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Abstract
Simulation of electrical circuits in real-time requires very
short latency implementations that can be achieved only on
special-purpose hardware accelerators. The heart of such al-
gorithms is a matrix-vector multiplication between the in-
verse of the admittance matrix of the circuit and of its cur-
rent state vector, yielding the next state vector. The main
difficulty is to obtain the inverse of the admittance matrix
in real-time, as this matrix depends on the state–open or
closed–of the switches of the circuit. We consider here the
problem of obtaining a new inverse matrix, using the Sher-
man-Morrison update algorithm, and we explain how va-
rious VHDL implementations of this algorithm can be ob-
tained from a high-level, polyhedral equational, description
of the circuit.

Keywords: Simulation of Electrical Circuits, PolyhedralMo-
del, Sherman-Morrison Formula, vhdl, fpga

1 Introduction
The simulation of electrical circuits in real-time is used in
many applications [3, 14]. Real-time simulations are often
needed, for example, when some parts of the system under
design are replaced by a simulator.

Inmostmethods, electrical simulation amounts to solving
a linear system 𝐴𝑥 = 𝑏 where 𝐴 is the admittance matrix of
the circuit, 𝑏 is the values of currents and voltages of the
circuit at a given instant of time, and 𝑥 is (the vector of)
the current and voltages after a small time step. The values
of the 𝐴 matrix represent the admittance (reciprocal of the
resistances, basically) of the edges of the circuit, represented
as a graph. One step of simulation is to compute 𝑥 = 𝐴−1𝑏,
which requires to compute the inverse of 𝐴.

However, electrical circuits contain switches, the admit-
tance of which may be modified from one step to the next
one, if the status (open vs. closed) of the switch changes.
Thus, matrix 𝐴−1 may change from one step to the next.
IMPACT 2024, January 17, 2024, Munich, Germany
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For real-time simulations, current electrical simulators are
implemented on fpga platforms which provide the low la-
tency needed aswell as resources to execute in parallel some
calculations. In practice, when the size of the circuit is small
enough, inverse matrices 𝐴−1 are pre-computed and stored
on the memory of the fpga, but this is of course limited by
the size of the circuit, and by the number of switches that it
contains.
An alternative is to update the inverse of the 𝐴 matrix

when the state of some switches changes. But, without op-
timization, the 𝑂 (𝑁 3) complexity of matrix inversion pre-
vents such a method to be done in real-time, on the current
fpga platforms.
Implementing such an algorithm on a fpga is not an easy

task, even with modern high-level synthesis tools that are
more an more often used. This task requires the exploration
of several solutions, to make sure that under the limited re-
sources of the fpga platform, the performance of the design
meets the requirements of the application. Besides, the nu-
merical stability of the chosen algorithm has to be ensured,
since simulations may last several hours or even days.
In this paper, we explore the automatic generation of syn-

thesizable vhdl code for the 𝑂 (𝑁 2) Sherman-Morrison al-
gorithm [25] for incremental matrix inversion, in the con-
text of electrical circuit simulation, using an approach based
on the Polyhedral Equational Model. In this model, calcula-
tions are expressed as recurrence equations that can be seen
as single-assignment statements describing the problem to
solve. We use tools based on the alpha language [10, 22],
one of the long-standing vehicles for this approach. Our
contribution is to present a fully automatic design flow that
starts from an alpha description and produces in a few sec-
onds, a vhdl program which can be synthesized for a fpga.
This paper is organized as follows. In Section 2, we present

the context of this research, the simulation of electrical cir-
cuits. Section 3 describes the Sherman-Morrison formula.
The Polyhedral Equational Model is presented in Section 4,
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2.4.1 Onduleur triphasé 2 niveaux 

Le premier modèle à l’étude est un onduleur triphasé 2 niveaux [15]. Le circuit est 

représenté à la figure 2-1. 

 

Figure 2-1: Schéma onduleur 2 niveaux 

En faisant la modélisation à l’aide de l’approche MNA, on observe que le modèle possède 

11 nœuds et 5 sources de tension (V+, V-, Va, Vb, Vc). La matrice A sera donc une matrice 

de dimension 16×16 et le modèle sera le suivant : 

 

V+ 

V- 

Va 

Vb 

Vc 

Figure 1. Electrical circuit of a power converter, containing
a power source and 6 switches noted 𝑆1 to 𝑆6

together with the alpha language and associated tools. Sec-
tion 5 describes a first implementation of the Sherman-Mor-
ri-son algorithm using alpha. The translation to vhdl is ex-
plained in Section 6. In Section 7, we present an optimized
version of the Sherman-Morrison formula, in the context of
the electrical simulation. Section 8 is devoted to results. In
Section 10, we discuss some aspects of this work, and Sec-
tion 11 concludes and presents some future research direc-
tions.

