 Integer Polynomials
It is known from previous work that the number of integer
points inside a polyhedron (or a union of polyhedra) can be
represented by a polynomial, or rather by some extended
representation, introducing either periodic numbers [1] or
making use of integer-parts [15]. This section shows that
counting simple loops does not require these extensions.
It also introduces an alternative representation of integer
polynomials (in general, not specific to counting), for the
sake of precision and simpler algebra.

3.1 Representation
A univariate integer polynomial is an integer-valued polyno-
mial in an integer variable. Integer polynomials suffer from
a representation mismatch when using “regular” powers
{𝑥𝑘 | 𝑘 ≥ 0}. Combining these monomials with integer coef-
ficients leads to an incomplete representation; for instance,
𝑥 (𝑥 − 1)/2 cannot be represented. Unfortunately, using ra-
tional coefficients leads to an incorrect representation; for
instance, 𝑥 (𝑥 − 2)/2 is not integer-valued.
We will use an alternative monomial basis {𝑥 𝑘 | 𝑘 ≥ 0}

instead, where 𝑥 𝑘 is defined as:

𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!
2
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We use this notation to emphasize the fact that binomial coef-
ficients, extended to negative 𝑥 , act as powers: 𝑥 𝑘 is defined
for any 𝑥 , and any non-negative 𝑘 . Additionally, 𝑥 𝑘 has a
myriad of properties associated with binomial coefficients,
the most important of which is Pascal’s identity:

(𝑥 + 1)𝑘+1 = 𝑥 𝑘 + 𝑥 𝑘+1
𝑘

𝑥

which also holds for negative 𝑥 [7, Eq. 5.14]. All binomial
powers reside in Pascal’s extended triangle; the figure shows
a graphical equivalent of the identity. The relation between
regular and binomial powers is known:

𝑥 𝑛 =
1
𝑛!

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
[
𝑛

𝑘

]
𝑥𝑘 𝑥𝑛 =

𝑛∑︁
𝑘=0

𝑘!
{
𝑛

𝑘

}
𝑥 𝑘

where
[
𝑛
𝑘

]
and

{
𝑛
𝑘

}
are the unsigned Stirling numbers of the

first and second kind. Regular powers will not be used further
here, nor will rational numbers. In the rest of this paper, the
term polynomial refers to combinations of binomial powers
with integer coefficients. (In mathematical parlance, regular
integer polynomials are representedwith their Newton series
expansion [7, Sec. 5.3], which is then used for all purposes.)
This representation is correct and complete for integer

polynomials. Correctness follows from the fact that only
integers are involved, but completeness requires a proof; we
sketch it here because it also forms the core of algebraic
manipulations described later in Section 3.4. Since integer
polynomials produce integer values, we need to prove that
any sequence of integers 𝑣0, . . . , 𝑣𝑛 can be produced by a
polynomial of appropriate degree under our definition. Not-
ing 𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥

1 + · · · + 𝑎𝑛𝑥
𝑛 , where coefficients 𝑎𝑖 are

unknown, the sequence of values is produced by 𝑝 (𝑥) if:
𝑣0 = 𝑝 (0) = 𝑎0

𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1 · 11

𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1 · 21 + 𝑎2 · 22

and so on until 𝑣𝑛 . Since 𝑖 𝑘 = 0 when 0 ≤ 𝑖 < 𝑘 this system
is triangular, and since 𝑖 𝑖 = 1 it always has a unique integer
solution. This proves completeness, in a constructive way:
the solution can be computed incrementally as:

𝑎0 = 𝑣0, 𝑎𝑖 = 𝑣𝑖 −
𝑖−1∑︁
𝑗=0

𝑎 𝑗 · 𝑖 𝑗 (𝑖 > 0)

or directly from the values as:

𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣 𝑗

where (−1) 𝑖− 𝑗 is used for consistency: it is equal to (−1)𝑖− 𝑗 .
The proof of the last set of equalities (omitted here) is a
simple induction using the previous, or by noting that the
initial system can be written ®𝑣 = P𝑛+1 ®𝑎, where P𝑛+1 is a
matrix whose lower triangular part is equal to the first 𝑛 + 1
lines of Pascal’s triangle and other elements are zero. The
solution is obtained by multiplying both sides by P−1

𝑛+1.

3.2 Sums of Powers and Polynomials
Counting loops requires addition and summation of polyno-
mials over an interval. Adding two polynomials is done as
usual by adding coefficients of identical monomials.
Summing a polynomial over an interval relies on the fol-

lowing definition of sums of (binomial) powers:

𝑏−1∑︁
𝑥=𝑎

𝑥 𝑘 = 𝑏𝑘+1 − 𝑎𝑘+1 (𝑎 < 𝑏)

𝑘

𝑏

𝑎

The figure illustrates the proof strategy: starting with 𝑏𝑘+1 ,
every application of Pascal’s identity sets aside one term of
the sum, and leaves another term that is closer to 𝑎𝑘+1 .

We can relax the condition 𝑎 < 𝑏 by adopting the conven-
tion that

∑𝑎−1
𝑥=𝑎 𝑥

𝑘 = 0, and use the identity whenever 𝑎 ≤ 𝑏,
which explains our definition of simple loops in Section 2.
Incidentally, the special case 𝑎 = 0 gives an insight into the
meaning of binomial powers: intuitively, triangles are to 𝑥 𝑘

what squares are to 𝑥𝑘 , because, under our relaxed setting
𝑛−1∑︁
𝑖1=0

𝑖1−1∑︁
𝑖2=0

· · ·
𝑖𝑑−1−1∑︁
𝑖𝑑=0

1 = 𝑛𝑑

and here is their interpretation in terms of loop counting
(where with/when introduce a parameter and the context):

with 𝑛 when 𝑛 ≥ 0 (count) (𝑛 = 7)
for 𝑖=0 to 𝑛 𝑛 3

𝑖

𝑗

𝑘

for 𝑗=0 to 𝑖 𝑖 2

for 𝑘=0 to 𝑗 𝑗 1

S 1
This extremely simple summation rule for monomials

extends to polynomials as follows. Given a polynomial

𝑝 (𝑥) = ∑𝑛
𝑖=0 𝑎𝑖 · 𝑥 𝑖

its anti-difference, also called indefinite sum [7, Eq. 2.46],
with constant 0 is

Δ−1𝑝 (𝑥) = ∑𝑛
𝑖=0 𝑎𝑖 · 𝑥 𝑖+1

and summing 𝑝 (𝑥) when 𝑥 ranges over [𝑎, 𝑏) gives
𝑏−1∑︁
𝑥=𝑎

𝑝 (𝑥) = Δ−1𝑝 (𝑥)
��𝑏
𝑎
= Δ−1𝑝 (𝑏) − Δ−1𝑝 (𝑎)

That’s all there is. In practice, Δ−1𝑝 (𝑥) is obtained by simply
incrementing all exponents of 𝑝 (𝑥) or, equivalently, shifting
its coefficients. For instance, given the following loop whose
body has a known per-iteration count:

for 𝑖=0 to 𝑁

. . . (executes 3𝑖 1 + 7𝑖 2 instructions)

one can immediately assert that the loop executes a grand
total of 3𝑁 2 + 7𝑁 3 instructions; if the lower bound were
5 instead of 0, it would execute 3 · 52 + 7 · 53 = 100 fewer
instructions (assuming the loop is valid in both cases).

3
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3.3 Multivariate Polynomials
The univariate polynomial framework just described must
now be extended to polynomials in multiple variables, be-
cause counting and ranking polynomials may use all vari-
ables in scope at a given program point. Throughout this
section, the following abstract pattern will be used:

with 𝑛 (count)
𝐿𝑖: for 𝑖=𝑙𝑖 (𝑛) to 𝑢𝑖 (𝑛) #𝐿𝑖 (𝑛)
𝐿 𝑗: for 𝑗=𝑙 𝑗 (𝑛, 𝑖) to 𝑢 𝑗 (𝑛, 𝑖) #𝐿 𝑗 (𝑛, 𝑖)
𝐵: . . . #𝐵(𝑛, 𝑖, 𝑗)

Now, if #𝐵 is the number of instruction executions of an
instance of 𝐵, then this quantity is a polynomial in 𝑛, 𝑖 , and
𝑗 , since all of these variables are in scope and may appear in
loop bounds controlling the details of the execution of 𝐵.
A concrete example, namely the second loop on 𝑗 in the

Cholesky kernel from Section 1, will also serve as illustration,
where #𝐵 is known, via unspecified means at this point:

. . . (count)
𝐿 𝑗: for 𝑗=𝑖 + 1 to 𝑛 #𝐿 𝑗 (𝑛, 𝑖)
𝐵: . . . #𝐵(𝑛, 𝑖, 𝑗) = 2 + 𝑖

This section details how such multivariate polynomials are
represented and manipulated.

Let Z[𝑥1, . . . , 𝑥𝑑 ] be the set of multivariate polynomials in
𝑑 variables. An element of Z[𝑥1, . . . , 𝑥𝑑 ] is

𝑝 (𝑥1, . . . , 𝑥𝑑 ) =
{
𝑎0 if 𝑑 = 0 (𝑎0 ∈ Z)∑𝑟

𝑖=0 𝑎𝑖𝑥
𝑖

𝑑
if 𝑑 > 0 (𝑎𝑖 ∈ Z[𝑥1, . . . , 𝑥𝑑−1])

In the second case, 𝑝 has degree 𝑟 w.r.t. 𝑥𝑑 . We will use
this inductive definition literally, and consider polynomials
factored along one variable at a time. In our previous abstract
pattern, we would have:

#𝐵(𝑛, 𝑖, 𝑗) = 𝑎0 (𝑛, 𝑖) · 𝑗 0 + 𝑎1 (𝑛, 𝑖) · 𝑗 1 + · · · + 𝑎𝑟 (𝑛, 𝑖) · 𝑗 𝑟

i.e., a polynomial in 𝑗 whose coefficients are polynomials in
𝑛 and 𝑖 , the first of which can be written as:

𝑎0 (𝑛, 𝑖) = 𝑏0,0 (𝑛) · 𝑖 0 + · · · + 𝑏0,𝑟0 (𝑛) · 𝑖 𝑟0

and others are similar, possibly with varying degrees 𝑟0, 𝑟1 . . .
In our concrete example, the full expressions of the various
polynomials, omitting terms with zero coefficient, are:

𝑙 𝑗 (𝑛, 𝑖) =
(
(1) · 𝑛 0 ) · 𝑖 0 +

(
(1) · 𝑛 0 ) · 𝑖 1

𝑢 𝑗 (𝑛, 𝑖) =
(
(1) · 𝑛 1 ) · 𝑖 0

#𝐵(𝑛, 𝑖, 𝑗) =
( (
(2) · 𝑛 0 ) · 𝑖 0 +

(
(1) · 𝑛 0 ) · 𝑖 1 ) · 𝑗 0

We will dispense with these details below. But overall, a
multivariate polynomial can be seen as a tree with one level
per variable, with coefficients on leaves, and with every path
from the root representing one particular combination of
exponents on the various variables. We use this as a standard
form for polynomials, with variables consistently used in the
reverse order of their introduction.

