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Abstract
Polyhedral Schedulers have been widely used for loop opti-
mization in general-purpose compilers and, more recently,
deep-learning compilers. State-of-the-art scheduling algo-
rithms define a vast space of loop transformations and find
an optimal solution according to pre-designed cost functions.
However, this Integer Linear Programming (ILP) approach
can sometimes have complexity issues. The resolution time
of ILP grows rapidly as the size of the problem increases.
The complexity of the kernel to optimize, in terms of the
number of statements, loops, and dependencies, has a signif-
icant impact on solving time. Additionally, the performance
of ILP solvers can be severely impacted by big coefficients
in the ILP, which mostly come from the loop bounds in the
original kernel.
To tackle this issue, this paper introduces a technique

called "ParameTrick". This technique is used during the sched-
uling pipeline to replace some large coefficients with parame-
ters, which are new variables in the ILP model. The approach
is analyzed to determine its impact on the solving time, as
well as the transformations that are lost and how to limit
the number of unfeasible transformations. Results show that
ParameTrick leads to faster solving times while the space of
dropped desirable solutions is limited.

Keywords: polyhedral scheduler, polyhedral optimization,
integer linear programming

1 Introduction
The polyhedral model has been widely used in optimizing
compilers. In recent years, it has become fundamental in
deep learning frameworks such as Pytorch [7] (using Tensor
Comprehension [11]) or MindSpore [4] (using AKG [13]).
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Polyhedral optimization can expose parallelism and improve
data locality by exploiting different architectural features.

Polyhedral optimization relies on an algebraic representa-
tion, using polyhedrons (set of affine constraints) to express
concepts such as domain (iteration space), dependencies (or-
dering relations between different iterations), and scheduling
(complete execution order of the domain). This representa-
tion makes applying classic loop transformations (skewing,
tiling, permutation, etc.) possible using linear algebra trans-
formations.

The main challenge of this technique is to find a transfor-
mation that fully exploits architectural features to maximize
performance. Polyhedral schedulers (such as Pluto [2][3], isl-
scheduler [12], Feautrier [6]) use ILP (integer linear program-
ming) to automatically find performant loop transformations
that preserve semantics. The complexity of the scheduler con-
sists of defining meaningful affine cost functions that guide
the search for an optimal transformation. While this part of
the research remains open, we tackle another aspect of the
complexity of solving ILP problems in this paper. As poly-
hedral optimization is part of bigger complex compilation
pipelines, it is required to minimize the time to find optimal
transformations. ILP solving time can significantly increase
with an increase in the number of constraint variables or the
coefficient values. In polyhedral optimization, the number
of constraints and variables grows with the number of state-
ments and for-loops of the input program. Additionally, big
loop-bound values and complex data accesses can result in
larger ILP coefficients.
This paper presents ParameTrick, a simple preprocessing

step that reduces complexity due to coefficients related to
large loop-bounds. It may decrease the number of constraints
in ILP problems and restrict the exploration space. Thanks
to this trick, we will show how the compilation time can be
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consistently decreased while minimally limiting the transfor-
mation space. Our results first show the compilation speedup
obtained in some of the PolyBench [9] dataset cases and some
real cases from the MindSpore [4] pipeline. Furthermore, we
show how, thanks to this technique, we can find solutions
to problems that would normally become untreatable.

In Section 2, we will briefly describe polyhedral optimiza-
tion. In Section 3, we describe ParameTrick technique and
its limits. In Section 4, we show our result analysis on Poly-
bench (Section 4.1) and some tests coming from MindSpore
(Section 4.3). Finally, a summary and some future ideas are
proposed in Section 5.

2 Background
Polyhedral optimization is a technique applied for loop trans-
formations, and it can be divided into three main entities:
polyhedral representation, polyhedral Scheduler, and poly-
hedral code generation.

• The polyhedral representation is an algebraic represen-
tation of the kernel to optimize, composed of domain,
dependencies, and scheduling functions.

• The polyhedral Scheduler is an algorithm that takes
the polyhedral representation as input and tries to find
a new execution order (transformation) of the loop
iterations. This is an automatic algorithm based on ILP
formulation

• The code generation (not discussed in this paper) fo-
cuses on generating the code that respects the trans-
formation found by the polyhedral scheduler.