2 Simulation of Electrical Circuits
Fig. 1 shows the schematics of the electrical circuit of a po-
wer converter.

Simulating the behaviour of such a circuit amounts to
solve the linear system 𝐴𝑥 = 𝑏 to obtain, from the current
voltage and current vector𝑏, the new values 𝑥 of these quan-
tities.

When the electrical circuit contains switches–as is the
case in this power-converter,–the 𝐴 matrix may change be-
tween two simulation steps, since switches aremodeled by a
resistance, very high when the circuit is open, and very low
otherwise. The matrix 𝐴, being dependant on the switches
states, requires an inversion at every switch state change.

The real-time simulation of such a circuit can be done on
a fast accelerator, for example, a fpga platform, but to reach
the low latency required by real-time, one has either to store
all possible values of the 𝐴−1, which can be done if the cir-
cuit is small enough, or to re-compute 𝐴−1 as needed.

In general, the complexity of solving a linear system of
size 𝑁 is𝑂 (𝑁 3). However, in the particular case of a circuit
simulation, only a few elements of the 𝐴 matrix change.

In the example shown by Fig. 2, the 𝑔1 value corresponds
to the admittance of switch 𝑆1 of Fig. 1, and this value only
appears in elements 𝑎11, 𝑎31, 𝑎13 and 𝑎33 of matrix 𝐴.
Therefore, it is interesting to consider methods to update

the 𝐴 matrix with a lower complexity, among which, the
Sherman-Morrison approach.

3 The Sherman-Morrison Formula
Given a square, invertible matrix 𝐴, the Sherman-Morrison
algorithm allows one to efficiently compute the inverse of
an order-one perturbation of 𝐴, according to the formula:

(𝐴 + 𝑢𝑣𝑇 )−1 = 𝐴−1 − 𝜎𝐴−1𝑢𝑣𝑇𝐴−1 , (1)

where

𝜎 =
1

1 + 𝑣𝑇𝐴−1𝑢 . (2)

In this formula, the outer-product𝑢𝑣𝑇 represents an order-
one perturbation of the matrix 𝐴.

Computing this formula requires the calculation of two
vector-products–𝐴−1𝑢 and 𝑣𝑇𝐴−1–that require each 𝑂 (𝑁 2)
operations, an outer product, and a subtraction of matrices–
each one also 𝑂 (𝑁 2) operations–plus a dot product and a
division.
This is better than a full-matrix inversion which needs

𝑂 (𝑁 3) operations.
Note that higher-order perturbations of 𝐴 can be dealt

with by successive applications of the Sherman-Morrison
method.
Several problems have to be faced, when implementing

this algorithm in the context of electrical simulation, in prac-
tice:

• The latency of the algorithm, i.e., the number of steps
between themoment that the changes of𝐴 are known,
and the moment when the update of𝐴−1 is computed,
must be very small, which requires a highly parallel
implementation and the use of a special-purpose plat-
form such as a FPGA.
• The accuracy of the implementationmust be such that
the simulation results remain correct, even after long
simulations.
• Many optimisations might have to be tried, necessita-
ting rapid design-space exploration.

4 The Polyhedral Equational Model
ThePolyhedral Equational Model is a formalism based on re-
currence equations which has been developed over years to
represent regular calculations and transform these represen-
tations in order to derive executable code for parallel archi-
tectures, or even, to produce hardware descriptions [18, 23].
The alpha language [10, 12, 22] that we shall consider in
this paper is a functional language invented to express poly-
hedral equations. In this section, we first present briefly the
alpha language (4.1), then its transformations (4.2), and the
tools which are available (4.3).

4.1 The alpha language
Fig. 3 shows the alpha description of a matrix-vector algo-
rithm that will be used in the following.
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représenté à la figure 2-1. 

 

Figure 2-1: Schéma onduleur 2 niveaux 

En faisant la modélisation à l’aide de l’approche MNA, on observe que le modèle possède 

11 nœuds et 5 sources de tension (V+, V-, Va, Vb, Vc). La matrice A sera donc une matrice 

de dimension 16×16 et le modèle sera le suivant : 
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Figure 2. The admittance matrix for the circuit of Fig. 1. The 𝑔1 to 𝑔6 values correspond to the admittance of the 6 switches
𝑆1 to 𝑆6. Only these values are subject to a modification, when the status–open or closed–of the switches changes.

