A Polyhedral Compilation Library with
Explicit Disequality Constraints

Sven Verdoolaege

Cerebras Systems

@erebras

January 17, 2024

Outline

@ Motivation and Introduction
© Related Work

© Disequality Constraints

@ Internal Representation

@ Hidden Assumptions
Incremental LP Solver
Emptiness and Sampling
Redundant Local Variables
Parametric Integer Programming
Other Operations

@ Experimental Results
© Conclusion

Motivation and Introduction January 17, 2024 3/27

Outline

@ Motivation and Introduction

DA

Motivation and Introduction January 17, 2024 4 /27

A Motivating Example (Kulkarni and Kruse June 2022)

for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;

u]

b}
I
i

tht

Motivation and Introduction

A Motivating Example (Kulkarni and Kruse June 2022)

for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;
}

Instance set: {Stmt[i]:0</i<nAi#pOAi#plAi#p2A...}

January 17, 2024

4/27

Motivation and Introduction January 17, 2024 4 /27

A Motivating Example (Kulkarni and Kruse June 2022)

for (int i = 0; i < n; i+=1) {
if (1 == pO0)
continue;
if (1 == pl)
continue;
if (1 == p2)
continue;
//
Stmt (i) ;
}

Instance set: {Stmt[i]:0</i<nAi#pOAi#plAi#p2A...}
{Stmt[i] : 0<i<nA(<pOVi>pO)A(i<plVi>pl)A(i<p2Vi>p2)A...}
= expansion causes explosion in representation

Motivation and Introduction

Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }

January 17, 2024

5 /27

Motivation and Introduction January 17, 2024 5/27

Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }

6 ifrl #r2,r3,r4,r5,r10 Ar2 #£ 13,14, r5,r10 A3 # 14,15, 110 A4 # r5, 110 A 15 # 110
5 if tl=r2Ar2#13,r4,r5,r10 A13 # 14,15, 110 Ard # 15,110 Ard # r10) V...

1 ifrl=r2=1r3=1r4=1r5=r10

Motivation and Introduction January 17, 2024 5/27

Another Motivating Example (Klebanov 2015)

card { [r1]; [r2]; [r3]; [r4]; [r5]; [r10] }

6 ifrl #r2,r3,r4,r5,r10 Ar2 #£ 13,14, r5,r10 A3 # 14,15, 110 A4 # r5, 110 A 15 # 110
5 if tl=r2Ar2#13,r4,r5,r10 A13 # 14,15, 110 Ard # 15,110 Ard # r10) V...
1 ifrl=r2=r3=r4d=r5=r10

= large representation even with explicit disequality constraints
= a lot worse without

Motivation and Introduction January 17, 2024 6 /27

Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0 }

+ unions of such sets

No explicit representation for disequality constraints

This applies to libraries
@ not supporting existentially quantified variables:
» PolyLib (Wilde 1993)
» PPL (Bagnara et al. 2008)
@ supporting existentially quantified variables:
Omega (Kelly et al. Nov. 1996)
is1 (V. 2010)
Omega+ (Chen June 2012)
FPL (Pitchanathan et al. Oct. 2021)

v

v vYyy

Motivation and Introduction January 17, 2024 6 /27

Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0 }

+ unions of such sets
No explicit representation for disequality constraints

How about equality constraints?

Motivation and Introduction January 17, 2024 6 /27

Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0ABz+b=0}

+ unions of such sets
No explicit representation for disequality constraints

How about equality constraints?

Motivation and Introduction January 17, 2024 6 /27

Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0ABz+b=0}

+ unions of such sets

No explicit representation for disequality constraints

How about equality constraints? Not strictly needed but still used
@ do not change expressivity
@ n equality constraints replace n+ 1 to 2n inequality constraints
@ every (independent) equality constraint reduces effective dimensionality

Motivation and Introduction January 17, 2024 6 /27

Core Representation of Polyhedral Compilation Library
Conjunction of affine inequality constraints

{z:Az+a>0ABz+b=0}

+ unions of such sets

No explicit representation for disequality constraints

How about equality constraints? Not strictly needed but still used

@ do not change expressivity

@ n equality constraints replace n+ 1 to 2n inequality constraints

@ every (independent) equality constraint reduces effective dimensionality
Why not disequality constraints?

