
Reuse Analysis via Affine Factorization
Ryan Job

ryan.job@colostate.edu
Colorado State University

Fort Collins, Colorado, USA

Sanjay Rajopadhye

sanjay.rajopadhye@colostate.edu
Colorado State University

Fort Collins, Colorado, USA

Abstract
Affine maps are a crucial structure within the polyhedral

model of computation, essential for expressing programs in

the model. Detecting values which are reused by a collec-

tion of affine maps within the same program expression can

enable a number of optimization techniques: reducing the

amount of storage needed, the time required for comput-

ing values, and even value based common sub-expression

elimination, as well as more sophisticated optimizations like

reduction simplification that reduce the asymptotic complex-

ity. We present an algorithm to factorize a dependence map

so that the maximum potential reuse is exposed.

CCS Concepts: • Software and its engineering→ Incre-
mental compilers; Software performance; • Comput-
ing methodologies→ Representation of mathematical
functions; • Theory of computation→ Program anal-
ysis; Abstraction; • General and reference → Perfor-
mance.

Keywords: polyhedral compilation, algorithmic complexity,

program transformation

1 Introduction
The polyhedral model provides a mathematical framework

for analyzing and transforming a domain-specific class of

computations. Affine control loops are a proper subset of

the model [2]. These programs are often written as a set

of nested for loops where the upper and lower bounds are

affine expressions using only compile-time constants, run-

time constants (often referred to as size parameters), and the

index variables of any enclosing affine control loops, but the

model also include polyhedral equational programs.

Consider equation 1, which specifies a 3-dimensional array

(or variable).

𝑌 [𝑖, 𝑗, 𝑘] = 𝐴[𝑖 + 𝑘] + 𝐵 [𝑖 + 𝑗 + 𝑘] (1)

A straightforwardway to compute Y is wrap this statement

in a triply-nested for loop, one loop for each of the three

dimensions of Y. Notice that there is a common i+k sub-

expression used to index both A and B, and that neither i
nor k are used in any other way. This allows us to rewrite

equation 1 as shown in equation 2, where we introduced a

IMPACT 2024, January 17, 2024, Munich, Germany
2024.

2-dimensional temporary variable Z.

𝑌 [𝑖, 𝑗, 𝑘] = 𝑍 [𝑖 + 𝑘, 𝑗]
𝑍 [𝑥,𝑦] = 𝐴[𝑥] + 𝐵 [𝑥 + 𝑦] (2)

If the right-hand side expression of equation 1 appears

within a triply-nested loop, one for each of the dimensions

of Y, this factorization identifies common sub-expressions

which could be optimized. Depending on how Y is used, this

may reduce the time or space complexity of the loop pro-

gram from 𝑂 (𝑁 3) down to 𝑂 (𝑁 2). We have identified one

use case for this: reduction simplification via the Gautam

and Rajopadhye algorithm [3]. This use case is especially

interesting, as it can be combined with the existing imple-

mentation available in the AlphaZ system [17] and recent

improvements [9] to fully automate the maximal simplifica-

tion of reductions in the polyhedral model.

Our primary goal with this paper is to demonstrate an al-

gorithm for factorizing affine maps such that the right factor

has the smallest rank. Our secondary goal is to demonstrate

its use for the identification of common sub-expressions, in-

cluding its benefit to reduction simplification [3]. As part of

this, we describe our plans to implement this as a pass within

the AlphaZ system. Finally, we hope to promote discussion

about other use cases for this analysis. Mathematically, our

ideas are simple enough, and we originally expected that

they would be well known in the literature. However, we

have not found reference to such analyses in polyhedral

compilation.

The remainder of this paper is organized as follows. In

section 2, we review the Hermite normal form and its prop-

erties, as it forms the basis of the affine map factorization

algorithm, which we next present in section 3, and describe

how it can be implemented using the Integer Set Library

(isl) (section 4). In section 5, we discuss how to use the al-

gorithm to automate the Gautam and Rajopadhye reduction

simplification algorithm. Section 6 describes our ongoing

work to create a compiler pass in AlphaZ to leverage fac-

torization and expose maximal reuse within an expression.