1 system matVect: {N | 2<=N}
2   (a : {i,j | 1<=i<=N; 1<=j<=N} of integer;
3    v : {i | 1<=i<=N} of integer)
4 returns (c : {i | 1<=i<=N} of integer);
5 var
6   X : {i,j | 1<=i<=N; 0<=j<=N} of integer;
7 let
8   X[i,j] =
9       case
10         { | j=0} : 0;
11         { | 1<=j} : X[i,j-1] + a[i,j] * v[j];
12       esac;
13   c[i] = X[i,N];
14 tel;

Figure 3. Matrix-vector algorithm in alpha

After the key-word system, the name of the program is
given, followed by the definition of a size parameter 𝑁 with
its domain.

The inputs of the program (lines 2 and 3) are a matrix 𝑎
and a vector 𝑣 (for the sake of simplicity, of integers). The
output (line 4) is a vector 𝑐 . The domains of these variables
are given as polyhedra, in the obvious way.

The equations that define the calculations make use of an
intermediate–local–variable𝑋 that is defined using a simple
induction (line 8 to 12), and the definition of the output 𝑐
(line 13) as the last element of this recurrence.

This program is shown in its so-called array form, that
allows classical numerical calculations to be expressed in a
conventional way. However, the definition of alpha is func-
tional, and the basic constructs of the language allow formal
manipulations of code suitable for parallel expression to be
performed [12].

The alpha language contains the notion of subsystems
that allows a system to be reused in a hierarchy of defini-
tions, while maintaining the properties of the core language.

For example, thematrix-vector alphamodel shown in Fig. 3
can be included inside another system by:

use matVect[N] (A, x) returns (Y)

provided that the inputs 𝐴, 𝑥 and the output 𝑌 are declared
with the same domains and scalar types as the formal para-
meters 𝐴, 𝑣 and 𝑐 in the matVect model. The matvect[N]
part of the statement indicates that the model is used with
the same parameter 𝑁 . In general [5], the form of such a
statement includes a mapping domain, where the model can
be instanciated, and the parameter of the instanciated sys-
tem can be any affine expression of the size parameters of
the calling system.

4.2 Main Polyhedral Transformations
The following semantics-preserving transformations of code
will be extensively used during the synthesis:

• Substitution aka., inlining: a variable can be replaced
by its definition, anywhere, by simple cut and paste.
Conversely, by anti-substitution, one can replace any
expression by a new variable, whose definition do-
main can be computed easily from the constituents
of the expression.
• Normalization: any expression can be rewritten in
the simple case-restriction-dependence form, much as
shown in the definition of 𝑋 in the program of Fig. 3.
• Change-of-basis: the domain of definition of a local
variable can be replaced by its image under a linear,
unimodular mapping, by a simple, syntactic rewriting.
This allows space-time mapping to be done: provided
the mapping (𝑧 → 𝑡, 𝑝) that transforms the indexes 𝑧
of some variable 𝑉 into a pair of time and processor
coordinates, the new program becomes executable, by
evaluating a calculation 𝑉 (𝑧) on processing unit 𝑝 at
time 𝑡 .
• Pipelining: by identification of values that are com-
mon to several expressions, reuse of these common
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values can be performed through the rephrasing of
some equations using linear inductions.
• Simplification of reductions: the alpha language
allows the direct expression of reductions such as Σ,Π,
etc. For example, we could have written the definition
of 𝑐 in the matrix-vector program as

c[i] = reduce( +, j, a[i,j] * v[k])

that reads obviously 𝑐 [𝑖] = ∑
𝑗 𝑎[𝑖, 𝑗] × 𝑣 [ 𝑗].

• Inlining and exlining: the use of a model can be
replaced by its core definition, provided some simple
composition rules are applied to the equations.This in-
lining process is most often used prior to the transfor-
mation of a design. However, a fully structured [20]
design path allows a design to be done in a hierar-
chical way, but this will not be used in this paper ex-
amples. Conversely, exlining allows some calculations
to be separated from a given system, and this opera-
tion is actually used in the mmalpha design trajectory
to separate the control and datapath parts of the pro-
gram, since they are translated in a different way in
vhdl.