@ do not change expressivity
@ n disequality constraints avoid split into 2 to 2" disjuncts

Related Work January 17, 2024 7 /27

Outline

© Related Work

Related Work January 17, 2024 8 /27

Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

Related Work January 17, 2024 8 /27

Seater and Wonnacott (2005)

Detect “inert” disequality constraints

= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

Related Work January 17, 2024 8 /27

Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

None inert

Related Work January 17, 2024 8 /27

Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

None inert Some inert

Related Work January 17, 2024 8 /27

Seater and Wonnacott (2005)

Detect “inert” disequality constraints
= disequality constraints that can be ignored (in terms of emptiness)

= disequality constraints that involve unbounded direction

None inert Some inert All inert

Related Work January 17, 2024 9 /27

Seater and Wonnacott (2005)

8
An equivalent approach would be to simply allow negated equality constraints

in simplified relations. This approach could be taken even further, to allow more
general negated constraints, or other formulas that cannot be handled efficiently

i AP G L e i 5

U

.
We do not currently have an implementation of our algorithms, and thus we do
not have empirical verification that they are either fast or effective in practice.
Given the nature of the changes discussed in the previous section, we do not
expect to have an implementation any time soon.

a

4

el ,—r/ _J’/ ~ —/-/ - N‘,o/’—“~-'~»w/~/"_‘ g —

Related Work

January 17, 2024 10 / 27

Kulkarni and Kruse (June 2022)
{Stmt[/] :0<i<nAi#pOANi#plANi#p2AN...}

Polyhedral binary decision diagram, PBDD
e internal nodes: affine (in)equality constraints

@ terminal nodes: : in set; : not in set

= allows negation of (conjunction of) affine constraints
(disequality constraint is special case)

However
@ limited number of supported operations
(intersection, union, subtraction, complement)

@ revert to isl (with expansion) for other operations

@ no support for existentially quantified variables

Disequality Constraints January 17, 2024 11 /27

Outline

© Disequality Constraints

@ Internal Representation

@ Hidden Assumptions
Incremental LP Solver
Emptiness and Sampling
Redundant Local Variables
Parametric Integer Programming
Other Operations

Disequality Constraints
Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

January 17, 2024

12 /27

Disequality Constraints

Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

Changes are (mostly) transparent to user of isl
@ results of some heuristics-based operations may change

@ new expression type in result of AST generation

January 17, 2024

12 /27

Disequality Constraints January 17, 2024 12 /27

Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

Changes are (mostly) transparent to user of isl
@ results of some heuristics-based operations may change @
For example: pet test case
{ S 5[i=0:99] -> T[i] : i '= 57 } % { S_5[i=0:99] : i !'= 57 };

= { 8 5[i] -> T[i] : i >= 58 or 1 <= 56 }; now: { S_5[i] -> T[i] }
@ new expression type in result of AST generation

Disequality Constraints January 17, 2024 12 /27

Explicit Disequality Constraints
Main changes:

@ extend internal representation

@ resolve hidden assumptions

@ adjust some core algorithms

Changes are (mostly) transparent to user of isl
@ results of some heuristics-based operations may change @
For example: pet test case

{ S 5[i=0:99] -> T[i] : i '= 57 } % { S_5[i=0:99] : i !'= 57 };
= { 8 5[i] -> T[i] : i >= 58 or 1 <= 56 }; now: { S_5[i] -> T[i] }
@ new expression type in result of AST generation

for (int cO = 1; cO <= 9; c0 += 1) {

if (c0 !'=5) {

for (int c1 = 1; cl1 <= 9; cl1 += 1)
s0(cO0, cl);
} else {

Disequality Constraints

Internal Representation

Extend Internal Representation
Basic set:

January 17, 2024

13 / 27
{z:Az+a>0ABz+b=0
~+ unions of basic sets

Disequality Constraints

Internal Representation

Extend Internal Representation
Basic set:

January 17, 2024
~+ unions of basic sets

13 /27

{z:Az+a>0ABz+b=0ANCz+c#0}

Disequality Constraints

Internal Representation

Extend Internal Representation
Basic set:

January 17, 2024
~+ unions of basic sets

13 /27

{z:Az+a>0ABz+b=0ANCz+c#0}
Simplifications:
e mf(z)+c#0

= drop constraint if m does not divide ¢

Disequality Constraints Internal Representation January 17, 2024 13 /27

Extend Internal Representation
Basic set:
{z:Az+a>0ABz+b=0ANCz+c#0}

~+ unions of basic sets

Simplifications:
e mf(z)+c#0
= drop constraint if m does not divide ¢
e c+#0
= drop constraint if ¢ is not zero
= mark basic set empty if c is zero