Finally, we discuss related work in section 7 and conclude

this paper with section 8.

2 Hermite Normal Form
The Hermite normal form (HNF) of integer matrices forms

the core of our algorithm for automatically factorizing affine

maps. HNF can be though of as an analog to reduced row

echelon form, but for matrices of integers as opposed to real

IMPACT 2024, January 17, 2024, Munich, Germany Ryan Job, Sanjay Rajopadhye

numbers. We will begin with a definition of the form and

several of its useful properties [11, 14].

Definition 2.1. An𝑚 × 𝑛 integer matrix 𝐻 is in Hermite

Normal Form if it satisfies the following conditions:

1. The leading coefficient of a row (the first non-zero

element) occurs strictly to the right of the leading

coefficient of the row above.

2. All leading coefficients are strictly positive.

3. All entries above a leading coefficient are non-negative

and strictly less than the leading coefficient they are

above.

4. Any rows of zeros are below all other rows.

Lemma 2.2. Let𝑀 be an𝑚 ×𝑛 integer matrix. There exists a
unique𝑚 × 𝑛 integer matrix 𝐻 in Hermite Normal Form such
that 𝐻 = 𝑈 ·𝑀 for some unimodular matrix𝑈 [14].

Definition 2.3. A unimodular matrix is a square, invertible,

integer matrix with determinant of ±1.
From this information, we can derive an alternative for-

mulation of the Hermite Normal Form. We will use this

alternative as the basis for the factorization algorithm.

Theorem 2.4. For every integer matrix𝑀 , there exists a ma-
trix 𝐻 of the same dimension in Hermite Normal Form and a
unimodular matrix𝑈 such that𝑀 = 𝑈 −1 · 𝐻 .

Proof. By lemma 2.2, there exists 𝐻 and 𝑈 such that 𝐻 =

𝑈 ·𝑀 . By definition 2.3,𝑈 is invertible, meaning 𝑈 −1 exists.
Multiplying𝑈 −1 on the left of 𝐻 produces the following:

𝑈 −1 · 𝐻 = 𝑈 −1 · (𝑈 ·𝑀) = 𝑀

□

Whenwe view thesematrices as affinemaps,𝐻 transforms

the domain of the maps to an intermediate space, which𝑈 −1

then transforms into the range of𝑀 . If 𝐻 has rows of zeros,

all vectors in the intermediate space will end in the same

number of zeros. Calculating and retaining these values is

unnecessary, so we will eliminate them.

Theorem 2.5. Let 𝐻 and𝑈 be the matrices produced when
calculating the HNF of some matrix 𝑀 . If 𝐻 contains one or
more rows of zeros, these rows can be eliminated from the bot-
tom of 𝐻 , and the same number of columns can be eliminated
from the right of𝑈 −1 while maintaining𝑀 = 𝑈 −1 · 𝐻 .

Proof. Hermite normal form restricts any rows of all 0’s to

be the bottom rows of 𝐻 . Let𝑚 be the number of such rows.

When𝑈 −1 multiplies 𝐻 on the left, the elements in the right-

most𝑚 columns of 𝑈 −1 will only ever be multiplied with

the elements in the bottom𝑚 rows of 𝐻 . Multiplication by

0 always results in 0. All multiplications are accumulated

using addition, so these products of 0 do not contribute to

the result. Thus, the bottom𝑚 rows of 𝐻 and the rightmost

𝑚 columns of 𝑈 −1 can be dropped without affecting the

result. □

3 Factorization of Affine Transformations
We now describe the algorithm used to factorize affine maps

which all have the same domain. First, we discuss the aug-

mented matrix representation used to represent affine maps,

which handles both size parameters and translations. Sec-

ond, we cover the intution behind the algorithm. Finally, we

present the algorithm itself.

3.1 Augmented Matrix Representation
Affine maps consist of a linear transformation plus a transla-

tion. This is shown in equation 3.