In the abstract pattern above, with #𝐵(𝑛, 𝑖, 𝑗) in standard
form, the computation of #𝐿 𝑗 (𝑛, 𝑖) proceeds as follows:

#𝐿 𝑗 (𝑛, 𝑖) =
𝑢 𝑗 (𝑛,𝑖 )−1∑︁
𝑗=𝑙 𝑗 (𝑛,𝑖 )

#𝐵(𝑛, 𝑖, 𝑗)

=

𝑢 𝑗 (𝑛,𝑖 )−1∑︁
𝑗=𝑙 𝑗 (𝑛,𝑖 )

∑𝑟
𝑘=0𝑎𝑘 (𝑛, 𝑖) · 𝑗

𝑘

=
∑𝑟

𝑘=0𝑎𝑘 (𝑛, 𝑖) · 𝑗
𝑘+1

���𝑢 𝑗 (𝑛,𝑖 )

𝑙 𝑗 (𝑛,𝑖 )

=
∑𝑟

𝑘=0𝑎𝑘 (𝑛, 𝑖) ·
(
𝑢 𝑗 (𝑛, 𝑖)𝑘+1 − 𝑙 𝑗 (𝑛, 𝑖)𝑘+1

)
The result is, as expected, an expression in 𝑛 and 𝑖 , involving
loop bounds 𝑙 𝑗 (𝑛, 𝑖) and 𝑢 𝑗 (𝑛, 𝑖), both affine functions (poly-
nomials of degree at most 1), and the polynomials 𝑎𝑘 (𝑛, 𝑖)
coming from #𝐵(𝑛, 𝑖, 𝑗). In the concrete example, this com-
putation gives:

#𝐿 𝑗 (𝑛, 𝑖) =
𝑛−1∑︁
𝑗=𝑖+1

(2 + 𝑖) = (2 + 𝑖) · 𝑗 1
���𝑛
𝑖+1

= (2 + 𝑖) (𝑛 − 𝑖 − 1)

In general, the result involves exponentiation and multipli-
cation of various polynomials. A bit more effort is needed
to put such expressions in standard form (factored along
powers of 𝑖), so that the resulting polynomial can itself be
subjected to summation over 𝑖 to compute #𝐿𝑖 (𝑛).

3.4 Algebraic Operations
Binomial powers follow their own algebraic rules, which
may be surprising at times: for instance 𝑥 1 · 𝑥 1 is equal to
2𝑥 2 +𝑥 1 , and

(
𝑥 2 ) 2 is equal to 3𝑥 4 + 3𝑥 3 . There is however

a powerful strategy to put an arbitrary expression into stan-
dard form: interpolation. Given an arbitrary expression 𝑒 (𝑥)
in a variable 𝑥 , made of polynomials and additions, multipli-
cations and exponentiations thereof, it can be put in standard
form with respect to 𝑥 by evaluating it on a sufficient num-
ber of small integers and applying the interpolation formula
from Section 3.1 on the results:

𝑒 (𝑥) =
|𝑒 (𝑥 ) |∑︁
𝑖=0

𝑥 𝑖 ·
(

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑒 ( 𝑗)
)

The bound |𝑒 (𝑥) | is the degree of 𝑒 (𝑥) with respect to 𝑥 . The
rules to estimate it are identical to those governing regular
polynomials: |𝑒1 · 𝑒2 | = |𝑒1 | + |𝑒2 |, etc.
The concrete example of the previous section found that

#𝐿 𝑗 (𝑛, 𝑖) = (2+𝑖) (𝑛−𝑖−1). We can now factor this expression
along powers of 𝑖 , by noting it has degree 2, hence evaluating
it for 𝑖 = 0, 1, 2 and combining the results:

4
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#𝐿 𝑗 (𝑛, 0)
= 2(𝑛 − 1)

#𝐿 𝑗 (𝑛, 1)
= 3(𝑛 − 2)

#𝐿 𝑗 (𝑛, 2)
= 4(𝑛 − 3)

(2𝑛 − 2) · 𝑖 0 + (𝑛 − 4) · 𝑖 1 −2 · 𝑖 2
+1 −1 +1 +1 −2 +1

We have waved a magic wand here to obtain the final form
of the coefficients, which are polynomials in 𝑛. As we will
see shortly, they are also obtained by interpolation.
Applying the interpolation strategy to multivariate ex-

pressions amounts to interpolating along each variable in
turn. Noting 𝜎 the standardization operation, we have:

𝜎 (𝑒 (𝑥1, . . . , 𝑥𝑑 )) =
|𝑒 |𝑑∑︁
𝑖=0

𝑥
𝑖

𝑑
·
(

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝜎 (𝑒 (𝑥1, . . . , 𝑥𝑑 ↦→ 𝑗))
)

The operand is an expression in 𝑑 variables, only the last one
of which is subject to interpolation. Here |𝑒 |𝑑 is the degree of
𝑒 with respect to the interpolated variable 𝑥𝑑 only. This is an
inductive definition, the boxed part being the inductive step,
where the notation 𝑒 (. . . , 𝑥𝑑 ↦→ 𝑗) represents an expression
in 𝑑 − 1 variables obtained by substituting the number 𝑗 for
𝑥𝑑 . This bottoms out with an expression in no variable, i.e.,
a number. The final result is in standard form.

The example above has omitted to show three such recur-
sive calls, to turn 2(𝑛−1), 3(𝑛−2) and 4(𝑛−3) into standard
forms before linear combinations. Here is what happened
with, e.g., 2 · (𝑛 − 1), an expression of degree 1:

2 · (0 − 1) 2 · (1 − 1)

−2 · 𝑛 0 +2 · 𝑛 1

+1 −1 +1

This less-than-impressive example should not hide the fact
that specializing 𝜎 for basic algebraic operations keeps mul-
tivariate polynomials in standard form at all times.
Everything is now in place to implement the counting

strategy outlined in Section 1. Before moving on, note that
the counting machinery just presented has no trouble han-
dling polynomial loop bounds. For instance, the reader may
be interested to learn that the trivially valid program

with 𝑛 𝑚 when 𝑛 ≥ 0 and 𝑚 ≥ 0
for 𝑖=0 to 𝑛 2

for 𝑗=0 to 𝑛 · 𝑖 2 + 𝑚 · 𝑖
S

executes instruction S exactly

3(𝑚 + 1)𝑛 3 + (68 + 3𝑚)𝑛 4 + 230𝑛 5 + 270𝑛 6 + 105𝑛 7

times. Nevertheless, affine bounds remain a requirement for
simple loops, because we know of no general method to
verify bounds coherence in the polynomial case, and have
deferred to future work, should the need arise, the choice of
an appropriate validation technique.

4 Counting and Ranking (and back)
Given the definition of simple loops in Section 2, and the
polynomial representation just described, this section turns
to algorithms that compute counts and ranks according to
the strategy described in Section 1. The stated goal here is
simplicity, and this section actually looks like a collection of
textbook exercises in tree traversal. Python syntax is used
for algorithms, but some details have been abstracted away,
or plainly omitted—see Section 5.4.

4.1 Building Blocks
Programs are represented as abstract syntax trees; the vari-
ous types of constructs and their relations are shown on the
following graph, with arrows carrying attribute names. The
body of a Loop is of type Seq, representing a sequence of
either atomic instructions or sub-loops; this strict Loop/Seq
alternation makes it easy to locate any given program point.
Attributes text and cn (the name of the counter) play no
significant role and are used only in displays.

Construct

Statement

Insn
.text

Loop
.cn

Seq
.stmts+

.body

Polynomial
.cnt, .rnk

.lo, .up

Loop bounds lo and up are polynomials, even though they
must be affine. Every program construct has two attributes
cnt and rnk that have no initial value, and are set by the
functions below. Details of the Polynomial type are omitted;
such objects are manipulated via the following functions:

value (𝑝, ®𝑣): computes 𝑝 (®𝑣) (a number);
add/sub (𝑝, 𝑞): polynomial addition/subtraction;
adiff (𝑐, 𝑝): builds Δ−1𝑝 with constant 𝑐;
sumto (𝑝, 𝑏): builds Δ−1𝑝 (𝑏) (with constant 0).

Note that it takes two calls to sumto to implement the sum-
mation formula described in Section 3.2.

4.2 Counts and Ranks
Counting instruction instances proceeds bottom-up, adding
up sub-constructs’ counts to obtain a construct’s total count.

1 def count (c):
2 if c.isseq ():
3 c.cnt = 0
4 for s in c.stmts:
5 count (s)
6 c.cnt = add (c.cnt, s.cnt)
7 elif c.isloop ():
8 count (c.body)
9 c.cnt = sub (sumto (c.body.cnt, c.up),
10 sumto (c.body.cnt, c.lo))
11 else: # insn
12 c.cnt = 1

5
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Methods isseq() and isloop() discriminate between sub-
types of Construct and Statement. The misleadingly sim-
ple constants 0 and 1 in this fragment are in fact multivariate
polynomials in whatever variables are in scope. Instructions
could be assigned any weight other than 1 as long as it is
expressed as a positive polynomial in the variables in scope.
There are several possible strategies to assign a rank to

each and every program point. The one described below is
straightforward, and uses pre-computed counts. It proceeds
top-down and, when acting on a given construct, computes
ranks for all constructs immediately underneath it. As such,
there is nothing left to do when reaching an instruction, and
the root construct must be explicitly primed with a null rank:

1 def rank (c):
2 c.rnk = 0
3 rank_aux (c)
4 def rank_aux (c):
5 if c.isseq ():
6 r = c.rnk
7 for s in c.stmts:
8 s.rnk = r
9 rank_aux (s)
10 r = add (r, s.cnt)
11 elif c.isloop ():
12 a0 = sub (c.rnk, sumto (c.body.cnt, c.lo))
13 c.body.rnk = adiff (a0, c.body.cnt)
14 rank_aux (c.body)

When handed a sequence, this algorithm simply walks the
statements, accumulating instruction counts to assign ranks.
When handed a loop, here is the situation:
c: for 𝑖=𝑙 to 𝑢

c.body: . . . (.cnt=𝑏0 + 𝑏1𝑖 1 + · · · + 𝑏𝑛𝑖𝑛 )
The rank of the start of iteration 𝑖 is

c.rnk + Δ−1c.body.cnt(𝑖) − Δ−1c.body.cnt(𝑙)
that is, the rank of the start of the loop plus the accumulated
count of iterations 𝑙, . . . , 𝑖 − 1. Only the second term depends
on 𝑖; expanding it and rearranging leads to:[

c.rnk − Δ−1c.body.cnt(𝑙)
]
+ 𝑏0𝑖 1 + 𝑏1𝑖 2 + · · · + 𝑏𝑛𝑖𝑛+1

i.e., a term (between brackets) that is constant with respect
to 𝑖 , plus the anti-difference Δ−1c.body.cnt with constant 0.
The adiff function simply assembles both parts.

Figure 1 shows counts and ranks for the Cholesky kernel.

4.3 Rank Inversion
The collection or ranking polynomials assigns a unique linear
number to every instruction execution. This section exam-
ines the inverse problem: given a numeric rank, determine
the corresponding instruction and the counter values of its
enclosing loops. Clauss et al. [2] have presented a symbolic
solution to this very problem, which can therefore poten-
tially be used at compile-time. The solution presented here
is different in that it relies directly on numerical resolution,
and eventually produces code computing the solution.