4.3 Equational Polyhedral Tools
There exists currently two sets of tools allowing alpha pro-
grams to be transformed. Both are based on the same ab-
stract syntax, although, for historical reasons, their concrete
syntax slightly differs.

mmalpha [4] was developed at Irisa over years, and it tar-
gets, currently, the generation of fine-grain architectures. It
includes the following transformations:

1. Inlining of sub-systems.
2. Scheduling (using affine by variable schedules).
3. Apply a schedule to operate a time-space mapping of

the program.
4. Find pipelines.
5. Rewrite a scheduled and allocated program into a RTL-

like code suitable for hardware generation.
6. Generation of naive, single-assignment C code, for sim-

ulation and verification purpose.
7. Generation of synthesizable vhdl code.
8. Generation of stimuli files for the hardware descrip-

tion and simulation.
The alphaz tool [28] is merely a transformation explo-

ration system, where the user can provide a script that al-
lows code to be generated for a larger class of parallel ar-
chitectures. An important difference with mmalpha is that
alphaz allows:

1. Tiling, i.e., organizing the calculations in blocks of the
same size called tiles, where the executions follows a
sequential order.This is essential to obtain good trade-
offs between time and space, in order to optimize the
resource utilization.

2. Optimized code generation, including memory map-
ping of variables [2, 17].

3. Simplification of the reductions. In high dimensional
designs, it may happen that sharing the calculation of
sub-expressions allows the complexity of the whole
program to be reduced by several orders of magni-
tude [8].

It is possible to combine both mmalpha and alphaz in
order to organize the design path of an application, since at
any time, the design can be expressed as an abstract alpha
program combined with some annotations expressing the
current state of transformations.

5 Expression and Synthesis of the
Simulation Algorithm

In this section, we present the alpha code for an implemen-
tation of the Sherman-Morrison formula (5.1), then we de-
scribe the synthesis flow of this program (5.2).

5.1 alpha Code
A naive description of the Sherman-Morrison algorithm us-
ing the alpha language is shown in Fig. 4. This encoding
maps almost directly the equations of the definition into the
language.
Lines 1 to 4 are include statements that allow some other,

basic functions to be used. The outProd function computes
the outer products of two vectors 𝑥 and 𝑦 of size 𝑁 into the
square matrix (𝑥𝑖𝑦 𝑗 )1≤𝑖, 𝑗≤𝑁 .
The inputs are the matrix 𝐵 that contains the current ver-

sion of𝐴−1, and the vectors 𝑢 and 𝑣 . The output newB is the
updated matrix.

Remark: In this version, as well as throughout this pa-
per, the 𝜎 coefficient is set to 1, in order to avoid a divi-
sion. Indeed, the use of a division can be avoided by a pre-
calculation of all its possible values, and then, memorized
in a look-up table. This part of the design is not considered
here, in order to simplify the presentation.

5.2 The Synthesis Process
In this section, we illustrate the use of mmalpha to gener-
ate vhdl code, for various situations resulting from several
optimization choices.
The goal of the synthesis is to derive a vhdl block that

can be eventually included in a larger schematics, targeted
to the Mathworks System Generator tool [27].

5.2.1 Principles of the Synthesis. Thesynthesis process
is fully automatic. It consists of a series of well-identified
steps which require no a priori information others than the
alpha program.

Until the last, vhdl generation step, the synthesis results
in a transformation of the initial alpha code that is seman-
tically equivalent to the initial description.
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1 include outProd.alpha
2 include matVect.alpha
3 include dot.alpha
4 include transpose.alpha
5 system shermanMorrison:{N | 2<=N}
6 (
7   B : {i,j | 1<=i<=N; 1<=j<=N} of integer;
8   u : {i | 1<=i<=N} of integer;
9   v : {i | 1<=i<=N} of integer
10 )
11 returns
12 (
13   newB : {i,j | 1<=i<=N; 1<=j<=N} of integer
14 );
15 var
16   Btrans: {i,j | 1<=i<=N; 1<=j<=N}
17     of integer;
18   oprv, incrA : {i,j | 1<=i<=N; 1<=j<=N}
19       of integer;
20   sigma: integer;
21   r: {i | 1<=i<=N} of integer;
22   l: {i | 1<=i<=N} of integer;
23   d: integer;
24 let
25   -- B represents A-1
26   -- Transpose of B
27   use transpose[N] ( B ) returns (Btrans);
28   -- r = B.u
29   use matVect[N] ( B, u ) returns (r);
30   -- l = B^T. v
31   use matVect[N] ( Btrans, v ) returns (l);
32   -- d = l.u
33   use dot[N] (l,u) returns (d);
34   -- Sigma = 1/(1+d), but forced to 1
35   sigma[] = 1[];
36   -- oprv = r outer l
37   use outProd[N] (r,l) returns (oprv);
38   -- Increment of A
39   incrA[i,j] = sigma[]*oprv[i,j];
40   -- New result
41   newB = B - incrA;
42 tel;

Figure 4. Alpha code of the Sherman-Morrison algorithm

5.2.2 Synthesis Steps. The synthesis proceeds as follows.

1. The initial program is parsed, and calls to subsystems
are inlined. Another possibility is to do the synthesis
in a structured way, without inlining subsystems, but
this facility is not used in this example.