𝑦 = 𝐴𝑥 + 𝑏 (3)

Here, 𝑥 and 𝑦 are, respectively, vectors in the domain and

range of the transformation, 𝐴 represents the linear trans-

formation, and 𝑏 is the translation. We use the widely used

augmented matrix representation, where the input vector

𝑥 is augmented to include a constant 1, and the translation

vector 𝑏 is concatenated as a new column of the linear trans-

formation matrix 𝐴. This is shown in equation 4

𝑦 =
[
𝐴 𝑏

]
·
[
𝑥

1

]
(4)

As in most polyhedral tools, we define spaces using two

kinds of variables: index variables and size parameters. Our
algorithm treats them homogeneously. As a convention, we

simply write the size parameters first and separately track

how many there are.

3.2 Intuition
Recall the 3-dimensional array from equation 1, repeated

below for convenience.

𝑌 [𝑖, 𝑗, 𝑘] = 𝐴[𝑖 + 𝑘] + 𝐵 [𝑖 + 𝑗 + 𝑘]

On the right-hand side of the equation, we have two affine

maps: one to index the input A and the other to index the in-

put B. Both have the same domain: the (𝑖, 𝑗, 𝑘) space defined
by Y. Using our augmented matrix representation, we can

represent these maps𝑀𝐴 and𝑀𝐵 as shown in equation 5.

𝑀𝐴 =
[
1 0 1

]
𝑀𝐵 =

[
1 1 1

] (5)

We can factorize thesemaps such that they have a common

right factor (which we call 𝐻) as shown in equation 6.

𝑀𝐴 =
[
1 0

]
· 𝐻

𝑀𝐵 =
[
1 1

]
· 𝐻

where 𝐻 =

[
1 0 1

0 1 0

] (6)

This common right factor allows us to introduce a new

2-dimensional variable in the same manner as shown in

Reuse Analysis via Affine Factorization IMPACT 2024, January 17, 2024, Munich, Germany

equation 2, repeated below for convenience.

𝑌 [𝑖, 𝑗, 𝑘] = 𝑍 [𝑖 + 𝑘, 𝑗]
𝑍 [𝑥,𝑦] = 𝐴[𝑥] + 𝐵 [𝑥 + 𝑦]

This can be done for any common factor of the maps, but

our goal is to expose the maximum reuse. This means that

the null-space or kernel of the factor must be the intersection

of the null-spaces of the original maps. This holds if and only

if equation 7 holds.

ker (𝐻) = ker

([
𝑀𝐴

𝑀𝐵

])
(7)

Now, consider the row-style HNF. Per Theorem 2.4, we

know that 𝑀 = 𝑈 −1𝐻 . If we simply define 𝑀 as being the

matrix formed by concatenating 𝑀𝐴 and 𝑀𝐵 , as shown on

the right-hand side of equation 7, we now have a way to

compute the desired right-hand factor. The remaining left-

hand factors can then be found as rows of𝑈 −1, completing

the factorization of the original affine maps.

One way to think of this factorization is that we find the

smallest subspace containing all the ranges of the maps. The

common right-hand factor, 𝐻 , defines an affine map from

the original domain of the original maps to this smallest

subspace, referred to as the intermediate space. Then, we con-
struct maps from this intermediate space into the ranges of

each of the original maps using𝑈 −1. Pulling out the common

factor gives us the desired factorization.

3.3 Core Algorithm
We now describe how to factorize a set of affine maps (see

Algorithm 1).

Let 𝑇 = [𝑇1,𝑇2, · · ·] be a list of affine maps, and𝑀𝑖 be the

augmentedmatrix representing themap𝑇𝑖 .We first construct

a single combined matrix𝑀 as shown in equation 8.

𝑀 =

𝑀1

𝑀2

...

 (8)

Next, we calculate the row-oriented HNF of𝑀 and call it

𝐻 . This matrix represents the basis vectors of the interme-

diate space containing the ranges of all the original affine

maps. We assume that this calculation also produces the

matrix𝑈 −1 (represented by𝑄 in Algorithm 1), described pre-

viously in theorem 2.4. We may use any existing algorithm

for calculating these matrices, as there are many versions [4,

13, 14].