The first algorithm takes as input an AST, the values of the
parameters, and a numeric rank, and finds its way down the
AST using ranking polynomials along the way. Every time
it reaches a construct, it has already determined the values
of all the variables in scope, and can therefore decide which
sub-construct contains the target instruction instance. When
reaching a sequence of statements, this means comparing
the input rank to the ranks of the various elements of the
sequence. When reaching a loop, this means determining
which iteration of that loop executes the target instruction.
During the search, the algorithm collects (separately) the
positions of sequence elements and the iteration numbers of
loops it traverses. In the code below, c is a construct, vs the
list of known variable values, ps the list of known sequence
positions, and r the target rank (when called on the root
construct, vs contains parameter values and ps is empty).

1 def unrank (c, vs, ps, r):
2 if c.isseq ():
3 pos = 0
4 while (pos+1 < len (c.stmts) and
5 r >= value (c.stmts[pos+1].rnk, vs)):
6 pos += 1
7 return unrank (c.stmts[pos], vs, ps+[pos], r)
8 elif c.isloop ():
9 urnk = uni (c.body.rnk, vs)
10 lo = value (c.lo, vs)
11 up = value (c.up, vs)
12 index = unisolve (urnk, lo, up, r)
13 return unrank (c.body, vs+[index], ps, r)
14 else:
15 return (vs, ps)

When reaching the target instruction, vs and ps provide a
unique instruction instance identification; a single iteration
vector can be recovered by interleaving these two vectors.
Note that the given rank r must correspond to an actual
instruction instance.

The block dealing with loops uses two new functions:

uni (𝑝, ®𝑣): computes the numerical values of the co-
efficients of 𝑝 with arguments ®𝑣 , returning a univariate
polynomial whose sole unknown is the loop counter;

unisolve (𝑝, 𝑙, 𝑢, 𝑟): computes the largest value 𝑖
in [𝑙, 𝑢) such that 𝑝 (𝑖) ≤ 𝑟 , i.e., the iteration executing
the instruction with rank 𝑟 .

Besides possible special cases for low degree, here is a generic
implementation for unisolve, using arithmetic bisection:

1 def unisolve (pol, lo, up, r):
2 mi = (lo + up) // 2
3 while lo < mi:
4 if value (pol, [mi]) > r:
5 up = mi
6 else:
7 lo = mi
8 mi = (lo + up) // 2
9 return lo
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Note that the direction of the test against r guarantees the
correct result, even in the presence of unproductive itera-
tions. Using other root-finding strategies is certainly possible,
keeping in mind that the polynomial may have any kind of
behavior outside the given interval.

The unrank algorithm is suitable for situations where the
AST is available, which may not be the case in a compiled
program. Since unrank follows a single path down a tree
of finite size, it is a simple matter to generate a complete
symbolic tree traversal instead, where every test is output
instead of being performed, and every expression is printed
instead of begin evaluated. We give here only a sketch of
the corresponding function to illustrate the basic principle.
Parameter ns is the list of names in scope, c is a construct,
and ps is a locator for c (as a list of positions in sequences):

1 def unranker (ns, c, ps):
2 if c.isseq ():
3 for i in range (len (c.stmts)-1):
4 p = expr (c.stmts[i+1].rnk, ns)
5 print ("if RANK < %s:" % (p))
6 unranker (ns, c.stmts[i], ps+[i])
7 . . .
8 elif c.isloop ():
9 urnk = uexpr (c.body.rnk, ns)
10 lo = expr (c.lo, ns)
11 up = expr (c.up, ns)
12 print ("%s = unisolve (%s, %s, %s, RANK)"
13 % (c.cn, urnk, lo, up))
14 unranker (ns+[c.cn], c.body, ps)
15 else:
16 print ("return (%s, %s)" % (ns, ps))

Functions expr and uexpr produce a compilable text version
of the given polynomial. The real code of unranker is un-
interestingly convoluted because it has to produce correct
if/elif/else cascades of tests, and has other pretty printing
duties. The resulting output code introduces new variables
for computed loop indices; by construction, name definitions
are guaranteed to dominate their uses. The logic must also
be wrapped in a function accepting parameter values and the
target rank (called RANK above), and a version of unisolve
must be shipped along.
Figure 2 shows the output code for the Cholesky kernel.

Unranking happens at run-time, and unisolve is clearly the
most expensive operation. Because ranking polynomials are
often linear in the nearest loop counter, some of its calls can
be avoided and the solution be computed directly. Figure 3
demonstrates this trivial optimization on a simple example.

5 Discussion
This section closes the paper by looking back at the con-
ditions making loops acceptable to the algorithms just de-
scribed, and contrasting those with earlier work. It also tries
to briefly review some existing applications, and to draw
some perspective on future research.

5.1 Unit Step, and Congruences
We have mentioned in Section 1 two general techniques for
counting the number of integer points in a polyhedron [1, 15].
Their complexity prevents them to be even summarized here.
Instead, we give an intuition on why these methods are
strictly more powerful than what is presented in this paper.

In a polyhedron description, the domain of a given variable
𝑗 may be defined with:

𝑙 (𝑖, . . .) ≤ 𝛼 𝑗 < 𝑢 (𝑖, . . .) (𝛼 > 1)

where 𝑙 (𝑖, . . .) and 𝑢 (𝑖, . . .) are affine functions. Since the
congruences of 𝑙 and 𝑢 modulo 𝛼 are variable, the number of
integer values of 𝑗 also depends on these congruences. If 𝑗 is
then involved in additions and summations, the congruences
will grow andmultiply, somewill vanish, and those involving
the parameters will eventually remain. This is why, in the
general case, the result of counting involves either periodic
numbers [1], or integer parts [15]. This informal argument
also shows that both techniques capture phenomena that
this paper does not even try to model.

One should however keep in mind that the complexity of
the general techniques is not strictly mathematical or algo-
rithmic. Here is an example with three non-unit coefficients:

0 ≤ 2𝑖 <𝑁 ∧ 0 ≤ 3 𝑗 <𝑁 + 𝑖 ∧ 0 ≤ 5𝑘 <𝑁 + 𝑖 + 𝑗

The number of integer points inside this polyhedron, com-
puted with the barvinok library [14], is a polynomial of
degree 3 (somehow) which is a sum of that we have
no space to display in full; here are four of these terms:

· · · + 1
2
𝑁 2

⌊
3 + 𝑁

5

⌋
− 2𝑁

⌊
𝑁

2

⌋ ⌊
3 + 2𝑁

5

⌋
+ 3
2

⌊
1 + 𝑁

3

⌋2 ⌊
10 + 4𝑁

15

⌋
− 5
2

⌊
𝑁

2

⌋ ⌊
6 + 3𝑁
10

⌋2
+ · · ·

We conclude from this example that intersecting polyhedra
and lattices, or using non-unit steps in loops, has an intrinsic
complexity that applications must be ready to confront.

5.2 Bounds Coherence, and Chambers
One could argue that both Ehrhart and Barvinok-based count-
ing algorithms do not rely on any kind of coherence of
bounds or inequalities. The fact is that both methods start
by “sanitizing” their input, essentially decomposing it into
convex, tightened polyhedra. Both use the same algorithm to
do so [9] (see also [3]), whose output is twofold. First, it splits
the parameter space into distinct validity domains [1], also
called chambers [15]. Second, it computes for each chamber
a different set of vertices, which are the fundamental inputs
to both counting algorithm.

The decomposition algorithm produces a set of chambers
that are then treated independently, each one getting its own
associated counting polynomial. A similar pre-processing
step could very well be used to produce different simple
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You asked for it.

The `iscc` source:

    P := [N] -> { [i,j,k] :
        0 <= 2i < N and
        0 <= 3j < N+i and
        0 <= 5k < N+i+j
    };
    card P;

submitted to https://barvinok.sourceforge.io/cgi-bin/barvinok.cgi
which at the time of writing announces itself as:

    isl-0.26-GMP
    barvinok-0.41.7
     -INCREMENTAL
     -PET -OMEGA -CDDLIB -GLPK -TOPCOM +ZSOLVE -PARKER

outputs an overly long line that is broken at spaces here:

    [N] -> {
    (((((((-2/3 + N + 1/2 * N^2) * floor((3 + N)/5) + (-5/2 - 5/2 * N) *
    floor((3 + N)/5)^2 + 25/6 * floor((3 + N)/5)^3) + ((-1/6 + 5/2 * N +
    5/2 * N^2) + (-3/2 - 2 * N) * floor((N)/2)) * floor((3 + 2N)/5) +
    ((-2 - 5 * N) + 5/2 * floor((N)/2)) * floor((3 + 2N)/5)^2 + 19/6 *
    floor((3 + 2N)/5)^3) + ((2/3 - 17/8 * N - 15/8 * N^2) + (5/4 + 3/2 *
    N) * floor((N)/2)) * floor((6 + 3N)/10) + ((5/2 + 5 * N) - 5/2 *
    floor((N)/2)) * floor((6 + 3N)/10)^2 - 25/6 * floor((6 + 3N)/10)^3)
    + (-1/3 - 3/2 * floor((3 + 2N)/5) - 1/2 * floor((3 + 2N)/5)^2) *
    floor((9 + N)/10) + (3 + 2 * floor((3 + 2N)/5)) * floor((9 +
    N)/10)^2 - 8/3 * floor((9 + N)/10)^3) + ((1/6 - N - 1/2 * N^2) +
    (-1/2 - N) * floor((1 + N)/3) + 3/2 * floor((1 + N)/3)^2) *
    floor((10 + 4N)/15) + (2 + 5/2 * N) * floor((10 + 4N)/15)^2 - 19/6 *
    floor((10 + 4N)/15)^3) + (1/3 + 3/2 * floor((10 + 4N)/15) + 1/2 *
    floor((10 + 4N)/15)^2) * floor((14 + N)/15) + (-3 - 2 * floor((10 +
    4N)/15)) * floor((14 + N)/15)^2 + 8/3 * floor((14 + N)/15)^3)
    : N > 0}


iscc output
iscc output
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with n when n >= 0 (rank) (count)
do 0 2𝑛 + 3𝑛 2 + 𝑛 3

for i = 0 to n 0 2𝑛 + 3𝑛 2 + 𝑛 3

do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2
S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 −2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 2 𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 2 𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 2 𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 2 𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2𝑛 − 2𝑖 3 + 2 𝑗 + 𝑗𝑖 1

done done done

Figure 1. The Cholesky kernel, annotated with counting and ranking polynomials on every program construct. Statement
sequences are delimited with do and done, some single instruction sequences are collapsed to avoid repetition.

def dyn_unrank (n, RANK):
i = unisolve ([0, 2*n, -3+n, -2], 0, n, RANK)
if RANK < 1+2*i*n-3*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6:

return ([i], [0, 0])
elif RANK < 1+i+2*i*n-3*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6:

j = unisolve ([1+2*i*n-3*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6, 1], 0, i, RANK)
return ([i, j], [0, 1, 0])

elif RANK < 2+i+2*i*n-3*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6:
return ([i], [0, 2])

else:
j = unisolve ([-3*i+2*i*n-5*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6, 2+i], 1+i, n, RANK)
if RANK < 1-3*i+2*i*n-5*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6+2*j+j*i:

return ([i, j], [0, 3, 0])
elif RANK < 1-2*i+2*i*n-5*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6+2*j+j*i:

k = unisolve ([1-3*i+2*i*n-5*i*(i-1)//2+i*(i-1)//2*n-2*i*(i-1)*(i-2)//6+2*j+j*i, 1], 0, i, RANK)
return ([i, j, k], [0, 3, 1, 0])

else:
return ([i, j], [0, 3, 2])