2. The parsing includes a thorough type-checking of the
alpha code, in particular, the verification that domains

of expressions are consistent, and that calls to subsys-
tems are coherent.

3. The alpha program is then scheduled, using the so-
called vertex method [13, 23, 24]. Each variable 𝑋 is
scheduled by means of an affine-by-variable integer
schedule of the form 𝑡𝑋 (𝑧) = 𝛼𝑋 (𝑧) + 𝛽𝑋 . Causal-
ity is enforced by building an Integer Linear Program.
Schedule may be multi-dimensional, but in our exam-
ples, this possibility is not used.

4. The alpha program is then transformed by applying
to each variable a time-space change of basis. Each
schedule is completed automatically by an affine allo-
cation function in order to obtain a unimodular trans-
formation (most often, this amounts to complete the
schedule with a projection on 𝑛−1 indexes of the vari-
able). At the end of this step, all variables of the pro-
gram are indexed by 𝑡 and 𝑝 (where 𝑝 represents a list
of processor coordinates).

5. The time-spaced alpha program is massaged into a
multi-dimensional RTL description, by means of sim-
ple transformations. After this step, equations are sep-
arated into:
• Combinational equations of the form

X[t,p] = f(Y[t,p], ...)
where 𝑓 is a function involving only combinational
operators.
• Simple connections, of the form X[t,p] = Y[t,p].
• Register equations, X[t,p] = Y[f(t,p),g(t,p)].
• Multiplexers, expressed using if and case expres-
sions.
• Control equations, involving boolean values.
In addition, the program is separated into three parts:
a wrapper, having the same signature that the initial
alpha program, a hardware module comprising the
data-path equations, and a controller, containing the
equation that define boolean control signals. This rep-
resentation is again, semantically equivalent to the
initial alpha program.

6. All transformations are done independently on the
size parameters. Before the generation of the vhdl
code, the parameters are set to the value required for
the design.

7. Finally, the vhdl code is generated. We detail this last
step in section 6.

5.2.3 Simulations. The synthesis process contains seve-
ral ways to simulate a design under synthesis, at various
levels. These simulations are intended to help verifying the
initial alpha program, to generate stimuli for the vhdl code,
and also, to test the mmalpha tool.
A first simulation is based on a strict application of the

denotational semantics of alpha, as defined by Mauras [12]
and De Dinechin [5]. It allows an early verification of the

5
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design, as well as generation of random inputs for creating
automatically stimuli files.

Another simulation is done by a translation of the alpha
program into a C program usingQuillere’s translator [17].
Finally, another simulation is based on repeated substitu-

tions and normalization of equations. It is very slow, but can
be applied to the final output of the synthesis, and is very
helpful to verify the mmalpha tool.

6 Translation to vhdl
The translation to vhdl targets a simple synthesizable form.
At the end of the synthesis, the alpha program is separated
into a control subsystem, a data-path subsystem, and awrap-
per subsystem. The control subsystem is translated into a
vhdl finite state machine. The wrapper subsystem is used
to describe the detailed input/output of the system, and to
generate a simulation script. In this section, we concentrate
on the generation of the vhdl code for the data-path part.
In 6.1, we explain how alpha variables are translated into
vhdl arrays, and in 6.2, we describe the translation of the
data-path equations. It should be noticed that the transla-
tion process that we describe here does not consider the
input/output and the memorization of data. We report the
discussion of this important limitation to Section 11.

6.1 Array Types of Variables
Variables are mapped to vhdl arrays. Any variable of the
hardware module has a domain that is time-space mapped,
of the form {𝑡, 𝑝 | 𝑐}where 𝑐 is a set of linear constraints.The
bounding box of such a domain can be easily found, and it
is used to define the vhdl array type of this variable.

This process is sufficient for most of the variables, pro-
vided their life-time is bounded.

The notion of life-time was introduced in Feautrier and
Lefebvre [11], and Quilleré and Rajopahdye [17], to cope
with the memory-mapping of variables before the genera-
tion of parallel code.

The life-time of a variable instance, say𝑋 [𝑡, 𝑝] is the long-
est amount of time that this instance is required to be me-
morized to be consumed by the calculation of any other in-
stance 𝑌 [𝑡 ′, 𝑝′].
Finding out the life-time of variables amounts to compute

the maximum value of 𝑡 ′ − 𝑡 over the set of all these points,
which can be done thanks to parameter integer program-
ming, for example, using the Pip software [7]. This maxi-
mum, in general, depends on 𝑝 , and on the size parame-
ters (here, 𝑁 ). However, as we do the generation of vhdl
code after setting the value of the parameters, and since 𝑝
is bounded, the life-time is a constant1.