2.1 Polyhedral Representation
The polyhedral representation chooses to represent the for-
loop-based computations using polyhedrons (expressed as a
set of constraints).

In the representation, we can find three main components.

2.1.1 Domain The domain expresses exactly the set of
iterations executed by the kernel. This is represented as a
polyhedron, where each constraint is an affine combination
of iterators and (if needed) parametric loop bounds.

The Domain for a given statement S can bemathematically
represented as follows:

D𝑆 ( ®𝑁 ) =
 ®𝑖𝑡

������ 𝑀𝑆 · ©­«
®𝑖𝑡
®𝑁
1

ª®¬ ≥ 0


where ®𝑖𝑡 is the vector of iterators surrounding the state-
ment, ®𝑁 is a vector of parametric constants (normally used
for the loop bounds), and 𝑀𝑆 is a matrix of integer coeffi-
cients defining the polyhedron.

2.1.2 Dependency Polyhedral data dependencies describe
ordering relationships between iterations. When accessing

multiple times the same memory location in different iter-
ations, if at least one of the accesses is a write, we have a
dependency: a dependency 𝛿𝑆→𝑅 specifies that the statement
S must be executed before the statement R to preserve the
semantic.
The dependency is defined on a set of iterations of the

two statements. The set of these constraints composes a
polyhedron similar to the Domain:

𝛿𝑆→𝑅 =


(
®𝑖𝑡𝑆 , ®𝑖𝑡𝑅

) �������� 𝑀𝑆→𝑅 ·
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®𝑁
1
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
where ®𝑁 is a vector of parametric constants, ®𝑖𝑡𝑆 ∈ 𝐷𝑆 ( ®𝑁 ) (it-
eration of Statement S), ®𝑖𝑡𝑅 ∈ 𝐷𝑅 ( ®𝑁 ) (iteration of Statement
R).

2.1.3 Scheduling Functions The scheduling functionmaps
each statement iteration to a specific multi-dimensional date.
The scheduling defines a total order using a lexicographic
representation. Given a statement S, the scheduling function
Θ𝑆 is defined as a combination of scheduling dimension 𝜙𝑆,𝑖 :

Θ𝑆 : D𝑆 ( ®𝑁 )
®𝑖𝑡

→ N𝑚
↦→ (𝜙𝑆,0 ( ®𝑖𝑡) ... 𝜙𝑆,𝑚−1 ( ®𝑖𝑡))

wherem is the number of scheduling dimensions, and 𝜙𝑆,𝑖
are defined by:

𝜙𝑆,𝑖 ( ®𝑖𝑡) = 𝑇𝑆,𝑖 ·
©­«
®𝑖𝑡
®𝑁
1

ª®¬ (1)

where 𝑇𝑆,𝑖 is the transformation vector, with ®𝑖𝑡 being the
vector of iterators surrounding the statement S and ®𝑁 the
vector of parametric constants of the kernel.

2.2 Polyhedral Scheduler
The polyhedral scheduler objective is to find a loop transfor-
mation, a scheduling function transformation that reorders
the iteration execution, preserving the semantics while op-
timizing a pre-designed cost function. The cost functions
normally focus on performance-related objectives, such as
data locality and parallelism.

The Scheduling problem is expressed using ILP representa-
tion. Most of the known for-loop transformations can be rep-
resented simply through linear transformations of the initial
schedule. Different state-of-the-art schedulers, mainly differ
because of the different approaches (iterative like Pluto [2][3],
isl-scheduler [12], and [6], or one-shot such as [10]), and dif-
ferent cost functions
The polyhedral scheduler aims to determine the optimal

Θ𝑆 , specifically the 𝜙𝑆,𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1) that compose it. The
variables of the ILP problem are composed of the coefficients
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of the transformation matrix 𝑇𝑆,𝑖 shown in Equation 1, plus
some cost functions if necessary.

Among the cost functions and constraints defined in state
of the art, the validity constraint is the fundamental one
because it guarantees the transformation legality (semantic
preservation).