Figure 2. Rank inversion code for the Cholesky kernel. It takes the value of n and a rank, and returns the values of the loop
counters, as well as an instruction locator. The unisolve function takes a univariate polynomial as a list of coefficients; note
that all its calls but the first act on degree-1 polynomials here. For the sake of illustration, the output code is in Python and
polynomial expressions have been translated in the most naive way, neither of which we recommend for serious use-cases.

with n m p
when n >= 0 and m >= 0 and p >= 0 (rank)
do 0

for i = 0 to n 0
do 𝑖𝑝 + 𝑖𝑝𝑚

for j = 0 to p 𝑖𝑝 + 𝑖𝑝𝑚
do 𝑖𝑝 + 𝑖𝑝𝑚 + 𝑗 + 𝑗𝑚

Z 𝑖𝑝 + 𝑖𝑝𝑚 + 𝑗 + 𝑗𝑚

for k = 0 to m 1 + 𝑖𝑝 + 𝑖𝑝𝑚 + 𝑗 + 𝑗𝑚

do S done 1 + 𝑖𝑝 + 𝑖𝑝𝑚 + 𝑗 + 𝑗𝑚 + 𝑘
done done done

def dyn_unrank (n, m, p, RANK):
i = (RANK - (0)) // (p+p*m)
j = (RANK - (i*p+i*p*m)) // (1+m)
if RANK < 1+i*p+i*p*m+j+j*m:

return ([i, j], [0, 0, 0])
else:

k = (RANK - (1+i*p+i*p*m+j+j*m)) // (1)
return ([i, j, k], [0, 0, 1, 0])

Figure 3. Naive matrix multiply, with unranking code where simple arithmetic replaces unisolve() on degree-1 polynomials.
The // integer division operator is used here as a floor operation, contrary to Figure 2 where it always perform exact division.
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loops, with their associated context. Depending on the use-
case, this may take some back-and-forth between loops and
polyhedra. But it remains that the bounds coherence validity
constraint is anecdotal in such a broader picture.
We take this opportunity to make an out-of-scope, ad-

mittedly subjective comment on polyhedral algorithms in
general. In hindsight, we feel that the decomposition algo-
rithm from Loechner and Wilde [9] should play a central
role in many more polyhedral techniques, because it solves a
pervasive problem, and its output is close to a polyhedral nor-
mal form. It is our intuition that it could have a tremendous
simplifying effect on several major polyhedral tasks.

5.3 Applications
The uses of quantitative aspects (counts) or random access
to individual instructions (ranks) are relatively rare in poly-
hedral optimization techniques. One good example is the
load-balanced parallelization of an arbitrary, non-rectangular
loop nest [2], as prescribed, for instance, by the OpenMP
collapse clause [10]: counting provides the total load, which
is divided by the number of available threads; then, unrank-
ing lets every thread determine where it must start and end.
An extension to this is algebraic tiling [13], which follows
the same principle but operates along several dimensions.

While counting and ranking is almost always expressed in
terms of time (counted in instruction executions), it applies
equally well in space (counted in data elements, or bytes).
Assimilating loops to arrays and sequences to structures is a
quick analogy that enables memory volume quantification
and random addressing for any composition of structures
and arrays of any affine or even polynomial shape. One step
beyond, the work by Clauss and Meister [4] optimizes spatial
locality by storing data in the order with which it is accessed.
It uses ranking in combining two distinct domains (execution
time and memory space).

Because ranking maps a potentially highly structured do-
main onto a sequential reference dimension, we expect to
see more applications using it to find correspondence across
such domains. For instance, it could be used to match syn-
chronization primitives across distinct tasks, as in [6], or
communication events inside a distributed program, where
the sequential dimension is the history of events on the syn-
chronization or communication medium. It is with the aim
to better understand such correspondences that we have
tried to define a straightforward path from loops to sums to
ranking polynomials. We are still far from this goal, and we
expect most of the remaining work to focus on polynomials,
for which we have introduced a representation that we hope
will prove to be more than an amusing algebraic device.

5.4 Implementation
This paper should come with its proof-of-concept implemen-
tation. It is written in Python, uses no external library, and
covers all aspects of Sections 2 through 4 in less than 600 lines

of code, to which it adds utilities that make it suitable for ex-
perimentation. If you read an electronic, PDF version of the
paper you can extract by clicking on the under-
lined words in this sentence. Launching this program with
no argument gives usage information. About three dozen
source loop nests are built-in, including all non-rectangular
kernels from the Polybench suite [11], so it also serves as
a gallery of examples. Of course, it comes with no guaran-
tee whatsoever, and is certainly not meant for anything but
illustrating what you have read here.
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#!/usr/bin/env python3

# cranking.py (Easy Counting and Ranking for Simple Loops)
# © 2023 by Alain Ketterlin & Université de Strasbourg
# is licensed under CC BY 4.0. To view a copy of this license,
# visit http://creativecommons.org/licenses/by/4.0/

# This program requires Python 3, was developped with 3.8.
# Run it with no argument to get usage information.


#
#
# POLYNOMIALS
#

class Polynomial:

    def __init__ (self): pass
    def isnum (self): raise NotImplementedError ("Polynomial::isnum")

class PolNum (Polynomial):

    def __init__ (self, num): self.num = num
    def isnum (self): return True

class PolVar (Polynomial):

    def __init__ (self, cfs): self.cfs = cfs
    def isnum (self): return False
    def degree (self): return len (self.cfs) - 1

def constant (val, nvars):
    p = PolNum (val)
    for i in range (nvars):
        p = PolVar ([p])
    return p

def dump (p, names):
    if p.isnum ():
        return str (p.num)
    else:
        return "+".join([ "(%s)*%s~%d" % (dump (q, names[:-1]), names[-1], i)
                          for i, q in enumerate (p.cfs) ])

# BASIC OPERATIONS

def xk (val, exp): # Int, Int -> Int
    r = 1
    for i in range (exp):
        r = r * (val-i) // (i+1) # note: *not* "*="
    return r

def xks (val, exp): # Int, Int -> [Int]
    r = [1] + [0]*exp # note: upto exp included
    for i in range (exp):
        r[i+1] = r[i] * (val-i) // (i+1)
    return r

def value (p, vals): # Polynomial, [Int] -> Int
    if p.isnum ():
        return p.num
    else:
        v = value (p.cfs[0], vals[:-1])
        xi = 1
        for i in range (len (p.cfs) -1):
            xi = xi * (vals[-1] - i) // (i+1)
            v += value (p.cfs[i+1], vals[:-1]) * xi
        return v

def wadd (ws, ps): # [Int], [Polynomial?] -> Polynomial
    isnums = { p.isnum() for p in ps if p is not None }
    if True in isnums:
        res = 0
        for i in range (len (ps)):
            if ps[i] is not None:
                res += ws[i] * ps[i].num
        return PolNum (res)
    else:
        maxdeg = max ([ p.degree() for p in ps if p is not None ])
        res = [None]*(maxdeg+1)
        for i in range (maxdeg+1):
            arg = [None]*len (ps)
            for j in range (len (ps)):
                if ps[j] is not None and i < len (ps[j].cfs):
                    arg[j] = ps[j].cfs[i]
            res[i] = wadd (ws, arg)
        return PolVar (res)

def at (p, val): # Polynomial, Int -> Polynomial
    return wadd (xks (val, len (p.cfs)-1), p.cfs)

def inter (vals): # [Polynomial] -> Polynomial
    cfs = [None]*len (vals)
    for i in range (len (vals)):
        ai = xks (i, i) # FIXME: cache this?
        for j in range ((i+1) % 2, i+1, 2):
            ai[j] = - ai[j]
        cfs[i] = wadd (ai, vals[:i+1])
    return PolVar (cfs)

# HIGH-LEVEL OPERATIONS

def mul (p1, p2): # p1 times p2
    if p1.isnum ():
        return PolNum (p1.num * p2.num)
    else:
        deg = p1.degree () + p2.degree ()
        subs = [ mul (at (p1, j), at (p2, j)) for j in range (deg+1) ]
        return inter (subs)

def exp (p, k): # p to the k
    if p.isnum ():
        return PolNum (xk (p.num, k))
    else:
        deg = p.degree () * k;
        subs = [ exp (at (p, j), k) for j in range (deg+1) ]
        return inter (subs)

def sumto (p, b): # sum of p(i) with i from 0 to b-1
    ps = [None]*len (p.cfs)
    for i in range (len (p.cfs)):
        ps[i] = mul (p.cfs[i], exp (b, i+1))
    return wadd ([1]*len (p.cfs), ps)

# AS REGULAR POLYNOMIALS

STIRLING1 = [ [1] ]
def stirling1 (val, exp): # signed Stirling numbers of the first kind
    global STIRLING1
    if val >= len (STIRLING1):
        for v in range (len (STIRLING1), val+1):
            STIRLING1.append ([0] * (v) + [1])
            for i in range (1, v):
                STIRLING1[v][i] = STIRLING1[v-1][i-1] - (v-1)*STIRLING1[v-1][i]
    return STIRLING1[val][exp]

def gcd (a, b):
    while b > 0:
        a, b = b, a % b
    return a
def lcm (a, b):
    return a // gcd (a, b) * b

def regular (p): # Polynomial -> (Polynomial,Int)
    if p.isnum ():
        return (PolNum (p.num), 1)
    else:
        n = len (p.cfs) # = degree + 1
        cs = [None] * n # converted coefficient polynomials
        ds = [0] * n # denominators for converted coeffs
        for i in range (n):
            cs[i], ds[i] = regular (p.cfs[i])
        fs = [1] * n # factorials
        for i in range (2, n):
            fs[i] = i * fs[i-1]
        dlcm = 1 # lcm of denominators
        for d in ds:
            dlcm = lcm (dlcm, d)
        alpha = [0] * n # inner coefficients
        for i in range (n):
            alpha[i] = fs[n-1] // fs[i] * dlcm // ds[i]
        ncfs = [None] * n
        ws = [0] * n # temp, fixed sized for symmetry
        for j in range (n):
            for i in range (j, n):
                ws[i] = alpha[i] * stirling1 (i, j)
            ncfs[j] = wadd (ws[j:], cs[j:])
        return (PolVar (ncfs), fs[n-1]*dlcm)