From lemma 2.2, 𝐻 will have the same number of rows as

𝑀 . However, if there is reuse among the original affine maps,

𝑀 will be rank deficient, meaning 𝐻 will have at least one

row of zeros. Per theorem 2.4, we can simply drop these rows

from𝐻 along with the associated columns from𝑄 , removing

any unnecessary dimensions from the intermediate space.

The final step in the factorization is to break 𝑄 into the

individual maps from the intermediate space to each of the

ranges of the original maps. Since the range of 𝑄 is the

same as the range of𝑀 , we can simply break up 𝑄 into sub-

matrices 𝑄𝑖 in the same way we constructed 𝑀 from the

matrices𝑀𝑖 , but in reverse. That is, if𝑀𝑖 is stored as rows 𝑗

through 𝑘 of𝑀 , we can form𝑄𝑖 from rows 𝑗 through 𝑘 of𝑄 .

We then represent each of the maps 𝑇𝑖 as the composition

of 𝐻 with 𝑄𝑖 . As 𝐻 is common to all of the maps, it can

be factored out, completing the factorization of the original

affine maps.

Algorithm 1 Algorithm for factorizing affine maps

Input: A list matrices𝑀𝑖 representing affine maps, all with

the same 𝐷-dimensional domain.

Output: A common right factor 𝐻 and left factors 𝑄𝑖 .

1: procedure FactorizeMaps(𝑀0 . . . 𝑀𝑛)

2: 𝑀 ← Concatenate(𝑀0 . . . 𝑀𝑛)

3: 𝐻,𝑈 ← HermiteNormalForm(𝑀)

4: 𝑄 ←MatrixInverse(𝑈)

5: for 𝑟 = Rows(H) −1 . . . 0 do
6: if IsRowOfZeros(𝐻, 𝑟) then
7: 𝐻 ← DropRow(𝐻, 𝑟)

8: 𝑄 ← DropCol(𝑄, 𝑟)

9: end if
10: end for
11: 𝑠𝑡𝑎𝑟𝑡 ← 0

12: for 𝑖 = 0 . . . 𝑛 do
13: 𝑒𝑛𝑑 ← 𝑠𝑡𝑎𝑟𝑡 + Rows(𝑀𝑖)

14: 𝑄𝑖 ← GetRows(𝑄, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑)

15: 𝑠𝑡𝑎𝑟𝑡 ← 𝑒𝑛𝑑

16: end for
17: return 𝐻,𝑄0 . . . 𝑄𝑛

18: end procedure

4 Implementation with isl
The Integer Set Library (isl) is a commonly used tool for

describing and manipulating integer sets in the polyhedral

model, which includes support for affine expressions and

matrix operations [15].We have created a GitHub repository
1

which implements the affine map factorization algorithm

using the islpy library [5]. This is presented as a Jupyter

notebookwith a running example, making it readily available

to a wider community.

Our implementation only uses two of the structures avail-

able for representing affine expressions: the Aff class rep-

resents an affine expression with a single output, and the

MultiAff class is an ordered collection of affine expressions

which each represent one dimension of the multidimensional

output. Each is used either where necessary or most conve-

nient based on the API calls available.

The Mat class represents a matrix in isl. The API already
contains a function to compute the Hermite normal form,

1https://github.com/ryanjob42/FactorizingAffineMaps

https://github.com/ryanjob42/FactorizingAffineMaps

IMPACT 2024, January 17, 2024, Munich, Germany Ryan Job, Sanjay Rajopadhye

Table 1. Alpha Expressions syntax. Binary operators may

be written in infix notation.

Expression Syntax

Constants Constant name or symbol

Operators op

(
Expr

1
, . . . , Expr𝑁

)
Case case Expr

1
; . . . ; Expr𝑁 esac

Restriction D′ : Expr
Dependence Expr.(𝑧 → 𝑓 (𝑧))
Reductions reduce(⊕, (𝑧 → 𝑓𝑝 (𝑧)), Expr)

including both the𝑈 matrix and its inverse (referred to as Q
in the API). isl implements the column-oriented form, so we

transposed all inputs and outputs to match the augmented

matrix representation shown in Section 3.1.