2.2.1 Validity Constraint The validity constraint (intro-
duced by Feautrier [6]) ensures that 𝑇𝑆,𝑖 will preserve the
semantics of the program. It is defined for each dependency
𝛿𝑆−>𝑅 , and it constraints T to be scheduled after S.,

The constraint for the full scheduling function Θ𝑆 and Θ𝑇

can be represented as follows:

( ®𝑖𝑡, ®𝑖𝑡 ′) ∈ 𝛿𝑆→𝑅 ⇒ Θ𝑅 ( ®𝑖𝑡
′) ≻ Θ𝑆 ( ®𝑖𝑡)

The ≻ stands for lexicographically greater. Considering
that each Θ is composed by a set of 𝜙𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1),
the validity constraint expressed on the single dimensional
component 𝜙𝑖 becomes:

( ®𝑖𝑡, ®𝑖𝑡 ′) ∈ 𝛿𝑆→𝑅 ⇒ 𝜙𝑅,𝑖 ( ®𝑖𝑡
′) ≥ 𝜙𝑆,𝑖 ( ®𝑖𝑡) (2)

that, thanks to the definition given in Equation 1, can be
written as:

𝑇𝑅
𝑖 ∗

©­­«
®𝑖𝑡𝑅
®𝑁𝑅

1

ª®®¬ −𝑇 𝑆
𝑖 ∗

©­­«
®𝑖𝑡𝑆
®𝑁 𝑆

1

ª®®¬ ≥ 0 (3)

The two vectors 𝑇 𝑆
𝑖 and 𝑇𝑅

𝑖 are the variables of our ILP
problem, but as we may notice, the constraint is not linear.
Farkas lemma must be applied to obtain linear constraints,
as shown in [6].

3 ParameTrick
ParameTrick consists of a simple simplification applied dur-
ing the Scheduling process. As shown in section 2, the poly-
hedral Scheduler solves ILP systems, composed of constraints
such as the Validity one, coming from the dependencies. The
complexity of the ILP depends on several factors:

• number of dependencies: the number of dependencies
impacts the number of constraints. The more depen-
dencies we have, the more constraints will compose
the ILP.

• number of statements and their dimensionality: these
two factors directly impact the number of variables of
the ILP.

• the numerical complexity of the constraints: this de-
pends on the numerical complexity of the dependen-
cies. Big coefficients in the original dependencies may
bring many complex constraints, especially consider-
ing that Farkas lemma and Fourier Motzkin Elimina-
tion are applied to the Validity constraint and other
cost functions.

Kernel

for ( i = 0 ; i <= 5 3 7 ; i ++ ) {
S : c [ i ] = b ;

for ( j = 0 ; j <= 5 3 7 ; j ++ ) {
R : d [ i ] [ j ] = c [ i ] ;

}
}

Domain
𝐷𝑆 =

( 1 0
−1 537

) (
𝑖𝑆

1
)
≥ 0

𝐷𝑅 =

( 1 0 0
−1 0 537
0 1 0
0 −1 537

) (
𝑖𝑅

𝑗𝑅

1

)
≥ 0

(a) Initial Kernel and Domains

Dependency 𝛿𝑆→𝑅©­­­«
1 0 0 0
−1 0 0 537
0 1 0 0
0 −1 0 537
0 0 1 0
0 0 −1 537
1 −1 0 0
−1 1 0 0

ª®®®¬
(
𝑖𝑆

𝑖𝑅

𝑗𝑅

1

)
≥ 0

Validity Constraint( 0 0 537 −1 1 0
0 0 0 −1 1 0

−537 537 537 −1 1 0
−537 537 0 −1 1 0

) ©­­­­«
𝑡_𝑖𝑆
𝑡_𝑖𝑅
𝑡_𝑗𝑅
𝑡_1𝑆
𝑡_1𝑅
1

ª®®®®¬
≥ 0

(b) Before ParameTrick

Dependency 𝛿𝑆→𝑅

©­­­­«
1 0 0 0 0
−1 0 0 1 0
0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0
1 −1 0 0 0
−1 1 0 0 0
0 0 0 1 0

ª®®®®¬
©­­«
𝑖𝑆

𝑖𝑅

𝑗𝑅

𝑁
1

ª®®¬ ≥ 0

Validity Constraint

( 0 0 1 −1 1 0 0 0
0 0 0 −1 1 0 0 0
−1 1 1 −1 1 0 0 0
−1 1 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0

