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A Motivating Example (Kulkarni and Kruse June 2022)

for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;
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for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;
}

Instance set: {Stmt[i]:0</i<nAi#pOAi#plAi#p2A...}
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A Motivating Example (Kulkarni and Kruse June 2022)

for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;
}

Instance set: {Stmt[i]:0</i<nAi#pOAi#plAi#p2A...}
{Stmt[i] : 0<i<nA(<pOVi>pO)A(i<plVi>pl)A(i<p2Vi>p2)A...}
= expansion causes explosion in representation
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Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }
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Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }

6 ifrl #r2,r3,r4,r5,r10 Ar2 #£ 13,14, r5,r10 A3 # 14,15, 110 A4 # r5, 110 A 15 # 110
5 if tl=r2Ar2#13,r4,r5,r10 A13 # 14,15, 110 Ard # 15,110 Ard # r10) V...

1 ifrl=r2=1r3=1r4=1r5=r10
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Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }

6 ifrl #r2,r3,r4,r5,r10 Ar2 #£ 13,14, r5,r10 A3 # 14,15, 110 A4 # r5, 110 A 15 # 110
5 if tl=r2Ar2#13,r4,r5,r10 A13 # 14,15, 110 Ard # 15,110 Ard # r10) V...
1 ifrl=r2=r3=r4d=r5=r10

= large representation even with explicit disequality constraints
= a lot worse without
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Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0 }

+ unions of such sets

No explicit representation for disequality constraints

This applies to libraries
@ not supporting existentially quantified variables:
» PolyLib (Wilde 1993)
» PPL (Bagnara et al. 2008)
@ supporting existentially quantified variables:
Omega (Kelly et al. Nov. 1996)
is1 (V. 2010)
Omega+ (Chen June 2012)
FPL (Pitchanathan et al. Oct. 2021)
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How about equality constraints?
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Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0ABz+b=0}

+ unions of such sets

No explicit representation for disequality constraints

How about equality constraints? Not strictly needed but still used
@ do not change expressivity
@ n equality constraints replace n+ 1 to 2n inequality constraints
@ every (independent) equality constraint reduces effective dimensionality
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Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0ABz+b=0}

+ unions of such sets

No explicit representation for disequality constraints

How about equality constraints? Not strictly needed but still used

@ do not change expressivity

@ n equality constraints replace n+ 1 to 2n inequality constraints

@ every (independent) equality constraint reduces effective dimensionality
Why not disequality constraints?

@ do not change expressivity
@ n disequality constraints avoid split into 2 to 2" disjuncts
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Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction
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Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

None inert Some inert All inert
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Seater and Wonnacott (2005)

8
An equivalent approach would be to simply allow negated equality constraints

in simplified relations. This approach could be taken even further, to allow more
general negated constraints, or other formulas that cannot be handled efficiently

i AP G L e i 5

U

.
We do not currently have an implementation of our algorithms, and thus we do
not have empirical verification that they are either fast or effective in practice.
Given the nature of the changes discussed in the previous section, we do not
expect to have an implementation any time soon.
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Kulkarni and Kruse (June 2022)
{Stmt[/] :0<i<nAi#pOANi#plANi#p2AN...}

Polyhedral binary decision diagram, PBDD
e internal nodes: affine (in)equality constraints

@ terminal nodes: : in set; : not in set

= allows negation of (conjunction of) affine constraints
(disequality constraint is special case)

However
@ limited number of supported operations
(intersection, union, subtraction, complement)

@ revert to isl (with expansion) for other operations

@ no support for existentially quantified variables
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Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

Changes are (mostly) transparent to user of isl
@ results of some heuristics-based operations may change @
For example: pet test case
{ S 5[i=0:99] -> T[i] : i '= 57 } % { S_5[i=0:99] : i !'= 57 };

= { 8 5[i] -> T[i] : i >= 58 or 1 <= 56 }; now: { S_5[i] -> T[i] }
@ new expression type in result of AST generation
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Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

Changes are (mostly) transparent to user of isl
@ results of some heuristics-based operations may change @
For example: pet test case

{ S 5[i=0:99] -> T[i] : i '= 57 } % { S_5[i=0:99] : i !'= 57 };
= { 8 5[i] -> T[i] : i >= 58 or 1 <= 56 }; now: { S_5[i] -> T[i] }
@ new expression type in result of AST generation

for (int cO = 1; cO <= 9; c0 += 1) {

if (c0 !'=5) {

for (int c1 = 1; cl1 <= 9; cl1 += 1)
s0(cO0, cl);
} else {
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Extend Internal Representation
Basic set:
{z:Az+a>0ABz+b=0ANCz+c#0}