For record keeping to ensure correctness, we used a few

other classes. The Space and LocalSpace classes define the

space in which an expression resides. We opted to use one

versus the other based solely on the requirements of the API.

The Id class represents an identifier for a dimension in a

space. We used it to give each dimension a name so it can be

tracked through the creation and modification of different

objects.

5 Simplifying Reductions
AlphaZ is a tool for exploring program transformations and

optimizations within the polyhedral model [17]. Programs

are specified as equations in the Alpha language as defined

by Mauras [7] and later extended by Le Verge to include

reductions [6], modeled as polyhedral collections of values

combined with an associative and commutative operator to

produce collections of values. Table 1 summarizes the syntax

of Alpha expressions.

Consider the simplest form of a reduction, expressed math-

ematically in equation 9, and in the Alpha code below it.

𝑌 [𝑓𝑝 (𝑧)] =
⊕
𝑧∈D

𝑋 [𝑓𝑟 (𝑧)] (9)

Y = reduce(op, f_p, X[f_r(z)])

It uses two affine functions, a projection function 𝑓𝑝 and a

read function 𝑓𝑟 . The reduction itself is performed over a

polyhedral domain, D, called its body. The read function

maps points in D to points in the domain of 𝑋 , and the

projection function maps these values to points in the output

variable 𝑌 .

AlphaZ includes an implementation of the reduction sim-

plification transformation. Currently, it requires as input a

reuse vector 𝜌 , along which the value of the reduction body ex-
pression is invariant. Given this, the transformation rewrites

the reduction to exploit the reuse, and such that the domains

of the resulting equations asymptotically fewer points. For

equation 9, 𝜌 must belong to the null-space (or kernel) of

𝑓𝑟 (𝑧).
When the reduction body is not as simple as in equa-

tion 9, but an arbitrary expression as specified by the rules

of Table 1, there remains the issue of automatically deter-

mining the space of legal values of 𝜌 . However, the affine

factorization algorithm can be used on the affine dependence

functions, producing a single function for 𝑓𝑟 (𝑧). It is then
straightforward to calculate its null-space and select any

vector 𝜌 in this space. Thus, this manual process can be au-

tomated, eliminating the need for human analysis of reuse

in the reduction body.

5.1 Example Reduction
Consider the reduction in equation 10, which contains the

same expression as shown previously in equation 1.

𝑅 [𝑖, 𝑗] = min

𝑘

(
𝐴[𝑖 + 𝑘] + 𝐵 [𝑖 + 𝑗 + 𝑘]

)
(10)

Computing the entirety of 𝑅 as written would be an 𝑂 (𝑁 3)
operation. However, we can apply affine factorization to

easily find a reuse vector, then apply reduction simplification

to compute 𝑅 in 𝑂 (𝑁 2) time.

Rewriting the indexing expressions in our augmented ma-

trix representation (see Section 3.1) and concatenating them

(see line 2 of Algorithm 1) produces matrix𝑀 as shown in

equation 11.

𝑀 =

[
1 0 1

1 1 1

]
(11)

Computing the HNF and finding the inverse of the uni-

modular matrix (see lines 3 and 4 of Algorithm 1) produces

𝐻 and 𝑄 as shown in equation 12.

𝐻 =

[
1 0 1

0 1 0

]
𝑄 =

[
1 0

1 1

]
𝑀 = 𝑄 · 𝐻

(12)

Since 𝐻 does not contain any rows of zeros, no rows of

𝐻 or columns of 𝑄 need to be dropped (see lines 5-10 of

Algorithm 1). Since each of the original expressions only had

one dimension, we can rewrite them using the appropriate

row of 𝑄 (see lines 11-16 of Algorithm 1). This allows the

reduction to be rewritten as shown in equation 13.