) ©­­­­­­­«

𝑡_𝑖𝑆
𝑡_𝑖𝑅
𝑡_𝑗𝑅
𝑡_𝑁𝑆

𝑡_𝑁𝑅

𝑡_1𝑆
𝑡_1𝑅
1

ª®®®®®®®¬
≥ 0

(c) After ParameTrick (N = 537)

Figure 1. Simple kernel and respective domain representations (a), the
dependency and the corresponding validity constraints after Farkas-lemma
and Fourier Motzkin Elimination (b). Finally, the dependency and the

validity constraints after applying ParameTrick (c)

ParameTrick addresses the third factor, reducing the nu-
merical complexity of the ILP problem. It replaces all the
dependency polyhedron’s large constant coefficients (loop
bounds) with new parameters (that will be added as new
columns). This reduces the presence of large coefficients in
the dependencies but increases the number of variables in
the ILP.

If the transformation contains a parametric shifting (where
the parameter has been introduced by ParameTrick), we fi-
nally substitute it with the original coefficient.

The pre-processing step significantly impacts the solving
time of the ILP because it simplifies the constraint system.
Additionally, this trick ensures that only actual dependencies
are present because we use the real bounds during the depen-
dency analysis, allowing for precise dependency detection.
If we substituted the loop bounds before the dependency
analysis, we could detect some extra dependencies.

This trick simplifies the ILP solver work but can lead to the
exclusion of some transformations. This strongly depends on
the constraints that we add for each parameter introduced.
The naive method would be to add no information about
the parameters. However, adding more constraints (for ex-
ample, specifying that a parameter is greater than 0 or the
relation between different parameters) allows us to findmore
solutions in general but increases the compilation time.

In Fig. 1, we show a basic kernel with the corresponding do-
main (a), dependency, and Validity constraint deriving from
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Input Kernel

for ( i = 0 ; i < 1 5 ; i ++ ) {
for ( j = 0 ; j < 1 0 ; j ++ ) {

S : A[ i ] [ j ] = 0 ;
}

}

Collapsed Kernel

for ( i = 0 ; i < 1 5 0 ; i ++ ) {
S : A[ i / 1 0 ] [ i %10] = 0 ;
}

Initial Schedule
Θ𝑆 = [𝑖, 𝑗]

Collapsed Scheduling
Θ𝑆 = [10𝑖 + 𝑗]

Figure 2. Loop Collapsing example: in this figure, we can see the loop
collapsing transformation (top) and the corresponding schedule

transformation (bottom)

dependency (b). As visible, even from a trivial dependency as
the one in the example, we can see that the corresponding va-
lidity constraint is numerically complex. In Fig. 1(c), we show
the corresponding dependency after applying ParameTrick
(substituting the loop bound 537 with a parameter N ) and
the derived Validity constraint. The numerical complexity
of the matrices (both the dependency one and the constraint
one) decreased. On the other side, the number of variables
increased. We need to add the parameters introduced by our
technique for the dependency. For the validity constraint, we
need to add, for each statement, a variable for each parame-
ter introduced. These variables are used to obtain parametric
shifting.

Even though the transformation looks trivial, it can strongly
impact the total Scheduling compilation time. The majority
of the scheduler time is spent inside the ILP solver. Simplifica-
tions as ParameTrick can tremendously decrease the solving
time, especially when the input kernel contains many depen-
dencies that could become untreatable when building the
ILP problem.

3.1 Limitations
ParameTrick objective is to decrease the complexity of the ILP
solver, but in reality, this can also reduce the space of possible
transformations. In other words, ParameTrick narrows down
the set of scheduling transformations that the scheduler can
find, similar to how input kernels with only parametric loop
bounds would limit the scheduler search space.

