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A Motivating Example (Kulkarni and Kruse June 2022)
for (int i = 0; i < n; i+=1) {

if (i == p0)
continue;

if (i == p1)
continue;

if (i == p2)
continue;

// ...
Stmt(i);

}

Instance set: {Stmt[i] : 0 ≤ i < n ∧ i 6= p0 ∧ i 6= p1 ∧ i 6= p2 ∧ . . . }
{Stmt[i] : 0 ≤ i < n ∧ (i < p0 ∨ i > p0) ∧ (i < p1 ∨ i > p1) ∧ (i < p2 ∨ i > p2) ∧ . . . }
⇒ expansion causes explosion in representation

PBDD (Kulkarni and Kruse June 2022)
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Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }


6 if r1 6= r2, r3, r4, r5, r10 ∧ r2 6= r3, r4, r5, r10 ∧ r3 6= r4, r5, r10 ∧ r4 6= r5, r10 ∧ r5 6= r10
5 if (r1 = r2 ∧ r2 6= r3, r4, r5, r10 ∧ r3 6= r4, r5, r10 ∧ r4 6= r5, r10 ∧ r5 6= r10) ∨ . . .
...
1 if r1 = r2 = r3 = r4 = r5 = r10

⇒ large representation even with explicit disequality constraints
⇒ a lot worse without
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Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{ z : Az + a ≥ 0

∧ Bz + b = 0

}

+ unions of such sets
No explicit representation for disequality constraints

This applies to libraries
not supporting existentially quantified variables:

I PolyLib (Wilde 1993)
I PPL (Bagnara et al. 2008)

supporting existentially quantified variables:
I Omega (Kelly et al. Nov. 1996)
I isl (V. 2010)
I Omega+ (Chen June 2012)
I FPL (Pitchanathan et al. Oct. 2021)

How about equality constraints?

Not strictly needed but still used
do not change expressivity
n equality constraints replace n + 1 to 2n inequality constraints
every (independent) equality constraint reduces effective dimensionality

Why not disequality constraints?
do not change expressivity
n disequality constraints avoid split into 2 to 2n disjuncts
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Seater and Wonnacott (2005)

Detect “inert” disequality constraints
⇒ disequality constraints that can be ignored (in terms of emptiness)
⇒ disequality constraints that involve unbounded direction

None inert Some inert All inert
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Seater and Wonnacott (2005)

Efficient Manipulation of Disequalities During Dependence Analysis 305

Formulas [7], possibly with certain uses of uninterpreted function symbols [8],
into a “simplified form”. This transformation happens automatically during sat-
isfiability testing and at other times; it prevents redundant analysis, and thus
presumably provides a great speed advantage over a system that evaluates every
query based on an unsimplified relation.

The simplified form is a variant of disjunctive normal form in which indi-
vidual “conjuncts” (conjunctions of equality and inequality constraints, possibly
with local existentially quantified variables) are connected by disjunction (∨).
Depending on the query performed, this simplified form may or may not include
redundant conjuncts, equalities, or inequalities.

Note that simplification may not always be beneficial, and deferring it to
the proper point is an important strategy for getting good performance from
the Omega Library. For example, consider queries for value-based dependence
analysis, which have the form C0 ∧ ¬C1 ∧ ¬C2 ∧ ... ∧ ¬CN , where the Ci’s are
conjuncts. The Omega Library uses information in C0 to reduce the cost of
negating the other conjuncts. If we were to simplify each negated conjunct and
then combine the results with ∧, the cost would be dramatically higher for many
cases (see [1] for details).

Even if our polynomial-time disequality algorithm has proven that a system
of constraints is satisfiable, converting it into simplified form can increase its size
exponentially, since each non-redundant disequality will be converted into a dis-
junction. We could solve this problem by allowing disequality constraints within
the individual conjunct data structures. This approach would have benefits even
if all disequalities where ert: except in cases where redundancy is to be removed,
the Omega Library could stop testing for satisfiability as soon as it has proven a
relation is satisfiable. The current algorithms produce the entire disjunction and
then test each conjunct for satisfiability. This could provide some part of the
speedup shown under “privatization analysis” in [9, Table 13.2], but in a more
generally applicable context.