𝑅 [𝑖, 𝑗] = min

𝑘

(
𝑍 [𝑖 + 𝑘, 𝑗]

)
where 𝑍 [𝑥,𝑦] = 𝐴[𝑥] + 𝐵 [𝑥 + 𝑦]

(13)

This reduction is now in the simplified form as shown in

equation 9. To perform reduction simplification, we must

select a reuse vector in the null-space of the read function.

In this case, the read function is the one represented by the

matrix 𝐻 , or equivalently, (𝑖, 𝑗, 𝑘 → 𝑖 + 𝑘, 𝑗). The null-space
contains any vector where −𝑖 = 𝑘 and 𝑗 = 0, so we will

semi-arbitrarily select (1, 0,−1).

Reuse Analysis via Affine Factorization IMPACT 2024, January 17, 2024, Munich, Germany

Table 2. A Subset of the AlphaZ Normalization Rules

Source Expression Replacement Condition

𝑒.𝑓 𝑒 if 𝑓 (𝑧) = 𝑧

(𝑒.𝑓1).𝑓2 𝑒.𝑓 where 𝑓 = 𝑓1 ◦ 𝑓2
𝐷1 : (𝐷2 : 𝑒) 𝐷 : 𝑒 where 𝐷 = 𝐷1 ∩ 𝐷2

(𝐷 : 𝑒).𝑓 𝐷 ′ : (𝑒.𝑓) where 𝐷 ′ = 𝑓 −1 (𝐷)
(𝑒1 ⊕ 𝑒2).𝑓 (𝑒1.𝑓) ⊕ (𝑒2.𝑓)
(𝐷 : 𝑒1) ⊕ 𝑒2 𝐷 : (𝑒1 ⊕ 𝑒2)
𝑒1 ⊕ (𝐷 : 𝑒2) 𝐷 : (𝑒1 ⊕ 𝑒2)
𝑒 ⊕ (case 𝑒1; . . . ; esac) case (𝑒 ⊕ 𝑒1) ; . . . ; esac

Notice that a column 𝑗 of 𝑅 can be implemented as a scan

over the same column of𝑍 . In this case, each point 𝑅 [𝑖, 𝑗] can
be computed as the maximum of 𝑅 [𝑖 + 1, 𝑗] and 𝑍 [𝑖, 𝑗]. The
reuse vector selected indicates this reuse to AlphaZ. Thus,

we can achieve a final 𝑂 (𝑁 2) rewrite of the reduction as

shown in equation 14.

𝑅 [𝑖, 𝑗] =
{
𝑍 [𝑁, 𝑗] if 𝑖 = 𝑁

min

(
𝑅 [𝑖 + 1, 𝑗], 𝑍 [𝑖, 𝑗]

)
otherwise

(14)

6 Factorization Visitor in AlphaZ
AlphaZ implements a normalization transformation origi-

nally described by Mauras as a pass which rewrites expres-

sions according to a set of normalization rules. Table 2 sum-

marizes a subset of these rules [16]. This is implemented as

a visitor over the Alpha abstract syntax tree.

Our goal with the affine factorization algorithm is to de-

velop a new visitor similar to the normalization one. This

would apply the factorization to pull a dependence function

up through the abstract syntax tree. This dependence func-

tion will expose the maximum reuse available. With this,

reduction simplification can be extended to automatically

find vectors in the reuse space.

AlphaZ uses isl to represent and manipulate affine func-

tions, similar to our existing Python implementation of the

affine factorization algorithm (see Section 4). Although Alp-

haZ is written in Java and accesses isl via a foreign function
interface, re-implementing the factorization algorithm will

be relatively straightforward.

7 Related Work
Common subexpression elimination (CSE) is a compiler op-

timization which detects repeated expressions whose value

does not change between executions [12]. At a high level, it

identifies two instances of the same sub-expression where

the input values do not change between the two instances.

The value computed from the first instance is saved and

reused for the second instance, eliminating the re-computation.

The affine map factorization can be used as a new method

for identifying common sub-expressions.