~+ unions of basic sets

Simplifications:
e mf(z)+c#0
= drop constraint if m does not divide ¢
e c#0
= drop constraint if ¢ is not zero
= mark basic set empty if c is zero

@ only exact duplicates (or opposites) of disequality constraints can be removed
f(z)+c#0
fz)+a>0

= replace by f(z)+a—-1>0ifa=c
= drop disequality if a < ¢
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Resolve Hidden Assumptions

Main hidden assumption in isl: basic set is convex

Implications:
o all integer values between min/max rational values are in basic set

@ simple hull operation can convert 1-disjunct set into basic set @

= introduce special operation for conversion
= simple hull operation drops disequality constraints
= another operation for shared constraints needed?
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Disequality Constraints in Tableau g%

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable

@ if non-zero variable can attain only negative or only positive values
= non-zero variable is redundant and can be removed

@ if non-zero variable can obviously only attain zero value
» zero values for all remaining columns
= tableau is empty

@ sample point only valid if all non-zero variables have non-zero value

h=x+y=0 Xy
A
—y—5> 21~

fi=y=-520 fl -5 0 1
fa=-y+520 il 5 0 -1
fo=y—5#0 il -5 0 1
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)

@ pick some corresponding value for unbounded dimensions (always succeeds)
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@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

@ trivial solution for 0D and 1D sets

@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

/

{[x,y]:1<2x—y <4} _._/¢_._._/+_.>L>
{[x,y] :0<2x—y <0} {[¥]:1<x' <4}

X =2x—y /

y =y ———t—t—0—o—
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Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up
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Emptiness and Sampling
Picking Element in Unbounded Set

y

= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set
= round up

{[x,y] :y <2xAx<2y—1}

{[x,y] iy <2x—1Ax<2y—2}
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Emptiness and Sampling
Picking Element in Unbounded Set

= pick rational element in restricted set (4/3.5/3)

y

= restrict set to points that have entire unit cube included in original set
= round up

{[x,y] :y <2xAx<2y—1}

{[x,y] :y<2x—1Ax<2y—2}

January 17, 2024
Rational element can easily be picked in tableau (sample value, possibly non-integer values)
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Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
= pick rational element in restricted set (4/3.5/3)
= round up (2,2)

{[x,y] :y <2xAx<2y—1}

{[x,y] iy <2x—1Ax<2y—2}
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)

@ pick some corresponding value for unbounded dimensions (always succeeds)
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)
» drop disequality constraints involving unbounded dimension (“inert”)
» skip values violating any other disequality constraint
@ pick some corresponding value for unbounded dimensions (always succeeds)
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

e trivial solution for 0D and 1D sets

@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

/
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Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

{[x,y]:1<2x—y <4} —'—/¢—H—“—/+—')L’
{[x,y]:0<2x—y <0} {[XT:1<Xx' <4}
X/ZQX—y /

, Yy
y =Yy o—o—o—j—o—s
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Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up
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= restrict set to points that have entire (1 + n7)-cube included in original set
=- pick rational element in restricted set

= round up (skipping violated disequality constraints)
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Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
= pick rational element in restricted set (10/3.11/3)
= round up (skipping violated disequality constraints)

{[x,y] :y <2xAx<2y—1}

{[x,y] :y <2x—3Ax<2y—4}




Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
= pick rational element in restricted set (10/3.11/3)
= round up (skipping violated disequality constraints) (4, 6)

{[x,y] :y <2xAx<2y—1}

{[x,y] :y <2x—3Ax<2y—4}
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Basic set:

{x:Jda: Aix+Aa+a>0}
Some local variable o may be redundant
Some of these can be detected based purely on constraints

@ consider all pairs of lower and upper bounds on variable «

@ if each pair admits an integer value
= « can be eliminated (using Fourier-Motzkin)
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Redundant Local Variables

Basic set:
{x:Jda: Aix+Aa+a>0}
Some local variable a may be redundant
Some of these can be detected based purely on constraints
@ consider all pairs of lower and upper bounds on variable «
@ « is involved in n disequality constraints

o if each pair admits 1 + n integer values
= « can be eliminated (using Fourier-Motzkin)

= potential trade-off between number of disjuncts and dimensionality of disjuncts
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Parametric Integer Programming g%

Compute lexicographic minimum of some variables x in terms of other variables n
Two tableaux:

@ main tableau in x and n
@ context tableau n

Pivoting in main tableau depends on sign of symbolic constant term in context tableau
= requires context splits if constant term can attain both positive and negative values