# PRINTING

class Fmt:

    def __init__ (self, asbin, asflat, asmath):
        self.asbin  = asbin  # binomial, otherwise regular
        self.asflat = asflat # flat monomial, otherwise factored/standard
        self.asmath = asmath # math notation for ops, otherwise expr (py)
    def opmul (self): return "." if self.asmath else "*" # or "\u00b7" (·)
    def oppow (self): return "~" if self.asbin else "^" # math only
    def expr (self): return Fmt (self.asbin, self.asflat, False)

def pow_str (var, exp, fmt): # Str, Int>0, Fmt -> Str
    if fmt.asmath:
        return "%s%s%d" % (var, fmt.oppow (), exp) if exp > 1 else var
    elif fmt.asbin:
        if exp == 1:
            return var
        else:
            s = var
            f = 1
            for i in range (1, exp):
                s += "%s(%s-%d)" % (fmt.opmul (), var, i)
                f *= (i+1)
            return s + "//" + ("%d" % (f))
    else:
        return "%s**%d" % (var, exp) if exp > 1 else var

def pol_flat_aux (p, names, fmt, factors):
    # Polynomial, [Str], [(Str,Int)], Fmt -> Str
    if p.isnum ():
        if p.num == 0:
            return ""
        else:
            sn, nu = ("+", p.num) if p.num >= 0 else ("-", -p.num)
            no = ["%d" % (nu)] if nu != 1 else []
            vs = [ pow_str (n, x, fmt) for n, x in factors if x != 0 ]
            ts = no+vs
            tx = "1" if len (ts) == 0 else fmt.opmul ().join (ts)
            return (sn+tx)
    else:
        sis = []
        for i in range (len (p.cfs)):
            si = pol_flat_aux (p.cfs[i], names[:-1], fmt,
                               factors + [(names[-1], i)])
            if si != "":
                sis += [si]
        return " ".join (sis)
def pol_flat (p, names, fmt):
    return pol_flat_aux (p, names, fmt, [])

def pol_fact_aux (p, names, fmt):
    if p.isnum ():
        return "" if p.num == 0 else "%+d" % p.num, True
    else:
        t, a = pol_fact_aux (p.cfs[0], names[:-1], fmt)
        ts = [] if t == "" else [t] if a else ["+(%s)" % (t)]
        for i in range (1, len (p.cfs)):
            t, a = pol_fact_aux (p.cfs[i], names[:-1], fmt)
            if t != "":
                if a == False:
                    s = "+(%s)%s" % (t, fmt.opmul ())
                elif t in ["+1", "-1"]:
                    s = t[0]
                else:
                    s = t + fmt.opmul ()
                s += "%s" % (pow_str (names[-1], i, fmt))
                ts += [s]
        return " ".join (ts), (len (ts) <= 1)
def pol_fact (p, names, fmt):
    return pol_fact_aux (p, names, fmt)[0]

def pol_str (p, names, fmt): # Polynomial, [Str], Fmt, -> Str
    p_str = pol_flat if fmt.asflat else pol_fact
    if fmt.asbin:
        s = p_str (p, names, fmt)
        return "0" if s == "" else s
    else:
        c, d = regular (p)
        s = p_str (c, names, fmt)
        opdiv = "/" if fmt.asmath else "//"
        return "0" if s == "" else "(%s)%s%d" % (s, opdiv, d)

#
# BOUNDS
#

def isconstant_1 (p): # PolVar -> Bool
    # p(x,y,...) = a0(y,...) and the rest is null?
    for c in p.cfs[1:]:
        ccb, ccv = isconstant (c)
        if ccb == False or ccv != 0:
            return False
    return True

def isconstant (p): # Polynomial -> (Bool,Int?)
    # p(x,...) = a0 a single number?
    if p.isnum ():
        return (True, p.num)
    else:
        cb, cv = isconstant (p.cfs[0])
        if cb and isconstant_1 (p):
            return (True, cv)
        else:
            return (False, None)

def isaffine_1 (p): # PolVar -> (Bool, Int)
    # p(x,y,...) = a0(y,...) + a1*x and a1 is a number?
    if len (p.cfs) < 2:
        return (False, None)
    b, v = isconstant (p.cfs[1])
    if b == False or v == 0:
        return (False, None)
    for c in p.cfs[2:]:
        ccb, ccv = isconstant (c)
        if ccb == False or ccv != 0:
            return (False, None)
    return (True, v)

def bound_ge_0 (l, inq, r, names): # Pol, str, Pol, [Str] -> Pol
    # turn everything into (pol) >= 0
    if inq == "<":
        return wadd ([1, -1, -1], [r, l, constant (1, len (names))])
    elif inq == "<=":
        return wadd ([1, -1], [r, l])
    elif inq == ">":
        return wadd ([1, -1, -1], [l, r, constant (1, len (names))])
    else: # inq == ">="
        return wadd ([1, -1], [l, r])

def constant_levels (p): # Polynomial -> (Int, Polynomial)
    b = p
    l = 0
    while not b.isnum () and isconstant_1 (b):
        l += 1
        b = b.cfs[0]
    return (l, b)

def provably_false (query, bounds, names): # names for debug only
    derived = [list()] + [ b[:] for b in bounds ] # first level for trivials
    # insert query at the right level
    l, q = constant_levels (query)
    derived[len (derived) - 1 - l].append (q) # FIXME: shortcut if constant?
    # traverse all levels
    level = len (derived) - 1
    while level > 0:
        uppers, lowers = list(), list() # [(Polynomial,Int)]
        for ineq in derived[level]:
            b, v = isaffine_1 (ineq)
            if b == False:
                return False
            elif v < 0:
                uppers.append ((ineq, v))
            else: # v > 0
                lowers.append ((ineq, v))
        for il, cl in lowers:
            for iu, cu in uppers:
                r = wadd ([cl, -cu], [iu, il])
                l, i = constant_levels (r)
                derived[level - l].append (i)
        level -= 1
    for c in derived[0]:
        if c.num < 0:
            return True
    return False

def bounds_str (names, bounds, fmt):
    s = "when\n"
    lvls = []
    for level in range (len (bounds)):
        if len (bounds[level]) > 0:
            sb = " and ".join ([ pol_str (b, names[:level+1], fmt) + " >= 0"
                                 for b in bounds[level] ])
            lvls += ["    "+sb]
    if len (lvls) > 0:
        return "when\n" + " and\n".join (lvls) + "\n"
    else:
        return ""

#
# PROGRAM STRUCTURES
#

class Construct:

    def __init__(self):
        self.cnt = None
        self.rnk = None
    def isseq (self): raise NotImplementedError ("Construct::isseq")
    def isloop (self): raise NotImplementedError ("Construct::isloop")

class Seq (Construct):

    def __init__ (self, stmts):
        self.stmts = stmts # [Construct]
        super ().__init__ ()
    def isseq (self): return True
    def isloop (self): return False

class Statement (Construct):

    def __init__ (self):
        super ().__init__ ()

class Loop (Statement):

    def __init__ (self, cn, lo, up, body):
        self.cn = cn # Str
        self.lo = lo # Polynomial
        self.up = up # Polynomial
        self.body = body # Seq
        super ().__init__ ()
    def isseq (self): return False
    def isloop (self): return True

class Insn (Statement):

    def __init__ (self, text):
        self.text = text # Str
        super ().__init__ ()
    def isseq (self): return False
    def isloop (self): return False

def prog_str_aux (names, prog, depth, fmt):
    s = ""
    indent = "    "*depth
    if prog.isseq ():
        if prog.rnk is not None:
            s += indent + "[@=" + pol_str (prog.rnk, names, fmt) + "]\n"
        s += indent + "do\n"
        if prog.cnt is not None:
            s += indent + "[#=" + pol_str (prog.cnt, names, fmt) + "]\n"
        if prog.rnk is not None or prog.cnt is not None:
            s += "\n"
        for sub in prog.stmts:
            s += prog_str_aux (names, sub, depth+1, fmt)
        s += indent + "done\n"
    elif prog.isloop ():
        lo = pol_str (prog.lo, names, fmt)
        up = pol_str (prog.up, names, fmt)
        if prog.rnk is not None:
            s += indent + "[@=" + pol_str (prog.rnk, names, fmt) + "]\n"
        s += indent + ("for %s = %s to %s\n" % (prog.cn, lo, up))
        if prog.cnt is not None:
            s += indent + "[#=" + pol_str (prog.cnt, names, fmt) + "]\n"
        if prog.rnk is not None or prog.cnt is not None:
            s += "\n"
        s += prog_str_aux (names+[prog.cn], prog.body, depth+1, fmt)
        if prog.rnk is not None or prog.cnt is not None:
            s += "\n"
    else:
        if prog.rnk is not None:
            s += indent + "[@=" + pol_str (prog.rnk, names, fmt) + "]\n"
        s += indent + prog.text + "\n"
        if prog.cnt is not None:
            s += indent + "[#=" + pol_str (prog.cnt, names, fmt) + "]\n"
        if prog.rnk is not None or prog.cnt is not None:
            s += "\n"
    return s

def prog_str (names, bounds, prog, fmt):
    s = "with %s\n" % (" ".join (names)) if len (names) > 0 else ""
    b = bounds_str (names, bounds, fmt)
    t = prog_str_aux (names, prog, 0, fmt)
    return s + b + t

#
# VALIDATION
#

def validate (names, bounds, prog):
    if prog.isseq ():
        for s in prog.stmts:
            if not validate (names, bounds, s):
                return False
        return True
    elif prog.isloop ():
        absrd = bound_ge_0 (prog.lo, ">", prog.up, names)
        if not provably_false (absrd, bounds, names):
            return False
        pi = PolVar ([constant (0, len (names)), constant (1, len (names))])
        newnames = names + [prog.cn]
        lo = bound_ge_0 (PolVar ([prog.lo]), "<=", pi, newnames)
        up = bound_ge_0 (pi, "<", PolVar ([prog.up]), newnames)
        return validate (newnames, bounds+[[lo, up]], prog.body)
    else:
        return True

#
# COUNTING, RANKING
#

def count (names, prog):
    # watch out: store *and* return
    if prog.isseq ():
        subs = [ count (names, s) for s in prog.stmts ]
        prog.cnt = wadd ([1]*len (prog.stmts), subs)
    elif prog.isloop ():
        c = count (names+[prog.cn], prog.body)
        prog.cnt = wadd ([1, -1], [sumto (c, prog.up), sumto (c, prog.lo)])
    else: # insn
        prog.cnt = constant (1, len (names)) # FIXME: arbitrary weight?
    return prog.cnt # convenient

def rank_aux (prog):
    # prog already has .rnk
    if prog.isseq ():
        r = prog.rnk
        for p in prog.stmts:
            p.rnk = r
            rank_aux (p)
            r = wadd ([1, 1], [r, p.cnt])
    elif prog.isloop ():
        c = prog.body.cnt
        a0 = wadd ([1, -1], [prog.rnk, sumto (c, prog.lo)])
        prog.body.rnk = PolVar ([a0]+c.cfs)
        rank_aux (prog.body)
    else:
        pass # really
def rank (names, prog):
    prog.rnk = constant (0, len (names))
    rank_aux (prog)

#
# UNRANKING
#

def unisolve (pol, lo, up, rank): # [Int], Int, Int, Int -> Int
    mi = (lo + up) // 2
    while lo < mi:
        #if value (pol, [mi]) > rank: # avoid dependance for generated code
        v = pol[0]
        xi = 1
        for i in range (len (pol)-1):
            xi = xi * (mi-i) // (i+1)
            v += pol[i+1] * xi
        if v > rank:
            up = mi
        else:
            lo = mi
        mi = (lo + up) // 2
    return lo

def unrank_aux (prog, values, npars, position, rank):
    if prog.isseq ():
        i = 0
        while (i+1 < len (prog.stmts) and
               rank >= value (prog.stmts[i+1].rnk, values)):
            i += 1
        return unrank_aux (prog.stmts[i], values, npars, position+[i], rank)
    elif prog.isloop ():
        lo = value (prog.lo, values)
        up = value (prog.up, values)
        iterrank = prog.body.rnk
        rpol = [None] * len (iterrank.cfs)
        for i in range (len (iterrank.cfs)):
            rpol[i] = value (iterrank.cfs[i], values)
        index = unisolve (rpol, lo, up, rank)
        return unrank_aux (prog.body, values+[index], npars, position, rank)
    else:
        return (values[npars:], position)
def unrank (prog, values, rank):
    return unrank_aux (prog, values, len (values), [], rank)