The main transformation that is dropped is loop collapse.
Focusing on Fig. 2 example, we can see that the collapse
scheduling transformation consists of a skewing where the
skew coefficient is the initial loop bound.
If we apply ParameTrick, using, for instance, 𝑁 = 15 and

𝑀 = 10, we cannot find internally the same collapse. This
should correspond to:

Θ𝑆 = [𝑀 · 𝑖 + 𝑗]
but𝑀 ·𝑖 is not an affine transformation in the form described
in Equation 1.
When we substitute the loop bounds with parameters,

we lose several transformations because of the loss of pre-
cise information. To preserve some of these transformations,
we can introduce simple domain constraints, for instance,

𝑁 > 0, and relational constraints like 𝑁 > 𝑀 . However,
even with these constraints, it may not always be enough,
especially with more complex dependencies. In some cases,
it may be necessary to know the exact difference between
the parameters or other relations, but this would increase
the complexity of the problem, thereby losing some of the
benefits of our approach.

4 Results
4.1 PolyBench
In this section, we present the results of our experiments on
PolyBench [9] benchmark, where we applied ParameTrick
to improve the compilation time. We used PolyTOPS [5]
scheduler, specifying the Pluto-like configuration (based on
Pluto [2][3]), using the ILP solver provided by isl-0.25 for
the experiments.
PolyBench is a benchmark containing 30 kernels from

different domains, such as data mining, linear algebra, stencil
applications, etc. This benchmark has been extensively used
for comparisons in the state-of-the-art schedulers because
it contains the most common characteristics of different
domains. Notice that, in our benchmarks, we excluded adi,
nussinov, deriche, and ludcmp because they contain a reversed
loop. Our scheduler, similarly to Pluto, cannot schedule such
a case, and it would simply fall back to the initial schedule.
All the PolyBench cases are, by default, parametric. To

show the benefits of ParameTrick in our experiment, we ap-
plied a preprocessing that substitutes the parametric loop
bounds with the corresponding constants (using the val-
ues provided by the Large dataset defined in Polybench).
This means that the whole pipeline, including the final code
generation, is applied to the non-parametric version of the
programs. Moreover, ParameTrick introduces parameters
only internally to the schedule, but we substitute them with
the corresponding constant in case of parametric shifting.

In the results, we decided to show three different cases:
• Original: for this case, we did not apply ParameTrick.
• p-trick: in this case, we applied ParameTrick, adding
the inequalities specifying that our parameters are
positive.

• p-trick-extra: for this evaluation, we use ParameTrick,
adding inequalities on the positivity of the parameters
and constraints specifying the relationship (greater or
smaller) between the different parameters.

For the experimental evaluation, we used a workstation
with Intel Xeon E5-2683 CPU (x86 64), with 2 sockets with
16 cores each (2 threads for each core). 80 MiB of L3 cache.
The compiler is gcc-10.5

4.1.1 Compilation Time Table. 1 shows the compilation
time speedup applying ParameTrick on PolyBench test cases.
The most relevant speedups are coming from cases with com-
plex dependencies in general or a high number of statements
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Compilation Execution

Case Original
Time (ms)

Speedup
(original / p-trick)

Speedup
(original / p-trick-extra)

Speedup
(original / p-trick)

Speedup
(original / p-trick-extra)

3mm >600000 >3636.32 >176.67 n.a. n.a.
correlation 2201.4 2.31 0.09 25.12 1
cholesky 9032.07 151.43 147.72 2.05 2.23
lu 14774.03 263.04 291.1 1.61 1.61
floyd-warshall 11820.16 391.19 386.67 1.27 1.27
bicg 19.04 0.91 0.73 1 1
covariance 887.05 5.63 2.41 1 1
fdtd-2d 650.69 6.86 5.47 1 1
gemm 22.49 1.01 0.59 1 1
gemver 3282.38 107.28 106.12 1 1
gesummv 29.96 0.93 0.93 1 1
heat-3d 751.84 4.41 4.2 1 1
jacobi-1d 30.97 1.23 1.22 1 1
jacobi-2d 351.02 5.33 4.82 1 1
mvt 11.35 0.91 0.94 1 1
seidel-2d 51.89 0.97 0.9 1 1
syr2k 22.25 0.99 0.79 1 1
syrk 20.93 0.92 0.73 1 1
trisolv 23.15 1.09 1.08 1 1
trmm 31.14 1.02 0.61 1 1
2mm 2523.95 35.93 5.53 0.8 1
gramschmidt 274.84 1.53 0.32 0.79 0.79
symm 322.79 4.55 3.5 0.78 0.78
atax 59.94 2.12 1.28 0.76 1
doitgen 3984.24 34.59 7.6 0.08 0.08
durbin 195.04 2.79 2.67 0.00002 0.00002