Several situations may occur.

1When the time is multidimensional, which is not considered here, the no-
tion of life-time is still applicable, with possibly several dimensions.

• If the life-time is 0, the instance𝑋 [𝑡, 𝑝] is always used
at the same instant of time when it is produced, and
no memorization is required.
• If the life-time is 1, we implement this as a simple reg-
ister.
• If the life-time is strictly higher than 1, we implement
the memorisation of 𝑋 by adding an additional vari-
able, implementing a registered version of 𝑋 , with an
extra dimension to the declaration array of𝑋 , the size
of which is defined by the life-time value.

6.2 Translation of the equations
The equation defining a variable is unique, and has the form
X[t,p] = ..., where 𝑝 is a set of indexes representing the
space dimensions of 𝑋 . This equation is translated into a
nest of vhdl For generate statements, whose bounds are
computed from the domain of 𝑝 thanks to a domain to loop
computation algorithm [1, 17].
The body of this nest depends on the type of equation. For

a combinatorial equation, the translation is almost direct, by
mapping the alpha operators to those of vhdl.
For a multiplexer, the translation is also very simple, ad-

ding a When condition to represent the condition.
The translation of a simple connection is also very simple.
More difficult is the translation of so-called register equa-

tions, which raise actually both memorization and commu-
nication issues.

Consider such an equation

X[t,p] = Y[f(t,p),g(t,p)]

where 𝑓 (𝑡, 𝑝) is the expression of the time in 𝑌 and 𝑔(𝑡, 𝑝)
is the expression of the space. Here, 𝑡 and 𝑝 are vectors of
indexes, and 𝑓 and 𝑔 are multi-dimensional affine functions.

When 𝑓 is the identity, such an equation represents a
communication between the processors of 𝑋 and those of
𝑌 . In the current implementation, we translate directly the
𝑔 function in vhdl code, letting the vhdl hardware synthe-
sis tools cope with the communication implementation. In
some extreme situations, this may result in bad hardware im-
plementations, and further optimizations based on the anal-
ysis of polyhedral equations is required (see for example
Van Dongen andQuinton [21]).

When 𝑓 is not the identity, we also separate the situa-
tions where 𝑓 (𝑡, 𝑝) depends or not on 𝑝 . In the most gen-
eral case, we compute the maximum value of the difference
𝑡 − 𝑓 (𝑡, 𝑝), say𝑚 and we implement the access to the proper
value 𝑌 [𝑓 (𝑡, 𝑝), 𝑔(𝑡, 𝑝)] through the use of a shift-register
that stores the𝑚 most recent values of 𝑌 .

Although this implementation may not be optimal, it is
guaranteed to produce correct code.

6
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7 Optimized Code for the Electrical
Simulation

Although the description of the Sherman-Morrison formula
of Fig. 3 could be used to solve the updating of the admit-
tance matrix, some simplifications can be made to this pro-
gram by taking into account the structure of this problem.
The 𝐴 matrix elements that are changed, when the status

of a switch changes, are the 4 elements 𝑎𝑖𝑖 , 𝑎𝑖 𝑗 , 𝑎 𝑗𝑖 and 𝑎 𝑗 𝑗 ,
and the corresponding modification is given by the matrix

©«
0 0 0 0 0
0 −𝑑𝑖 0 𝑑 𝑗 0
0 0 0 0 0
0 𝑑 𝑗 0 −𝑑𝑖 0
0 0 0 0 0

ª®®®®®¬
, (3)

which can be represented by the product 𝑢𝑣𝑇 where 𝑢 =
(0, 𝑑𝑖 , 0,−𝑑 𝑗 , 0) and 𝑣 = (0,−1, 0, 1, 0).
The modification of the 𝐴−1 matrix, given by

𝐴−1 ← 𝐴−1 + 𝜎𝐴−1𝑢𝑣𝑇𝐴−1 , (4)

can be done in the following way:
1. Select the columns 𝑐𝑖 and 𝑐 𝑗 of 𝐴−1, corresponding to

the numbers 𝑖 and 𝑗 of the non-zero elements of𝑢 and
𝑣 .

2. The product 𝑙 = 𝐴−1𝑢 is then equal to 𝑑𝑖 × 𝑐𝑖 −𝑑 𝑗 × 𝑐 𝑗 .
3. The product 𝑟 = 𝑣𝑇𝐴−1 is equal to 𝑐𝑖 + 𝑐 𝑗 .
4. 𝐴−1𝑢𝑣𝑇𝐴−1 is then 𝜎 (𝐴−1 − 𝑙𝑟𝑇 ).