#
# UNRANKER GENERATION
#

def unranker_aux (names, npars, prog, fmt, optim, position, depth):
    sl_repr = lambda sl: "[" + ", ".join (sl) + "]"
    indent = "    " * depth
    if prog.isseq ():
        s = ""
        if len (prog.stmts) == 1:
            s = unranker_aux (names, npars, prog.stmts[0], fmt, optim,
                              position+[0], depth)
        else:
            n = len (prog.stmts)
            for i in range (n):
                if i == 0:
                    p = pol_str (prog.stmts[1].rnk, names, fmt)
                    s += indent + ("if RANK < %s:\n" % (p))
                elif i+1 < n:
                    p = pol_str (prog.stmts[i+1].rnk, names, fmt)
                    s += indent + ("elif RANK < %s:\n" % (p))
                else:
                    s += indent + ("else:\n")
                s += unranker_aux (names, npars, prog.stmts[i], fmt, optim,
                                   position+[i], depth+1)
        return s
    elif prog.isloop ():
        if optim and len (prog.body.rnk.cfs) == 2:
            ai = [ pol_str (c, names, fmt) for c in prog.body.rnk.cfs ]
            s = indent + ("%s = (RANK - (%s)) // (%s)\n"
                          % (prog.cn, ai[0], ai[1]))
        else:
            pol = sl_repr ([ pol_str (c, names, fmt)
                             for c in prog.body.rnk.cfs ])
            lo = pol_str (prog.lo, names, fmt)
            up = pol_str (prog.up, names, fmt)
            s = indent + ("%s = unisolve (%s, %s, %s, RANK)\n"
                          % (prog.cn, pol, lo, up))
        return s + unranker_aux (names+[prog.cn], npars, prog.body, fmt, optim,
                                 position, depth)
    else:
        return indent + ("return (%s, %s)\n"
                         % (sl_repr (names[npars:]), repr (position)))

def unranker (names, prog, fmt, optim):
    pro = "def dyn_unrank (%s):\n" % (", ".join (names+["RANK"]))
    return pro + \
        unranker_aux (names, len (names), prog, fmt.expr (), optim, [], 1)

#
# VERIFICATION
#

class Counter:

    def __init__ (self): self.n = 0
    def inc (self): self.n += 1

def verify_cranks_aux (prog, values, counter):
    start = counter.n
    if value (prog.rnk, values) != start:
        return False
    if prog.isseq ():
        for p in prog.stmts:
            if not verify_cranks_aux (p, values, counter):
                return False
    elif prog.isloop ():
        lo = value (prog.lo, values)
        up = value (prog.up, values)
        for i in range (lo, up):
            if not verify_cranks_aux (prog.body, values+[i], counter):
                return False
    else:
        counter.inc ()
    count = counter.n - start
    if value (prog.cnt, values) != count:
        return False
    return True
def verify_cranks (prog, values):
    c = Counter ()
    b = verify_cranks_aux (prog, values, c)
    return b, c.n

def verify_unrank_aux (prog, values, unfunc, position, counter,
                       rootprog, rootvalues):
    # Note: all program constructs have a rank, but because of empty
    # loops, several dynamic program points can have the same rank.
    # Therefore, we restrict verification on insns only.
    if prog.isseq ():
        for i in range (len (prog.stmts)):
            if not verify_unrank_aux (prog.stmts[i], values, unfunc,
                                      position+[i], counter,
                                      rootprog, rootvalues):
                return False
    elif prog.isloop ():
        lo = value (prog.lo, values)
        up = value (prog.up, values)
        for i in range (lo, up):
            if not verify_unrank_aux (prog.body, values+[i], unfunc,
                                      position, counter,
                                      rootprog, rootvalues):
                return False
    else:
        v, p = unfunc (rootprog, rootvalues, counter.n) # doesn't return params
        if v != values[len (rootvalues):] or p != position:
            return False
        counter.inc ()
    return True
def verify_unrank (prog, values, unfunc):
    c = Counter ()
    b = verify_unrank_aux (prog, values, unfunc, [], c, prog, values)
    return b, c.n

#
# PARSING
#

import re

class Lexer:

    def __init__ (self, text):
        self.re = \
            re.compile (r'(?P<OP>[+~.*=-])|(?P<NUM>\d+)|(?P<INQ>[<>]=?)' +
                        r'|(?P<ID>[a-zA-Z]\w*)|(?P<STR>"([^\"\\]|\\.)+")')
        self.text = text
        self.posn = 0
        self.kind = None
        self.tokn = None
        self.advance ()
    def error (self, ctx):
        pnt = self.posn - len (self.tokn)
        msg = self.text[:pnt]+"(--!--)"+self.text[pnt:]
        raise ValueError ("In "+ctx+":\n"+msg)
    def advance (self):
        while self.posn < len (self.text) and self.text[self.posn].isspace ():
            self.posn += 1
        if self.posn == len (self.text):
            self.tokn = self.kind = "$"
        else:
            m = self.re.match (self.text, self.posn)
            if m is None:
                self.error ("advance: lexer jammed")
            else:
                self.kind = m.lastgroup
                self.tokn = m.group (0)
                self.posn += len (self.tokn)
                if self.kind == "ID" and self.tokn in ["with","when","and",
                                                       "do","done","for","to"]:
                    self.kind = "KWD"
                    self.tokn = "#" + self.tokn
    
# grammar: (+ FIRST/FOLLOW)
#
# pol -> term '+' pol | term '-' pol | term # {ID NUM + -}   {TO DO}
# term -> int pows | pow pows               # {NUM + - | ID} {+ - $}
# int -> NUM | '+' NUM | '-' NUM            # {NUM + -}      {ID + - $}
# pows -> pow pows | *eps*                  # {ID *eps*}     {+ - $}
# pow -> ID | ID '~' NUM                    # {ID}           {ID + - $}

def monomial_powers (coeff, powers, names):
    if len (names) == 0:
        return PolNum (coeff)
    else:
        p = powers.get (names[-1], 0)
        rem = names[:-1]
        sub = monomial_powers (coeff, powers, rem)
        return PolVar ([ monomial_powers (0, {}, rem) for i in range (p) ]
                       + [sub])

def parse_pol (lexer, names): # Lexer, [Str] -> Polynomial
    c, p = parse_term (lexer, names)
    ms = [monomial_powers (c, p, names)]
    while lexer.tokn in ["+", "-"]:
        sgn = +1 if lexer.tokn == "+" else -1
        lexer.advance ()
        c, p = parse_term (lexer, names)
        ms += [monomial_powers (sgn*c, p, names)]
    return wadd ([1]*len (ms), ms)

def parse_term (lexer, names): # Lexer, [Str] -> (Int,{Str:Int})
    if lexer.kind == "ID":
        n, p = parse_pow (lexer, names)
        ps = parse_pows (lexer, names, {n:p})
        return (1, ps)
    elif lexer.kind == "NUM" or lexer.tokn in ["+","-"]:
        i = parse_int (lexer)
        ps = parse_pows (lexer, names, {})
        return (i, ps)
    else:
        lexer.error ("term: expecting ID or (signed) NUM")

def parse_int (lexer): # Lexer -> Int
    sgn = +1
    if lexer.tokn in ["+", "-"]:
        sgn = +1 if lexer.tokn == "+" else -1
        lexer.advance ()
    if lexer.kind == "NUM":
        v = sgn * int (lexer.tokn)
        lexer.advance ()
        return v
    else:
        return sgn # lexer.error ("int")

def parse_pows (lexer, names, acc): # Lexer, [Str], {Str:Int} -> {Str:Int}
    if lexer.tokn in [".","*"]:
        lexer.advance ()
    if lexer.kind == "ID":
        n, p = parse_pow (lexer, names)
        if n in acc:
            lexer.error ("pows: name reuse")
        acc[n] = p
        return parse_pows (lexer, names, acc)
    else:
        return acc

def parse_pow (lexer, names): # Lexer, [Str] -> (Str,Int)
    if lexer.kind != "ID":
        lexer.error ("pow: expecting ID")
    n = lexer.tokn
    if n not in names:
        lexer.error ("pow: name undeclared")
    lexer.advance ()
    if lexer.tokn == "~":
        lexer.advance ()
        if lexer.kind == "NUM":
            p = lexer.tokn
            lexer.advance ()
            return (n, int (p))
        else:
            lexer.error ("pow: expecting NUM as exponent")
    else:
        return (n, 1)

# grammar
#
# top -> params do stmts done | stmts       # {with for ID *eps* } {$}
# params -> WITH pars bounds| *eps*         # {WITH *eps*} {do}
# pars -> ID pars | ID                      # {ID}                 {do}
# bounds -> when ineqs | *eps*              # {WHEN *eps*} {do}
# ineqs -> ineq | ineq AND ineqs            # =pol         {do}
# ineq -> pol [<>]=? pol                    # =pol
# stmts -> stmt stmts | *eps*               # {for ID *eps*}       {$}
# stmt -> for ID = pol TO pol DO stmts DONE # {for ID}       {for ID STR *eps*}
#       | ID | STR

def parse_top (lexer): # Lexer -> ([Str],[Statement])
    if lexer.tokn == "#with":
        lexer.advance ()
        if lexer.kind != "ID":
            lexer.error ("top: expecting ID")
        names, bounds = parse_pars (lexer)
        if lexer.tokn != "#do":
            lexer.error ("top: expecting do")
        lexer.advance ()
        prog = parse_stmts (lexer, names)
        if lexer.tokn != "#done":
            lexer.error ("top: expecting done")
        lexer.advance ()
        return (names, bounds, prog)
    else:
        return ([], [], parse_stmts (lexer, []))

def parse_pars (lexer): # Lexer -> [Str], [[Polynomial]]
    names = []
    bounds = []
    while lexer.kind == "ID":
        names += [lexer.tokn]
        lexer.advance ()
        bounds += [[]]
    if lexer.tokn == "#when":
        lexer.advance ()
        b, l = parse_bound (lexer, names)
        bounds[l].append (b)
        while lexer.tokn == "#and":
            lexer.advance ()
            b, l = parse_bound (lexer, names)
            bounds[l].append (b)
    return (names, bounds)

def parse_bound (lexer, names): # Lexer, [Str] -> (Polynomial, Int)
    l = parse_pol (lexer, names)
    if lexer.kind != "INQ":
        lexer.error ("bound: expecting [<>]=?")
    rel = lexer.tokn
    lexer.advance ()
    r = parse_pol (lexer, names)
    b = bound_ge_0 (l, rel, r, names)
    level, bnd = constant_levels (b)
    if level == len (names):
        lex.error ("bound: constant constraint")
    return (bnd, len (names) - 1 - level)

def parse_stmts (lexer, names): # Lexer, [Str] -> [Statement]
    if lexer.tokn == "#for" or lexer.kind == "ID" or lexer.kind == "STR":
        s = parse_stmt (lexer, names)
        return [s] + parse_stmts (lexer, names)
    else:
        return []

def parse_stmt (lexer, names): # Lexer, [Str] -> Statement
    if lexer.tokn == "#for":
        lexer.advance ()
        if lexer.kind != "ID":
            lexer.error ("stmt: expecting ID afterfor")
        c = lexer.tokn
        if c in names:
            lexer.error ("mask")
        lexer.advance ()
        if lexer.tokn != "=": lexer.error ("stmt: expecting = in for")
        lexer.advance ()
        l = parse_pol (lexer, names)
        if lexer.tokn != "#to": lexer.error ("stmt: expecting to in for")
        lexer.advance ()
        u = parse_pol (lexer, names)
        if lexer.tokn != "#do": lexer.error ("stmt: expecting do after for")
        lexer.advance ()
        b = parse_stmts (lexer, names+[c])
        if lexer.tokn != "#done": lexer.error ("stmt: expecting done after for")
        lexer.advance ()
        return Loop (c, l, u, Seq (b))
    elif lexer.kind == "ID" or lexer.kind == "STR":
        s = lexer.tokn
        lexer.advance ()
        return Insn (s)
    else:
        lexer.error ("stmt: expecting for or ID or STR")

def parse (lexer): # Lexer -> ([Str],Seq)
    names, bounds, stmts = parse_top (lexer)
    if lexer.tokn != "$":
        lexer.error ("trailing garbage")
    return (names, bounds, Seq (stmts))