R:{[i,j]:Og—iSN/\Og—jg—i/\0§k§3N/\k:—i—2j}

lexmin R =
ifk <N
[_ka 0]

else
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Parametric Integer Programming @
Compute lexicographic minimum of some variables x in terms of other variables n
Two tableaux:

@ main tableau in x and n

@ context tableau n

Pivoting in main tableau depends on sign of symbolic constant term in context tableau
= requires context splits if constant term can attain both positive and negative values

Keep track of disequality constraints in tableaux
If disequality constraint g(n,x) # 0 may be violated by potential solution
= split context into 2 cases
> f(n) # 0 (implying g(n, x) # 0 is not violated)
= proceed with other disequality constraints
» f(n) =0 (implying g(n,x) # 0 is violated)
= compute two solutions, for g(n,x) > 1 and g(n,x) < —1
= take minimum of two solutions

Splitting g(n,x) # 0 up front computes same minimum but then cost is always incurred
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Some Other Operations @

@ Preparation for counting using barvinok (V., Seghir, et al. June 2007)
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Some Other Operations @

@ Preparation for counting using barvinok

LEX
VARPN

@ Transitive closure approximation
Basic sets do not have to be split but result may be less accurate
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Some Other Operations g%

@ Preparation for counting using barvinok

N

/N

@ Transitive closure approximation

Basic sets do not have to be split but result may be less accurate
@ Scheduling

Disequality constraints essentially ignored
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PBDD versus isl with Explicit Disequality Constraints

{i: N\ i#p}
j<n#
PBDD

& T T T T
| | —e—simplified PBDD
F|-=— pure islpy

Time in seconds

| | |
0 2 4 6 8 10 12 14
Number of disequality constraints
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PBDD versus isl with Explicit Disequality Constraints

{i: N\ i#p}

i<n?
PBDD isl with explicit disequality constraints

[T T T T T B [T T T T T T T T B
o | | ——simplified PBDD ) || —e— enable disequality 1
107 ¢ . El 100 . . . N
F|—= pure islpy ] | = disable disequality E
AU 1 Ew) !
o r B o £ E
Q = B O r ]
& 3 1 & F 1
102} E £1072} E
- e ]
£ H 1 £ F ]
Fi103 E F103}) E
107% E 107 E
l | | | | | | | | Ll | | | | | | | |

0 2 4 6 g8 10 12 14 0 2 4 6 8 10 12 14

Number of disequality constraints Number of disequality constraints
Note: construction times with PBDD and isl not directly comparable
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Full Polyhedral Compilation Flow

for (int i = 0; i < n; ++i) { Involves
if (i == p0 |l i == p1 || i == p2) @ construction of polyhedral model
continue; d d lvsi
A[i] = i; @ depenaence analysis
} @ scheduling
for (int i = 0; i < n; ++i) { .
if (1 == p0 [l i == pi || i == p2) o AST generation
Fontinu?; g —e— enable disequality
B[i] = A[i]; | —=—disable disequality | |
} . |
2
PPCG (V., Juega, et al. 2013) output: g 0% ]
for (int cO = 0; cO < n; cO += 1) E
if (cO != pO && cO !'= pl && cO != p2) { E .
A[c0] = (c0); 10-1 1 |
B[c0] = A[cO]; g 1
} :\ L L L L L L L il
0 2 4 6 8 10 12 14

(NO changes required to PPCG) Number of disequality constraints
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Conclusion

Supporting explicit disequality constraints in a polyhedral compilation library is feasible
@ requires only conceptually minor adjustments
@ in some cases simply delaying split to where it becomes relevant
@ can dramatically reduce size of representation

@ mostly transparent to the user

Some trade-offs involved, e.g.,
@ elimination of redundant local variables

@ accuracy of transitive closure approximation

Perhaps useful to consider other explicit constraints, e.g.,

@ lexicographic constraints
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Incremental LP Solver
Core representation: tableau

Given
{z:Az+a>0}
with n variables z and m constraints Az4+a > 0
@ introduce a non-negative variable f; for each affine expression

@ tableau writes m variables in terms of n variables
@ initially, f in terms of z

A=x+y>0 | X Y
£=x—-10>0 fif 0 11

L1210 1 0
fi=y=520 Al -5 0 1
fi=—y+5>0 Al s 0 -1
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Incremental LP Solver
Core representation: tableau

Given
{z:Az+a>0}
with n variables z and m constraints Az4+a > 0
@ introduce a non-negative variable f; for each affine expression
@ tableau writes m variables in terms of n variables
@ initially, f in terms of z