8 Results
We have generated the vhdl code for two versions of the
Sherman-Morrison formula, first, the full version of Fig. 3,
then the optimized version of Section 72.

The produced vhdl code was simulated and then trans-
formed into a schematics using the Vivado System Genera-
tor software [27]. Table 1 displays the results of these exper-
iments.

In this table, the number of processors represents themax-
imum space size of the alpha equations, at the end of the
design, before the vhdl translation. However, the actual
vhdl design is not organized as a collection of identical
processing units, as each equation produces an independent
generate statement. As a consequence, the number of DSPs
of the design depends on resource usage optimization done
by the fpga tools.

2The vhdl code of the optimized version was ”patched” to implement the
direct access to the columns of the𝐴−1 matrix. In alpha, addressing an ele-
ment of a variable through an index–say, writing X[A]where A is the result
of an equation–is not direct, whereas the translation of such a statement
in vhdl is obvious. The modification of the final code by hand concerned a
few declarations and instructions. Obtaining the same code automatically
is not, in theory, a difficulty, but it requires the mmalpha tool to be ex-
tended and checked.

The full Sherman-Morrison algorithm3 produces a space-
linear design, with linear latency. The complexity is domi-
nated by the matrix-vector product, which requires 𝑁 pro-
cessing units.
The optimized algorithm produces a design with 𝑁 2 pro-

cessing units required to update the 𝐴−1 matrix, which is
kept in registers. The latency is constant, independent on
the size of the design.

As expected, the synthesis time–i.e., the time needed to
produce the vhdl code–is independent on the size parame-
ter 𝑁 .

The vhdl code, generated directly from the final alpha
equations, is very readable, as each statement is a direct
translation of an alpha equation, as shown by the example
of Appendix B.

9 Other Works
Implementations of the Sherman-Morrison formula to accel-
erate Electrical simulation on fpga has been considered by
several authors (see [9] for example). The systematic explo-
ration and optimization of fpga architectures to implement
this method is more recent, and either is based on hand-
written vhdl code as in [9], or on C code annotated for the
use of high-level-synthesis tools, as in [16].
The generation of architectures from Polyhedral models

has been less addressed than the generation of parallel pro-
grams. Most research on the polyhedral model start from
affine loops in imperative programs, and not on equations.
Most often, the target is the production of parallel programs,
but the success of high-level synthesis tools have led some
projects to target the generation of C code adapted to fpga
compilation [6, 29–31].

Recent research on parallel accelerators formachine learn-
ing consider systolic arrays as a target [26]), and make use
of polyhedral optimization to obtain efficient designs.
Research on the polyhedral equational approach to target

vhdl has been pursued in [4, 19], and the research presented
in this paper results of a large extension of the mmalpha
software done to implement such methods.

10 Discussion
Several aspects of this research deserve comments.
• The choice of implementing the computation of the 𝜎
coefficient using a look-up table is motivated by the
difficulty of computing the division on a fpga, and
the observation that the number of values taken by
this coefficient is very limited (a few hundreds of val-
ues, depending on the size of the 𝐴 matrix). However,
this depends largely on the fpga platform that is used
for the implementation, and such a choice might be
reconsidered if needed.

3Actually, without the calculation of the 𝜎 term, as it is supposed to be
pre-calculated.
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Program Size #DSP #LUT #FF Latency # Processors #alpha Lines #vhdl lines Synthesis time
(cycles) (seconds)

Full SM N=3 15 750 452 8 + 2𝑁 = 14 𝑁 + 1 = 4 125 920 18.32
Full SM N=7 35 1615 804 8 + 2𝑁 = 22 𝑁 + 1 = 8 125 920 18.64
Full SM N=13 65 3115 1488 8 + 2𝑁 = 34 𝑁 + 1 = 14 125 920 18.23
Opt. SM N=10 120 2888 2248 4 𝑁 2 = 100 53 566 9.13
Opt. SM N=16 288 6732 5130 4 𝑁 2 = 256 53 566 9.64

Table 1. Results for the synthesis of several versions of the Sherman-Morrison formula, showing the size of the𝐴 matrix, the
fpga resources used by the design (number of DSPs, of Look-up-tables, and of flip-flops), the latency of the design in number
of cycles, the number of processors of the design, the number of lines of alpha code and the number of vhdl lines of the code
generated.