#
# EXAMPLES
#

EXAMPLES = {

    "square-10":
"""
for i = 0 to 10 do
  for j = 0 to 10 do
    S
done done
""",

    "cube-n":
"""
with n when n >= 0
do
  for i = 0 to n do
    for j = 0 to n do
      for k = 0 to n do
        S
done done done done
""",

    "triangle-n":
"""
with n when n >= 0 do
  for i = 0 to n do
    for j = 0 to i do
      S
done done done
""",

    "pyramide-n":
"""
with n when n >= 0 do
  for i = 0 to n do
    for j = 0 to i do
      for k = 0 to j do
        "S"
done done done done
""",

    "pyramide-7": # for the fun of it (look at the ranks)
"""
with n when n >= 0 do
  for i1 = 0 to n do
    for i2 = 0 to i1 do
      for i3 = 0 to i2 do
        for i4 = 0 to i3 do
          for i5 = 0 to i4 do
            for i6 = 0 to i5 do
              for i7 = 0 to i6 do
                "S"
done done done done done done done done
""",

    "negative-0":
"""
for i = -10 to 0 do
  for j = -20 to -i do
    for k = i+j to 0 do
      S
done done done
""",

    "negative-1":
"""
for i = -10 to 10 do
  for j = i to 10 do
    S
done done
""",

    "negative-2":
"""
for i = 0 to 10 do
  for j = -5 to i do
    S
done done
""",

    "matmul-nnn":
"""
with n when n >= 0
do
  for i = 0 to n do
    for j = 0 to n do
      Z
      for k = 0 to n do
        S
done done done done
""",

    "matmul-nmp":
"""
with n m p when n >= 0 and m >= 0 and p >= 0
do
  for i = 0 to n do
    for j = 0 to p do
      Z
      for k = 0 to m do
        S
done done done done
""",

    "matmulopt-nmp":
"""
with n m p when n >= 0 and m >= 0 and p >= 0
do
  for i = 0 to n do
    for j = 0 to p do
      Z
  done done
  for i = 0 to n do
    for k = 0 to m do
      for j = 0 to p do
        S
done done done done
""",

    "philippe-1":
"""
with NMAX when NMAX >= 0 do
  for t1 = 0 to NMAX do
    for t2 = 0 to NMAX do
      for t = t1 to NMAX do
        S
done done done done
""",

    "philippe-2":
"""
with NMAX when NMAX >= 2 do
  for t2 = 0 to NMAX do
    for t3 = 2 to NMAX do
      for t4 = 0 to t3-1 do
        S
done done done done
""",

    "philippe-3":
"""
with NMAX when NMAX >= 0 do
  for t1 = 0 to NMAX do
    for t2 = t1 to NMAX do
      for t3 = t1 to NMAX do
        S
done done done done
""",

    "philippe-4":
"""
with N M do
  for i = 1 to N do
    for j = 1 to N do
      for k = j to M do
        S
done done done done
""",
    "philippe-4N":
"""
with N M
when N >= 1 and M >= 1 and N <= M
do for i = 1 to N do for j = 1 to N do for k = j to M do S done done done done
""",
    "philippe-4N-inv":
"""
with N M
when N >= 1 and M >= 1 and N >= M
do for i = 1 to N do for j = 1 to N do for k = j to M do S done done done done
""",
    "philippe-4M": # M <= N irrelevant
"""
with N M
when N >= 1 and M >= 1 and M <= N
do for i = 1 to N do for j = 1 to M do for k = j to M do S done done done done
""",
    # same as before but with upper bound included
    "philippe-5N":
"""
with N M
when N >= 1 and M >= 1 and N <= M do
for i = 1 to N+1 do for j = 1 to N+1 do for k = j to M+1 do S done done done
done
""",
    "philippe-5M":
"""
with N M
when N >= 1 and M >= 1 and M <= N do
for i = 1 to N+1 do for j = 1 to M+1 do for k = j to M+1 do S done done done
done
""",

    "poly-1":
"""
with n do
  for i = 0 to n~2 do
    for j = 0 to i~3 + 3i~2 + 2 i~1 do
        S
done done done
""",

    "wrong-1": # damn vanishing loops...
"""
for i = 0 to 10 do
  for j = 0 to 5-i do
    S
  done
done
""",

    "wrong-2":
"""
for i = 0 to 10 do
  for j = 0 to 5-i do
    S
  done
  for j = 0 to i-5 do
    S
  done
done
""",

    # the following are from polybench-4.1
    "cholesky4":
"""
with PB_N when PB_N >= 0 do
  for i = 0 to PB_N do
    for j = 0 to i do
      for k = 0 to j do
        "A[i][j] -= A[i][k] * A[j][k];"
      done
      "A[i][j] /= A[j][j];"
    done
    for k = 0 to i do
      "A[i][i] -= A[i][k] * A[i][k];"
    done
    "A[i][i] = SQRT_FUN(A[i][i]);"
  done
done
""",

    "gramschmidt":
"""
with PB_N PB_M
when PB_N >= 0 and PB_M >= 0
do
    for k = 0 to PB_N do
        "nrm = SCALAR_VAL(0.0);"
        for i = 0 to PB_M do
            "nrm += A[i][k] * A[i][k];"
        done
        "R[k][k] = SQRT_FUN(nrm);"
        for i = 0 to PB_M do
            "Q[i][k] = A[i][k] / R[k][k];"
        done
        for j = k+1 to PB_N do
            "R[k][j] = SCALAR_VAL(0.0);"
            for i = 0 to PB_M do
                "R[k][j] += Q[i][k] * A[i][j];"
            done
            for i = 0 to PB_M do
                "A[i][j] = A[i][j] - Q[i][k] * R[k][j];"
            done
        done
    done
done
""",

    "lu":
"""
with PB_N when PB_N >= 0 do
    for i = 0 to PB_N do
        for j = 0 to i do
            for k = 0 to j do
                "A[i][j] -= A[i][k] * A[k][j];"
            done
            "A[i][j] /= A[j][j];"
        done
        for j = i to PB_N do
            for k = 0 to i do
                "A[i][j] -= A[i][k] * A[k][j];"
            done
        done
    done
done
""",

    "trisolv":
"""
with PB_N when PB_N >= 0 do
  for i = 0 to PB_N do
      "x[i] = b[i];"
      for j = 0 to i do
          "x[i] -= L[i][j] * x[j];"
      done
      "x[i] = x[i] / L[i][i];"
  done
done
""",

    "ludcmp-mod":
"""
with PB_N when PB_N >= 0 do
    for i = 0 to PB_N do
        for j = 0 to i do
            "w = A[i][j];"
            for k = 0 to j do
                "w -= A[i][k] * A[k][j];"
            done
            "A[i][j] = w / A[j][j];"
        done
        for j = i to PB_N do
            "w = A[i][j];"
            for k = 0 to i do
                "w -= A[i][k] * A[k][j];"
            done
            "A[i][j] = w;"
        done
    done

    for i = 0 to PB_N do
        "w = b[i];"
        for j = 0 to i do
            "w -= A[i][j] * y[j];"
        done
        "y[i] = w;"
    done

    for i = 0 to PB_N do
        "w = y[PB_N-i-1];"
        for j = PB_N-i to PB_N do
            "w -= A[PB_N-i-1][j] * x[j];"
        done
        "x[PB_N-i-1] = w / A[i][i];"
    done
done
""",

    "durbin":
"""
with PB_N when PB_N >= 1 do
    "y[0] = -r[0]; beta = SCALAR_VAL(1.0); alpha = -r[0];"
    for k = 1 to PB_N do
        "beta = (1-alpha*alpha)*beta; sum = SCALAR_VAL(0.0);"
        for i=0 to k do
            "sum += r[k-i-1]*y[i];"
        done
        "alpha = - (r[k] + sum)/beta;"

        for i=0 to k do
            "z[i] = y[i] + alpha*y[k-i-1];"
        done
        for i=0 to k do
            "y[i] = z[i];"
        done
        "y[k] = alpha;"
    done
done
""",

    "symm":
"""
with PB_M PB_N
when PB_N >= 0 and PB_M >= 0
do
    for i = 0 to PB_M do
        for j = 0 to PB_N do
            "temp2 = 0;"
            for k = 0 to i do
                "C[k][j] += alpha*B[i][j] * A[i][k];"
                "temp2 += B[k][j] * A[i][k];"
            done
            "C[i][j] = beta*C[i][j] + alpha*B[i][j]*A[i][i] + alpha*temp2;"
        done
    done
done
""",

    "syrk":
"""
with PB_N PB_M
when PB_N >= 0 and PB_M >= 0
do
    for i = 0 to PB_N do
        for j = 0 to i do
            "C[i][j] *= beta;"
        done
        for k = 0 to PB_M do
            for j = 0 to i do
                "C[i][j] += alpha * A[i][k] * A[j][k];"
            done
        done
    done
done
""",

    # some more
    "syr2k":
"""
with PB_N PB_M
when PB_N >= 0 and PB_M >= 0
do
  for i = 0 to PB_N do
    for j = 0 to PB_N do
      "C[i][j] *= beta;"
  done done
  for i = 0 to PB_N do
    for k = 0 to PB_M do
      for j = 0 to PB_N do
        "C[i][j] += A[j][k] * alpha*B[i][k] + B[j][k] * alpha*A[i][k];"
  done done done
done
""",

    "3mm": # FIXME: comments have been removed
"""
with PB_NI PB_NJ PB_NK PB_NL PB_NM
when PB_NI >= 0 and PB_NJ >= 0 and PB_NK >= 0 and PB_NL >= 0 and PB_NM >= 0
do
  for i = 0 to PB_NI do
    for j = 0 to PB_NJ do
        "E[i][j] = SCALAR_VAL(0.0);"
        for k = 0 to PB_NK do
          "E[i][j] += A[i][k] * B[k][j];"
        done
    done
  done
  for i = 0 to PB_NJ do
    for j = 0 to PB_NL do
        "F[i][j] = SCALAR_VAL(0.0);"
        for k = 0 to PB_NM do
          "F[i][j] += C[i][k] * D[k][j];"
        done
    done
  done
  for i = 0 to PB_NI do
    for j = 0 to PB_NL do
        "G[i][j] = SCALAR_VAL(0.0);"
        for k = 0 to PB_NJ do
          "G[i][j] += E[i][k] * F[k][j];"
        done
    done
  done
done
""",

    "doitgen":
"""
with PB_NP PB_NQ PB_NR
when PB_NP >= 0 and PB_NQ >= 0 and PB_NR >= 0
do
  for r = 0 to PB_NR do
    for q = 0 to PB_NQ do
      for p = 0 to PB_NP do
        "sum[p] = SCALAR_VAL(0.0);"
        for s = 0 to PB_NP do
          "sum[p] += A[r][q][s] * C4[s][p];"
        done
      done
      for p = 0 to PB_NP do
        "A[r][q][p] = sum[p];"
      done
    done
  done
done
""",