An equivalent approach would be to simply allow negated equality constraints
in simplified relations. This approach could be taken even further, to allow more
general negated constraints, or other formulas that cannot be handled efficiently
(or at all). The current Omega Library can (in principle) handle arbitrary Pres-
burger Formulas when it is not restricted to our provably polynomial subdo-
main. However, when faced with certain uses of uninterpreted function symbols,
or when restricted to provably polynomial cases, the Omega Library replaces
any set of constraints that it cannot handle with a special constraint identified
simply as unknown.

It might be possible to modify this algorithm to annotate each unknown with
the unsimplified formula that produced it, in case later manipulation of the re-
lation provides information that lets the library handle the offending constraint.
However, without extensive empirical testing, it is hard to know whether the
overhead involved in this approach would be worthwhile.

The above changes have the potential to improve the accuracy, speed, and
ease of use of the Omega Library, since polynomial-time simplifications could

306 R. Seater and D. Wonnacott

be performed early without causing a decrease in later accuracy (this approach
would also make the efficiency less sensitive to the timing of simplifications).

5 Implementation Status and Future Work

We do not currently have an implementation of our algorithms, and thus we do
not have empirical verification that they are either fast or effective in practice.
Given the nature of the changes discussed in the previous section, we do not
expect to have an implementation any time soon.

However, we do have reason to hope that our algorithms will be applicable
during dependence analysis. Our studies of the constraints that arise in practice
[1,2] suggest that disequalities often involve loop index variables used in if
statements or in subscripts. For programs with scalable parallelism, some or all
loops are bounded by symbolic constants (typically program parameters), which
are not themselves bounded above. In this case, we expect the disequalities to
be inert. When all disequalities are inert and the constraints obey the other
conditions given in [2], memory- and value-based dependence testing can be
done in polynomial time.

Before undertaking any implementation effort, we plan to investigate algo-
rithms for projection and gist in the presence of disequalities. It may be the case
that some of the insights of Imbert [10] can be combined with our definition of
inertness in some useful way.

6 Related Work

Most other work on handling negated constraints during dependence analysis
focuses on producing approximate results or deferring satisfiability tests until
more constraints are available. The Omega Library’s negation algorithms [11,9]
and the algorithms for manipulating “Guarded Array Regions With Disjunction”
(GARWD’s) in the Panorama compiler [12] are examples of the deferral approach
(the proposals at the end of Section 4 were directly inspired by the GARWD
algorithms). The drawback with deferring negation is, of course, that we will be
forced to choose some other approach if we do not get any helpful constraints
before we must answer a satisfiability query.

Our work with identifying inert disequalities complements this approach,
and there should be no problem with combining the two. When disequalities are
inert, they can be tested directly; when they are not, satisfiability testing should
be delayed as long as possible.

We do not know of any other work on polynomial-time satisfiability testing
of disequalities on integer variables. Our work on identifying inert disequalities
on integer variables was driven by a frustrated desire to apply the work of Lassez
and McAloon [6], which is relevant only to real (or rational) variables.
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Kulkarni and Kruse (June 2022)
{Stmt[i] : 0 ≤ i < n ∧ i 6= p0 ∧ i 6= p1 ∧ i 6= p2 ∧ . . . }

Polyhedral binary decision diagram, PBDD
internal nodes: affine (in)equality constraints
terminal nodes: IN : in set; OUT : not in set

⇒ allows negation of (conjunction of) affine constraints
(disequality constraint is special case)

However
limited number of supported operations
(intersection, union, subtraction, complement)
revert to isl (with expansion) for other operations
no support for existentially quantified variables

0 ≤ i

i < n

i = p0

i = p1

i = p2

...

OUT IN

fal
se

true

fal
se

true

tru
e false

tru
e false
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Explicit Disequality Constraints
Main changes:

extend internal representation
resolve hidden assumptions
adjust some core algorithms

Changes are (mostly) transparent to user of isl
results of some heuristics-based operations may change �

For example: pet (V. and Grosser Jan. 2012) test case
{ S_5[i=0:99] -> T[i] : i != 57 } % { S_5[i=0:99] : i != 57 };

⇒ { S_5[i] -> T[i] : i >= 58 or i <= 56 }; now: { S_5[i] -> T[i] }

new expression type in result of AST generation

for (int c0 = 1; c0 <= 9; c0 += 1) {
if (c0 != 5) {

for (int c1 = 1; c1 <= 9; c1 += 1)
s0(c0, c1);