The global CSE implementation by John Cocke performs

CSE at a global level by constructing and analyzing a graph

representation of a program [1]. This can identify common

sub-expressions and indicate whether they can be eliminated,

or at least moved so it is computed a fewer number of times.

Identifying unnecessary computations can also be per-

formed by analyzing the generated assembly. Monniaux and

Six show that, by unrolling the first iteration of a loop, in-

structions which produce the same result can be identified

[8]. Their optimization strategy identifies operations which

only need to be done once in the first, unrolled iteration of

the loop, then removed for all later iterations.

Pasko et al. demonstrated howmultiplication by a constant

scalar or matrix can also be optimized with CSE techniques

[10]. Repeated bit patterns are identified and their partial

results saved. The saved results are combined via a series of

shift and accumulate operations. Applying this optimization

can either allow faster hardware blocks to be synthesized, or

fewer operations needed overall in the case of CPU-based

matrix multiplication.

8 Conclusion
We have demonstrated how affine maps can be factorized to

pull out a single commonmapwith the maximum dimension-

ality kernel. We are working on using this to develop a fully
automatic reduction simplifier. We expect that, other than

this, there are other use cases for dependence factorization,

such as value based common sub-expression identification

and analysis. We hope to promote discussion about what

these use cases may be.

References
[1] John Cocke. 1970. Global common subexpression elimination. ACM

SIGPLAN Notices, 5, 7, (July 1, 1970), 20–24. doi: 10.1145/390013.808
480.

[2] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

International Journal of Parallel Programming, 20, 1, (Feb. 1, 1991),
23–53. doi: 10.1007/BF01407931.

https://doi.org/10.1145/390013.808480
https://doi.org/10.1145/390013.808480
https://doi.org/10.1007/BF01407931

IMPACT 2024, January 17, 2024, Munich, Germany Ryan Job, Sanjay Rajopadhye

[3] Gautam and S. Rajopadhye. 2006. Simplifying reductions. In Confer-
ence record of the 33rd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages (POPL ’06). Association for Com-

puting Machinery, New York, NY, USA, (Jan. 11, 2006), 30–41. isbn:

978-1-59593-027-9. doi: 10.1145/1111037.1111041.
[4] Ravindran Kannan and Achim Bachem. 1979. Polynomial algorithms

for computing the smith and hermite normal forms of an integer

matrix. SIAM Journal on Computing, 8, 4, (Nov. 1979), 499–507. Pub-
lisher: Society for Industrial and Applied Mathematics. doi: 10.1137
/0208040.

[5] Andreas Kloeckner. [n. d.] Islpy 2023.2.5 documentation. Retrieved

Oct. 30, 2023 from https://documen.tician.de/islpy/index.html.
[6] H. Le Verge. 1992. Reduction operators in alpha. In PARLE ’92 Parallel

Architectures and Languages Europe (Lecture Notes in Computer

Science). Daniel Etiemble and Jean-Claude Syre, (Eds.) Springer,

Berlin, Heidelberg, 397–411. isbn: 978-3-540-47250-6. doi: 10.1007/3
-540-55599-4_101.

[7] Christophe Mauras. 1989. Alpha : un langage equationnel pour la
conception et la programmation d’architectures paralleles synchrones.
These de doctorat. Rennes 1, (Jan. 1, 1989). Retrieved Nov. 9, 2023

from https://www.theses.fr/1989REN10116.
[8] David Monniaux and Cyril Six. 2021. Simple, light, yet formally veri-

fied, global common subexpression elimination and loop-invariant

code motion. In Proceedings of the 22nd ACM SIGPLAN/SIGBED Inter-
national Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES 2021). Association for Computing Machinery, New

York, NY, USA, (June 22, 2021), 85–96. isbn: 978-1-4503-8472-8. doi:

10.1145/3461648.3463850.
[9] Louis Narmour, Tomofumi Yuki, and Sanjay Rajopadhye. 2023. Max-

imal simplification of polyhedral reductions. (Sept. 21, 2023). Re-

trieved Oct. 27, 2023 from http://arxiv.org/abs/2309.11826 arXiv:

2309.11826[cs].
[10] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova.