    "fdtd-2d":
"""
with PB_TMAX PB_NX PB_NY
when PB_TMAX >= 0 and PB_NX >= 1 and PB_NY >= 1
do
  for t = 0 to PB_TMAX do
      for j = 0 to PB_NY do
        "ey[0][j] = _fict_[t];"
      done
      for i = 1 to PB_NX do
        for j = 0 to PB_NY do
          "ey[i][j] = ey[i][j] - SCALAR_VAL(0.5)*(hz[i][j]-hz[i-1][j]);"
        done
      done
      for i = 0 to PB_NX do
        for j = 1 to PB_NY do
          "ex[i][j] = ex[i][j] - SCALAR_VAL(0.5)*(hz[i][j]-hz[i][j-1]);"
        done
      done
      for i = 0 to PB_NX - 1 do
        for j = 0 to PB_NY - 1 do
          "hz[i][j] = hz[i][j] - SCALAR_VAL(0.7)*  (ex[i][j+1] - ex[i][j] + ey[i+1][j] - ey[i][j]);"
        done
      done
  done
done
""",

    # ... and then examples from the paper
    "cholesky":
"""
with n when n >= 0 do
  for i = 0 to n do
    S1
    for j = 0 to i do
      S2
    done
    S3
    for j = i+1 to n do
      S4
      for k = 0 to i do
        S5
      done
      S6
    done
  done
done
""",

    "example-3.2":
"""
with n when n >= 5
do
    for i=5 to n do
        for j=0 to i do for q=0 to 3 do S done done
        for j=0 to i do for k=0 to j do for q=0 to 7 do S done done done
    done
done
""",

    "example-3.4":
"""
with m n when n >= 0 and m >= 0
do
    for i=0 to n~2 do
        for j=0 to n*i~2 + m*i do
            S
    done done
done
""",

}

#
# MAIN
#

if __name__ == "__main__":

    import sys
    import getopt
    import random
    import subprocess

    USAGE = """
SYNPOSIS

    $PROG [-h|--help]
    $PROG @
    $PROG <input> <options>
    $PROG * <options>

    The first form provides help. The second form lists all built-in
    examples. The third form processes <input> according to <options>.
    The fourth form relaunches itself on every built-in example with
    <options>.

    <input> can be "-" (a single dash) to use standard input, @<name>
    to use a built-in example by name, or <path> to read a file. See
    INPUT below for syntax.

    <options> must come after <input>; they are:

    -q: no output except for dynamic actions (see -v and -u)
    -r: output all polynomials in the regular monomial basis
    -s: output all polynomials in standard (factored) form
    -x: output all polynomials as (Python) expressions
    -f: process even if invalid (i.e., accept potentially wrong results)
    -v <values>: verify count & ranks, and unranking (both versions)
    -u <ranks>: inverse some ranks instead of verifying (after -v only)

    <values> (for -v) must provide parameter values; the argument is
    either a colon separated list of numbers ("10:20:15"), or an equal
    sign with an optional single value for all parameters, which
    defaults to 10 ("=20" sets all params to 20, "=" to 10).

    <ranks> (for -u) defines a set of numeric ranks to inverse. It can
    be "ranks:<list>" (for a list of comma-separated numbers),
    "sample:<n>" (for random sampling <n> values), or "slice:<n>" (for
    <n> evenly spaced ranks). Option -u only makes sense after -v,
    because it needs the parameter values. If present, it disables
    verification (unless <ranks> is "verify").

    The first output (disabled with -q) is a decorated program, each
    construct carrying two polynomials: @ is the rank and # the count.
    Binomials powers use the "~" power operator, regular powers (with
    -r) use "^"; option -x uses Python operators when available.

    The second output (disabled with -q) is an unranking function,
    identifying an instruction instance from its rank (this is the
    code compiled and run if you ask for verification). The code,
    especially polynomials in there, is deliberately naive.

    Verification (with -v and without -u) runs the loop and verifies
    1) all counts and ranks, and 2) unranking for all valid ranks, for
    both algorithms. Note that the loop nest is interpreted, and this
    is written in Python: you may quickly get bored if you use large
    values for the parameters.

    Rank inversion (with -v and -u) prints a line for each selected
    rank, listing the target rank, the counter values, and the
    position of the statement.

INPUT

    Loop nests must be provided in the following syntax:

    input   -> ["with" ID+ ["when" context]] seq | stmt+
    context -> ineq ("and" ineq)*
    ineq    -> poly ("<"|"<="|">"|">=") poly
    seq     -> "do" stmt+ "done"
    stmt    -> insn | loop
    insn    -> ID | STRING
    loop    -> "for" ID "=" poly "to" poly seq
    poly    -> term (("+"|"-") term)*
    term    -> ("+"|"-")? (NUM|ID ("~" NUM)?)+

    Everything in the context is optional. Inequalities there are
    conjuncts. The top level element must be a sequence delimited with
    do/done. Loop bodies must be sequences. Instructions can be a
    simple ID or a STRING between double quotes. Polynomials must be
    given as sums of monomials with coefficients. See the EXAMPLES
    global variable in the source for, well, examples.

"""

    SHORT = \
        "Usage: $PROG" + \
        " @<builtin>|-|<path> [-q] [-rsx] [-f] [-v <values> [-u <ranks>]]\n" + \
        "where: <builtin> is one of the names listed by \"$PROG @\"\n" + \
        "       <values>  := { \"\" | <n>{:<n>}* | =[<n>] }\n" + \
        "       <ranks>   := { ranks:<n>{,<n>}* | sample:<n> | slice:<n> | verify }"

    # help
    if len (sys.argv) < 2 or sys.argv[1] == "--help":
        print (USAGE.replace ("$PROG", sys.argv[0]))
        sys.exit (0)
    elif len (sys.argv) == 2 and sys.argv[1] == "-h":
        print (SHORT.replace ("$PROG", sys.argv[0]))
        sys.exit (0)
    elif len (sys.argv) == 2 and sys.argv[1] == "@":
        print ("\n".join ([ "@"+n for n in EXAMPLES ]))
        sys.exit (0)
    # batch processing
    elif sys.argv[1] == "*":
        tests = fails = 0
        for n in EXAMPLES:
            tests += 1
            r = subprocess.run ([sys.argv[0], "@"+n] + sys.argv[2:])
            fails += 0 if r.returncode == 0 else 1
        print ("%d tests, %d failed" % (tests, fails), file=sys.stderr)
        sys.exit (0)
    # specific input
    elif sys.argv[1][0] == "@":
        if sys.argv[1][1:] not in EXAMPLES:
            sys.exit ("Error: unknown example '%s'" % sys.argv[1][1:])
        src = EXAMPLES[sys.argv[1][1:]]
    elif sys.argv[1] == "-":
        src = sys.stdin.read()
    else:
        with open (sys.argv[1]) as f:
            src = f.read()

    # options parsing
    options, trail = (lambda t, r: (dict (t), r)) \
        (*getopt.getopt (sys.argv[2:], "qrsxfv:u:O")) # -O undocumented
    if len (trail) != 0:
        sys.exit ("%s:error: non-option trailing args '%s'" %
                  (sys.argv[1], " ".join (trail)))
    quiet = "-q" in options
    fmt = Fmt ("-r" not in options, "-s" not in options, "-x" not in options)
    force = "-f" in options
    optim = "-O" in options
    if "-u" in options and "-v" not in options:
        sys.exit ("%s:error: -u cannot be used without -v" %
                  (sys.argv[1]))

    # go
    names, bounds, prog = parse (Lexer (src))
    if not validate (names, bounds, prog):
        if force:
            print ("%s:warning: cannot prove the absence of ghost loops" %
                   (sys.argv[1]), file=sys.stderr)
        else:
            sys.exit ("%s:error: cannot prove the absence of ghost loops" %
                      (sys.argv[1]))
    count (names, prog)
    rank (names, prog)
    if not quiet:
        print (prog_str (names, bounds, prog, fmt))
    ucode = unranker (names, prog, fmt, optim)
    if not quiet:
        print (ucode)

    # the rest is dynamic stuff
    if "-v" not in options:
        sys.exit (0)

    # parse parameter values
    arg = options["-v"]
    if len (arg) == 0:
        values = []
    elif arg[0] == "=":
        d = 10 if arg == "=" else int (arg[1:])
        values = [ d for _ in names ]
    else:
        values = [ int(a) for a in arg.split (":") ]
    if len (values) != len (names):
        sys.exit ("%s:error: incorrect number of parameter values" %
                  (sys.argv[1]))
    # validate constraints on parameters
    invalid = False
    msg = "warning" if force else "error"
    for i in range (len (bounds)):
        for b in bounds[i]:
            if value (b, values[:i+1]) < 0:
                print ("%s:%s: constraint unfulfilled: %s >= 0" %
                       (sys.argv[1], msg, pol_str (b, names[:i+1], fmt)),
                       file=sys.stderr)
                invalid = True
    if invalid and not force:
        sys.exit (1)

    # jit compile the result of unranker (defines dyn_unrank)
    exec (compile (ucode, "<string>", "exec")) # defines dyn_unrank

    # decide what to do
    if "-u" not in options or options["-u"] == "verify":
        # FIXME: should we verify validity?
        b1, n = verify_cranks (prog, values)
        print ("%s:verify counts and ranks: %s (%d insns)" %
               (sys.argv[1], b1, n), file=sys.stderr)
        b2, n = verify_unrank (prog, values, unrank)
        print ("%s:verify static unranking: %s (%d insns)" %
               (sys.argv[1], b2, n), file=sys.stderr)
        unwrap = lambda _1, values, rank: dyn_unrank (*values, rank)
        b3, n = verify_unrank (prog, values, unwrap)
        print ("%s:verify dynamic unranker: %s (%d insns)" %
               (sys.argv[1], b3, n), file=sys.stderr)
        sys.exit (0 if b1 and b2 and b3 else 1)
    else:
        act = options["-u"].split (":")
        if len (act) != 2 or act[0] not in ["ranks", "sample", "slice"]:
            sys.exit ("%s:error: invalid action '%s'" %
                      (sys.argv[1], options["-u"]))
        z = value (prog.cnt, values)
        if act[0] == "ranks":
            ranks = []
            for s in act[1].split (","):
                r = int (s)
                if r <= 0 or z <= r:
                    print ("%s:warning: rank %d out of bounds, ignored" %
                           (sys.argv[1], r), file=sys.stderr)
                else:
                    ranks.append (r)
        elif act[0] == "sample":
            random.seed (12345)
            ranks = [ random.randrange (z) for i in range (int (act[1])) ]
        else: # "slice"
            n = int (act[1])
            q, r = divmod (z, n)
            ranks = [ i*q + min (i, r) for i in range (n) ]
        # FIXME: pick one!
        inlv = lambda vs, ps: [ u
                                for p,v in zip (ps, vs)
                                for u in [p,v] ] + [ps[-1]]
        cstr = lambda l: ",".join ([ str (v) for v in l ])
        for r in ranks:
            vs, ps = dyn_unrank (*values, r)
            #print (r, cstr (vs), cstr (ps))
            print (r, cstr (inlv (vs, ps)))
        sys.exit (0)


source code
source code
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