• One may worry about the numerical stability of the
Sherman-Morrison method used here. This issue, sha-
red by all matrix inversion methods, can be solved by
several approaches. In the context of an fpga imple-
mentation, one can try to find out, experimentally, the
best number representation, either as fixed-point or
floating-point. Another flexibility is given by the pos-
sibility to choose the initial 𝐴−1 matrix among a set
of carefully selected ones, in such a way that the er-
ror of the inversion is minimized. All these aspects are
currently under investigation.
• The data types of the alpha variables can be chosen
according to the needs of the algorithm being imple-
mented: integers, fixed point or floating point num-
bers of various size. In fact, the whole synthesis pro-
cess is largely independent on the choice of these data-
types, which matters only when generating the vhdl
code.
• The synthesis method that is described here has been
applied successfully to many other algorithms: matrix
operations, string matching, signal processing algo-
rithms for example. It has currently been validated by
a functional simulation of the vhdl code.
• Due to lack of space, we do not detail here, the time
needed by each step of the synthesis. The scheduling
step, which is supposed to be the critical step of the
synthesis, takes only a small fraction of the total syn-
thesis time, on the order of 10%, using the linear solver
of the mathematica software.Most of the time is spent
in the transformation of the time-space mapped al-
pha code into a multi-dimensional RTL description,
which is essentially due to the use of the interpreted
Wolfram language.
• In its current status, the mmalpha software does not
provide a facility to generate input/outputs and mem-
orization of data. In the context of the present applica-
tion, this is not a limitation, since the generated code
is meant to be included in a schematic description
used by the System Generator tool. The solution to

overcome this limitationwould be to implement trans-
formations allowing I/O and memorization to be per-
formed. In general, obtaining efficient implementations
is a difficult problem, as it depends heavily on the
hardware platform that is available.

11 Conclusion and Future Work
We have shown how the Sherman-Morrison formula for re-
computing the inverse of a square matrix subject to a one-
order perturbation can be expressed using a Polyhedral equa-
tional description, and then, transformed into a vhdl hard-
ware description suitable for fpga implementation.

We have presented results for the full Sherman-Morrison
algorithm, and for a version optimized for the simulation of
electrical circuits.
Our results show that the synthesis time is independent

of the size of the problem, which is a main advantage of the
polyhedral model, where calculations, be they expressed as
loops or as multi-dimensional equations, are represented by
operations on collections of data.
We have shown that a representation by polyhedral equa-

tions allows efficient parallel designs to be obtained auto-
matically.
Future directions of research are to enlarge the set of avail-

able transformations, in order to target various architecture
organizations, on fpga on or other types of parallel archi-
tectures. To this end, an interconnection between mmal-
pha and alphaz would represent an interesting experimen-
tation platform.
Another direction would be to take advantage of the func-

tional nature of the alpha languages to explore algebraic
transformations–for example, linear algebra properties–since
the rewriting of equations certainly offers large opportuni-
ties of code simplifications.
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A Implementation of mmalpha
mmalpha is implemented in the Wolfram language, under
the mathematica software. The reason of this choice is the
existence of a long legacy software, since a first, very sketchy,
version was designed around 1995.

mmalphamakes use of the polyhedral library polylib [15]
and uses a parser and a pretty-printer written in C. The pip
software is also used.

The interest of using mathematica lies in some of the
functions available in this software, for example, the linear
programming solver which is directly available.

B vhdl Translation of one Register
Equation

The following vhdl code is the translation of a register equa-
tion of the form 𝑌 [𝑡, 𝑝] = CopyBMirrMovedIn[𝑡 −𝑝, 𝑝] that
appears in the generation of the full Sherman-Morrison ver-
sion, for 𝑁 = 13. It contains a Generate statement for the
𝑝 index, and another one for the 𝑖 index needed for an in-
termediate register named YReg. Inside the Generate state-
ments, there is a sequential process needed to produce reg-
isters. The 𝑌 [𝑡, 𝑝] value is obtained through an assignment
which is controlled by the value of the time counter.

1   -- Translation of the definition of Y
2   -- Equation (register):
3   -- Y[t,p] = CopyBMirrMovedIn[t-p,p]
4   -- Domain: {t,p | p+1<=t<=p+13; 1<=p<=13}
5   G81: FOR p IN 1 TO 13 GENERATE
6     G79: FOR i IN 1 TO 13 GENERATE
7       PROCESS(clk) BEGIN
8         IF (clk = '1' AND clk'EVENT) THEN
9           IF CE = '1' THEN
10             YReg(p)(i) <= YReg(p)(i-1);
11             YReg(p)(0) <= CopyBMirrMovedIn(p);
12           END IF;
13         END IF;
14       END PROCESS;
15     END GENERATE;
16     Y(p) <= YReg(p)(-1 + p)
17     WHEN
18        (counter - counterDelay >= p+1)
19     AND
20        (counter - counterDelay <= p+13);
21   END GENERATE;
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