1999. A new algorithm for elimination of common subexpressions.

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 18, 1, (Jan. 1999), 58–68. Conference Name: IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Sys-

tems. doi: 10.1109/43.739059.
[11] Alexander Schrijver. 1998. Theory of Linear and Integer Programming.

John Wiley & Sons, (June 11, 1998). 488 pp. isbn: 978-0-471-98232-6.

[12] Y. N. Srikant Shankar Priti, (Ed.) The Compiler Design Handbook:

Optimizations and Machine Code Generation. CRC Press, Boca Ra-

ton, (Sept. 24, 2002). 928 pp. isbn: 978-0-429-18670-7. doi: 10.1201/9
781420040579.

[13] Arne Storjohann and George Labahn. 1996. Asymptotically fast com-

putation of hermite normal forms of integer matrices. In Proceedings
of the 1996 international symposium on Symbolic and algebraic com-
putation - ISSAC ’96. the 1996 international symposium. ACM Press,

Zurich, Switzerland, 259–266. isbn: 978-0-89791-796-4. doi: 10.1145
/236869.237083.

[14] Vasilios Tourloupis. 2013. Hermite normal forms and its crypto-

graphic applications. University of Wollongong Thesis Collection 1954-
2016, (Jan. 1, 2013). https://ro.uow.edu.au/theses/3788.

[15] Sven Verdoolaege. 2010. Isl: an integer set library for the polyhedral

model. In Mathematical Software – ICMS 2010 (Lecture Notes in

Computer Science). Komei Fukuda, Joris van der Hoeven, Michael

Joswig, and Nobuki Takayama, (Eds.) Springer, Berlin, Heidelberg,

299–302. isbn: 978-3-642-15582-6. doi: 10.1007/978-3-642-15582-6
_49.

[16] Tomofumi Yuki, Vamshi Basupalli, Gautam Gupta, Guillaume Iooss,

DaeGon Kim, Tanveer Pathan, Pradeep Srinivasa, Yun Zou, and San-

jay Rajopadhye. 2012. AlphaZ: a system for analysis, transformation,

and code generation in the polyhedral equational model. https://ww
w.cs.colostate.edu/TechReports/Reports/2012/tr12-101.pdf.

[17] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and

Sanjay Rajopadhye. 2013. AlphaZ: a system for design space ex-

ploration in the polyhedral model. In Languages and Compilers for
Parallel Computing (Lecture Notes in Computer Science). Hironori

Kasahara and Keiji Kimura, (Eds.) Springer, Berlin, Heidelberg, 17–

31. isbn: 978-3-642-37658-0. doi: 10.1007/978-3-642-37658-0_2.

https://doi.org/10.1145/1111037.1111041
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040
https://documen.tician.de/islpy/index.html
https://doi.org/10.1007/3-540-55599-4_101
https://doi.org/10.1007/3-540-55599-4_101
https://www.theses.fr/1989REN10116
https://doi.org/10.1145/3461648.3463850
http://arxiv.org/abs/2309.11826
https://arxiv.org/abs/2309.11826 [cs]
https://doi.org/10.1109/43.739059
https://doi.org/10.1201/9781420040579
https://doi.org/10.1201/9781420040579
https://doi.org/10.1145/236869.237083
https://doi.org/10.1145/236869.237083
https://ro.uow.edu.au/theses/3788
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://www.cs.colostate.edu/TechReports/Reports/2012/tr12-101.pdf
https://www.cs.colostate.edu/TechReports/Reports/2012/tr12-101.pdf
https://doi.org/10.1007/978-3-642-37658-0_2

	Abstract
	1 Introduction
	2 Hermite Normal Form
	3 Factorization of Affine Transformations
	3.1 Augmented Matrix Representation
	3.2 Intuition
	3.3 Core Algorithm

	4 Implementation with isl
	5 Simplifying Reductions
	5.1 Example Reduction

	6 Factorization Visitor in AlphaZ
	7 Related Work
	8 Conclusion