} else {
// ...
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Extend Internal Representation
Basic set:

{ z : Az + a ≥ 0 ∧ Bz + b = 0

∧ Cz + c 6= 0

}

+ unions of basic sets

Simplifications:

m f (z) + c 6= 0
⇒ drop constraint if m does not divide c

c 6= 0
⇒ drop constraint if c is not zero
⇒ mark basic set empty if c is zero

only exact duplicates (or opposites) of disequality constraints can be removed
f (z) + c 6= 0
f (z) + a ≥ 0
⇒ replace by f (z) + a − 1 ≥ 0 if a = c
⇒ drop disequality if a < c
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Resolve Hidden Assumptions

Main hidden assumption in isl: basic set is convex

Implications:
all integer values between min/max rational values are in basic set
simple hull operation can convert 1-disjunct set into basic set �

⇒ introduce special operation for conversion
⇒ simple hull operation drops disequality constraints
⇒ another operation for shared constraints needed?
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Disequality Constraints in Tableau �

Introduce a non-zero variable for each disequality constraint
a non-zero variable does not participate in pivoting
⇒ always a row variable

if non-zero variable can attain only negative or only positive values
⇒ non-zero variable is redundant and can be removed

if non-zero variable can obviously only attain zero value
I zero values for all remaining columns
⇒ tableau is empty

sample point only valid if all non-zero variables have non-zero value

f1 = x + y ≥ 0
f2 = x − 10 ≥ 0
f3 = y − 5 ≥ 0
f4 = −y + 5 ≥ 0
f5 = y − 5 6= 0

x y
f1 0 1 1
f2 −10 1 0
f3 −5 0 1
f4 5 0 −1
f5 −5 0 1
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Emptiness and Sampling
Sampling picks an integer element
Set is empty if it has no integer elements

Procedure
trivial solution for 0D and 1D sets
isolate bounded directions

I compute recession cone (replace constant terms by 0)

ignoring disequality constraints

I (implicit) equality constraints determine bounded directions
I perform unimodular transformation

x

y
{ [x , y ] : 1 ≤ 2x − y ≤ 4 }

{ [x , y ] : 0 ≤ 2x − y ≤ 0 }

x ′ = 2x − y
y ′ = y

x ′

{ [x ′] : 1 ≤ x ′ ≤ 4 }

y ′
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Picking Element in Unbounded Set
Rational element can easily be picked in tableau (sample value, possibly non-integer values)
⇒ restrict set to points that have entire unit cube included in original set
⇒ pick rational element in restricted set
⇒ round up
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{ [x , y ] : y ≤ 2x ∧ x ≤ 2y − 1 }
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⇒ restrict set to points that have entire (1 + n 6=)-cube included in original set
⇒ pick rational element in restricted set (10/3, 11/3)
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Redundant Local Variables

Basic set:
{ x : ∃α : A1x + A2α + a ≥ 0 }

Some local variable α may be redundant

Some of these can be detected based purely on constraints
consider all pairs of lower and upper bounds on variable α

α is involved in n disequality constraints

if each pair admits an integer value
⇒ α can be eliminated (using Fourier-Motzkin)

⇒ potential trade-off between number of disjuncts and dimensionality of disjuncts
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Parametric Integer Programming �

Compute lexicographic minimum of some variables x in terms of other variables n
Two tableaux:

main tableau in x and n
context tableau n

Pivoting in main tableau depends on sign of symbolic constant term in context tableau
⇒ requires context splits if constant term can attain both positive and negative values

R = { [i , j] : 0 ≤ −i ≤ N ∧ 0 ≤ −j ≤ −i ∧ 0 ≤ k ≤ 3N ∧ k = −i − 2j }
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⌋
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⌋
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⌋]

Keep track of disequality constraints in tableaux
If disequality constraint g(n, x) 6= 0 may be violated by potential solution
⇒ split context into 2 cases

I f (n) 6= 0 (implying g(n, x) 6= 0 is not violated)
⇒ proceed with other disequality constraints

I f (n) = 0 (implying g(n, x) 6= 0 is violated)
⇒ compute two solutions, for g(n, x) ≥ 1 and g(n, x) ≤ −1
⇒ take minimum of two solutions

Splitting g(n, x) 6= 0 up front computes same minimum but then cost is always incurred
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Some Other Operations �

Preparation for counting using barvinok (V., Seghir, et al. June 2007)

=

= − − +

Transitive closure approximation
Basic sets do not have to be split but result may be less accurate
Scheduling
Disequality constraints essentially ignored
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PBDD versus isl with Explicit Disequality Constraints
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Full Polyhedral Compilation Flow
for (int i = 0; i < n; ++i) {

if (i == p0 || i == p1 || i == p2)
continue;

A[i] = i;
}
for (int i = 0; i < n; ++i) {

if (i == p0 || i == p1 || i == p2)
continue;

B[i] = A[i];
}

PPCG (V., Juega, et al. 2013) output:
for (int c0 = 0; c0 < n; c0 += 1)

if (c0 != p0 && c0 != p1 && c0 != p2) {
A[c0] = (c0);
B[c0] = A[c0];

}

(No changes required to PPCG)

Involves
construction of polyhedral model
dependence analysis
scheduling
AST generation

0 2 4 6 8 10 12 14

10−1

100

Number of disequality constraints

Ti
m

e
in

se
co

nd
s

enable disequality
disable disequality



Conclusion January 17, 2024 26 / 27

Outline
1 Motivation and Introduction

2 Related Work

3 Disequality Constraints
Internal Representation
Hidden Assumptions
Incremental LP Solver
Emptiness and Sampling
Redundant Local Variables
Parametric Integer Programming
Other Operations

4 Experimental Results

5 Conclusion



Conclusion January 17, 2024 27 / 27

Conclusion

Supporting explicit disequality constraints in a polyhedral compilation library is feasible
requires only conceptually minor adjustments
in some cases simply delaying split to where it becomes relevant
can dramatically reduce size of representation
mostly transparent to the user

Some trade-offs involved, e.g.,
elimination of redundant local variables
accuracy of transitive closure approximation

Perhaps useful to consider other explicit constraints, e.g.,
lexicographic constraints
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Incremental LP Solver
Core representation: tableau
Given

{ z : Az + a ≥ 0 }
with n variables z and m constraints Az + a ≥ 0

introduce a non-negative variable fi for each affine expression
tableau writes m variables in terms of n variables
initially, f in terms of z

f1 = x + y ≥ 0
f2 = x − 10 ≥ 0
f3 = y − 5 ≥ 0
f4 = −y + 5 ≥ 0

x y
f1 0 1 1
f2 −10 1 0
f3 −5 0 1
f4 5 0 −1

sample value: assign zero to all column variables
x = 0, y = 0, f1 = 0, f2 = −10, f3 = −5, f4 = 5



Appendix Incremental LP Solver January 17, 2024 2 / 7

Incremental LP Solver
Core representation: tableau
Given

{ z : Az + a ≥ 0 }
with n variables z and m constraints Az + a ≥ 0

introduce a non-negative variable fi for each affine expression
tableau writes m variables in terms of n variables
initially, f in terms of z

f1 = x + y ≥ 0
f2 = x − 10 ≥ 0
f3 = y − 5 ≥ 0
f4 = −y + 5 ≥ 0

x y
f1 0 1 1
f2 −10 1 0
f3 −5 0 1
f4 5 0 −1

sample value: assign zero to all column variables
x = 0, y = 0, f1 = 0, f2 = −10, f3 = −5, f4 = 5



Appendix Incremental LP Solver January 17, 2024 3 / 7

Incremental LP Solver

f1 = x + y ≥ 0
f2 = x − 10 ≥ 0
f3 = y − 5 ≥ 0
f4 = −y + 5 ≥ 0

x y
f1 0 1 1
f2 −10 1 0
f3 −5 0 1
f4 5 0 −1

x f3
f1 5 1 1
f2 −10 1 0
y 5 0 1
f4 0 0 −1

f3 x
f1 5 1 1
f2 −10 0 1
y 5 1 0
f4 0 −1 0

a pivot interchanges a row and a column variable

f3 = −5 + y ⇒ y = 5 + f3, f1 = 5 + x + f3, f4 = −f3
a column variable that is known to be zero (e.g., f3) can be “killed”
⇒ fixed to zero
⇒ no longer participates in pivoting

sample value is “valid” if
I all non-negative variables have non-negative value
I all variables have integer value

⇒ current sample value not valid because f2 = −10
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