A=x+y>0 | X Y
£=x—-10>0 fiffo 11

110 1 o0
fi=y=520 fll-5 0 1
fi=—y+5>0 Alls ] o -1

@ sample value: assign zero to all column variables
x=0,y=0,f1=0,=-10,,=-5,/,=5
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Incremental LP Solver

| x
i=x+y=0 A0 1 1
fp=x-10=>0 L1—-10 1 0
f=y—-5>0 Al -5 0 1
fa=-y+5>0 fi] 5 0 -1

@ a pivot interchanges a row and a column variable
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Incremental LP Solver

L x
i=x+y=0 A0 1 1
fp=x-10>0 =10 1 0
=y-5>0 -5 0 1
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Incremental LP Solver

x_ [y
i=x+y=0 A0 1 1
fp=x-10>0 1-10 1 0
=y —520 @ -5 o ()
fi=—y+5>0 fa 5 0 -1

@ a pivot interchanges a row and a column variable
fi=-5+y=y=5+fH1=5+x+h=—1f
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Incremental LP Solver

X X f3
fi=x+y=0 Al 0 1 61a f1| 511
fp=x-10>0 =10 1 0 Ll-10 1 0
f=y-520 (@] -5 0 @ vy 5 0 1
fi=—y+5>0 L5 0 -1 1 0 0 -1

@ a pivot interchanges a row and a column variable
fi=-5+y=y=5+fH1=5+x+h=—1f
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Incremental LP Solver

X X f3
A=x+y=0 Al 0 1 61a f1| 511
h=x—-10>0 H1—10 1 0 H1—-10 1 0
f=y-520 (@] -5 0 @ vy 5 0 1
fie —y+5>0 A5 0 -1 Al o0 o0 -1

@ a pivot interchanges a row and a column variable
fr=-5+y=y=5+f A=5+x+h fh=—f
@ a column variable that is known to be zero (e.g., 3) can be “killed”

= fixed to zero
= no longer participates in pivoting
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Incremental LP Solver

X x f 3 X
Ai=x+y=0 Al o 1 61a f1| T 1 f1| 11
f=x—-10>0 =10 1 0 =10 1 0 fr/ =10 0 1
f=y—-5>0 @ -5 o () vyl 5 0 1 yl 5 1 0
fie —y+5>0 L5 0 -1 Ll o0 o0 -1 A1 0 —1 0

@ a pivot interchanges a row and a column variable
fr=-5+y=y=5+f A=5+x+h fh=—f
@ a column variable that is known to be zero (e.g., 3) can be “killed”

= fixed to zero
= no longer participates in pivoting
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Incremental LP Solver

X @ X f3 f3  x
Ai=x+y=0 Al o 1 1 A5 1 1 o |
fp=x-10>0 =10 1 0 =10 1 0 fr/ =10 0 1
fi=y—-52>0 @] -5 o @ y| 5 01 y| 5 1 0
fie —y+5>0 L5 0 -1 Ll o0 o0 -1 Al o 10

@ a pivot interchanges a row and a column variable
fi=-b5+y=>y=5+hL=5+x+AfL=-Ff
@ a column variable that is known to be zero (e.g., f3) can be “killed”
= fixed to zero
= no longer participates in pivoting
@ sample value is “valid” if
» all non-negative variables have non-negative value
> all variables have integer value
= current sample value not valid because >, = —10
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Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable
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@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value

» all coefficients in non-killed columns are zero
= tableau is empty
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= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
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= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
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Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

A=x+y>0 Xy x f3 f3  x

fh=x—10>0 Al 0 1 1 A5 1 1 A5 1 1
B H1-10 1 0 f£1-10 1 0 =10 0 1

=y—-—5>

fi=y=-520 £ -5 0 1 vyl 5 0 1 y| 5 1 0
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Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting

= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)

= non-zero variable is redundant and can be removed

@ if non-zero variable can obviously only attain zero value

> zero sample value

» all coefficients in non-killed columns are zero

= tableau is empty

January 17, 2024

A=x+y>0 Xy x f3 f3  x

fh=x—10>0 Al 0 1 1 Al 5 1 1 Al 5 1 1
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Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

fi=x+y>0 L 4 X f f x

f—x—10>0 710 1 1 15 1 1 15 1 1
- £1-10 1 0 £1-10 1 0 Hl-10 0 1

—y—-5>

fi=y-520 £ -5 0 1 yl 5 0 1 y| 5 1 o0

fo=-y+520 1 5 0 -1 10 0 -1 10 -1 0

fs=y—5#0 £l -5 0 1 £ 0 0 1 £l o0 1 0
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Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable
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@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value

» all coefficients in non-killed columns are zero
= tableau is empty

Effect on sample value validity
@ sample value is “valid” if
» all non-zero variables have non-zero value

» all non-negative variables have non-negative value
» all variables have integer value
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