Table 1. PolyBench original compilation time (left) and execution time (right) and speedup using two different versions of ParameTrick. p-trick when enabled
with basic constraints. p-trick-extra when enabled with additional constraints between parameters. The highest speedups among the two methods are in

bold. The timing is in milliseconds (ms). For these results, isl-solver has been used to solve the ILP problem.

or dimensionality. We can notice tremendous speedups in
cases like 3mm, cholesky, doitgen, floyd-warshall, gemver, lu.
In some cases, we can notice a slowdown, which can be

explained by the fact that the kernels are really simple (and
the compilation time is paltry). In these cases, the numerical
simplification is unimportant, while adding variables (by
adding parameters) has a negative impact.

Furthermore, we can highlight how p-trick performs gen-
erally better than p-trick-extra. The last method introduces
some extra information about the relation between different
parameters, describing the dependency polyhedron more
precisely. This allows us to find some solutions that cannot
be found without this extra information, but it increases the
complexity of the problem.

4.1.2 Execution Time In the previous subsection, we
showed the strong impact of ParameTrick on the compilation
time. For a complete analysis, we need to analyze the impact

of the scheduling transformation that is found to understand
what kind of opportunities are lost.

For these results, we simply compared the execution time
of the different transformations found in the three different
modalities (original, p-trick, and p-trick-extra). Our pluto-
like scheduler uses the Proximity cost function and Validity
constraint. Similarly to Pluto, it applies some post-processing,
such as tiling (using a default size of 32), intra-tile optimiza-
tion, and wavefront skewing when necessary. The final code
is generated using Cloog [1] using OpenMP to generate par-
allel loops.

For cases like doitgen, durbin, floyd-warshall, gramschmidt,
symm, cholesky the transformation found is different be-
cause, without ParameTrick, the scheduler would apply a
loop collapse (or, more in general, a skewing depending on
the loop bound). For durbin in particular, we can notice a
relevant slowdown. In this case, without ParameTrick we
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Figure 3. Compilation time (seconds), with (in red) and without (blue)
ParameTrick, changing the dataset size (loop bounds). For the experiments,

isl ILP solver has been used.

can apply tiling and find parallelism, which is not possible
when using ParameTrick. For doitgen, similarly to durbin,
without ParameTrick, we can find external loop parallelism
and tile more dimensions (obtaining bigger loop bands). For
correlation, on the contrary, we obtain a significant speedup
from some interchanges and different shifting choices. For
floyd-warshall and cholesky instead, we obtain good speedup,
even if the solution would be suboptimal if we do not apply
ParameTrick.
For cases as correlation, 2mm, and atax, p-trick-extra can

find the same original solution, but p-trick cannot because
there is a shifting that cannot be applied without knowing
the relation between the different parameters. Even though
the different solution is sub-optimal in general, it is inter-
esting to notice that in correlation, the sub-optimal solution
(considering the Proximity cost function [2]) is in practice
much faster in execution time. For 3mm, verifying if the
transformation found is the same was impossible because
the original version takes an indefinite time. The schedul-
ing transformation remains the same for all the other cases
(where we obtain a speedup of 1).

4.2 Dataset Size Analysis
This section analyses the relationship between dataset size
(i.e., loop bounds sizes) and compilation time (excluding
ParameTrick). To conduct the tests, we begin with the large
dataset sizes as defined in polybench and then increase the
loop bounds by a factor indicated on the axis (for instance,
2xlarge is equivalent to large, but with each loop bound
multiplied by 2).

In Fig. 3, we can see that for 2mm, covariance, and gemver,
the compilation time is greatly impacted by the loop-bounds
size. ParameTrick has the advantage of being completely in-
variant to this factor, remaining constant for all the possible

Case Original
Time (ms)

Time (ms)
(p-trick)

Speedup
(p-trick)

batch_norm >600000 9764 >61.45
two2fractal_v1 96519 78 1237.42
two2fractal_v2 105 51 2.05
two2fractal_v3 344 28 12.29
maxpool_grad_v1 5583 2333 2.39
force_grad 381 180 2.12
max_pool_grad_v2 >600000 529 >1134
hpl_cholesky 9291 121 76.78
hpl_lu 29396 97 303.05

Table 2. Compilation time for some AKG [13] input cases. Original
compilation time, compilation time using ParameTrick (p-trick), and the
speedup. FPL-16.0.6 [8] has been used as ILP-solver. The transformation
found is the same when enabling/disabling ParameTrick for all the cases, so

no performance analysis has been provided.

loop bounds values. On the other hand, we can see that
cases like fdtd-2d are not really impacted by the loop bounds
variation.

The size analysis requires further analysis to be explained
in detail because, as we can see, the compilation time growth
changes depending on the input, suggesting that some depen-
dencies (and some particular polyhedrons) are more variant
to the increase of the loop bounds. Furthermore, we think
GMP internal representation can play a fundamental role in
these slowdowns, but we leave this analysis for the future
since the GMP overhead is given by isl. To obtain a precise
analysis, this will require a deep look into isl implementation,
gathering information about GMP usage for each use case.
We want to remark that we used isl instead of FPL for

this analysis because, in this case, isl outperforms FPL. We
noticed that while FPL scales better than isl when the ILP
number of variables increases, isl can handle the increase of
numerical complexity better than FPL.

4.3 MindSpore AKG
The ParameTrick is not limited to simple benchmarks such
as PolyBench and can be applied in real applications such as
AKG [13] in MindSpore [4]. MindSpore is a deep-learning
framework that can be used, similarly to Pytorch and Ten-
sorflow, to define deep-learning models.
AKG is the deep-learning compiler used to lower and

optimize the operators of the model. Its optimization re-
lies on polyhedral optimization. Minimizing the compilation
time without losing essential optimization opportunities is a
key objective in deep learning compilers. A method such as
ParameTrick has a lot of value in such an environment be-
cause it can tremendously reduce the full compilation time of
deep learning models. The tradeoff is minimal, losing almost
no important transformations, especially considering the
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simplicity of deep learning operators, which rarely require
complex transformations.
Table 2 shows the benefits obtained using ParameTrick

to some realistic use cases, showing noticeable speedups.
In these experiments, we used FPL-16.0.6 [8] as ILP-solver
to show that the impact of ParameTrick is preserved even
on a more recent solver. The cases shown come from the
composition of real deep learning operators from some of the
most used deep learning models, such as Resnet, Bert, and
Transformers. For some cases, the compilation time is a few
hundred milliseconds, but considering that a deep learning
model can be composed by thousands of these operators,
speedups such as the one showed in 2 are quite impressive.
In this scenario, the final scheduling transformation is the same,
enabling or disabling ParameTrick, so no further performance
analysis is presented.

5 Conclusion
In this paper, we discussed a simple technique, ParameTrick,
that can be applied to mitigate the compilation time spent
during polyhedral scheduling. Our method temporarily sub-
stitutes numerical loop bounds with parametric ones during
the scheduling phase. If the final scheduling transforma-
tion contains some parametric solutions, we substitute the
parameters with the original constant. This simplifies the
numerical complexity of the ILP formulated, achieving great
speedup in the overall compilation time for several input
cases from PolyBench and, similarly, for some cases from the
AKG pipeline. The drawback of this technique is the reduc-
tion of the space of possible transformations that may lead
to suboptimal solutions. We showed that in PolyBench, our
technique can lose some good optimization opportunities,
but in most cases, it does not affect the execution perfor-
mance while drastically reducing the compilation time. Fur-
thermore, thanks to our technique, we can deal with input
problems that would be untreatable otherwise, as shown for
3mm from PolyBench and in two cases coming from the AKG
scenario. Our work shows the benefits of ParameTrick and
indirectly highlights the different optimization opportunities
lost when using such a technique or when the input kernel
contains parametric bounds.

For future work, we strongly believe that a deep analysis
of the impact of different loop bounds on the different ILP
solvers’ compilation time would be extremely interesting
to understand better the benefits of ParameTrick. Moreover,
some of the PolyBench examples highlighted how, in some
cases, we can obtain better solutions (in execution time)
that are suboptimal considering the Proximity cost function.
In the future, we would like to investigate these cases to
understand the limitations of Pluto’s cost function and how
to overcome them.
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