Disequality Constraints Internal Representation January 17, 2024 13 /27

Extend Internal Representation
Basic set:
{z:Az+a>0ABz+b=0ANCz+c#0}

~+ unions of basic sets

Simplifications:
e mf(z)+c#0
= drop constraint if m does not divide ¢
e c+#0
= drop constraint if ¢ is not zero
= mark basic set empty if c is zero

@ only exact duplicates (or opposites) of disequality constraints can be removed

Disequality Constraints Internal Representation January 17, 2024 13 /27

Extend Internal Representation
Basic set:
{z:Az+a>0ABz+b=0ANCz+c#0}

~+ unions of basic sets

Simplifications:
e mf(z)+c#0
= drop constraint if m does not divide ¢
e c#0
= drop constraint if ¢ is not zero
= mark basic set empty if c is zero

@ only exact duplicates (or opposites) of disequality constraints can be removed
f(z)+c#0
fz)+a>0

= replace by f(z)+a—-1>0ifa=c
= drop disequality if a < ¢

Disequality Constraints Hidden Assumptions January 17, 2024 14 /27

Resolve Hidden Assumptions

Main hidden assumption in isl: basic set is convex

Implications:
o all integer values between min/max rational values are in basic set

@ simple hull operation can convert 1-disjunct set into basic set @

= introduce special operation for conversion
= simple hull operation drops disequality constraints
= another operation for shared constraints needed?

Disequality Constraints Incremental LP Solver January 17, 2024 15 / 27

Disequality Constraints in Tableau g%

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable

@ if non-zero variable can attain only negative or only positive values
= non-zero variable is redundant and can be removed

@ if non-zero variable can obviously only attain zero value
» zero values for all remaining columns
= tableau is empty

@ sample point only valid if all non-zero variables have non-zero value

h=x+y=0 Xy
A
—y—5> 21~

fi=y=-520 fl -5 0 1
fa=-y+520 il 5 0 -1
fo=y—5#0 il -5 0 1

Disequality Constraints

Emptiness and Sampling

Emptiness and Sampling

@ Sampling picks an integer element

January 17, 2024

16 / 27
@ Set is empty if it has no integer elements

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)

@ pick some corresponding value for unbounded dimensions (always succeeds)

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

@ trivial solution for 0D and 1D sets

@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

{boyl:i1<2x—y<4}

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
@ trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

{[x,y] :1<2x—y <4}
{b,yl:0<2x—y <0}

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling
@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
@ trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

{[x,y] :1<2x—y <4}
{[x,y]:0<2x—y <0}
X =2x—y

Y=y

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
@ trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
/

[oylil<ox—y<4} —o oot
{poyl:0<2x—y<op (Klirsxi<d)
X =2x—y

Y=y

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
@ trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
/

[yl il<ox—y<4} —ode—epoo
{poyl:0<2x—y<op (Klirsxi<d)
X =2x—y

Y=y

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
@ trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
/

[yl il<ox—y<4} —ode—epoo
{poyl:0<2x—y<op (Klirsxi<d)
X =2x—y

Y=y

Disequality Constraints Emptiness and Sampling January 17, 2024 16 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

@ trivial solution for 0D and 1D sets

@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

/

{[x,y]:1<2x—y <4} _._/¢_._._/+_.>L>
{[x,y] :0<2x—y <0} {[¥]:1<x' <4}

X =2x—y /

y =y ———t—t—0—o—

Disequality Constraints Emptiness and Sampling January 17, 2024 17 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up

Disequality Constraints Emptiness and Sampling January 17, 2024 17 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up

y

{[x,y] :y <2xAx<2y—1}

Disequality Constraints Emptiness and Sampling January 17, 2024 17 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up

y

{[x,y] :y <2xAx<2y—1}

Disequality Constraints

Emptiness and Sampling
Picking Element in Unbounded Set

y

= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set
= round up

{[x,y] :y <2xAx<2y—1}

{[x,y] iy <2x—1Ax<2y—2}

January 17, 2024
Rational element can easily be picked in tableau (sample value, possibly non-integer values)

17 /27

Disequality Constraints

Emptiness and Sampling
Picking Element in Unbounded Set

= pick rational element in restricted set (4/3.5/3)

y

= restrict set to points that have entire unit cube included in original set
= round up

{[x,y] :y <2xAx<2y—1}

{[x,y] :y<2x—1Ax<2y—2}

January 17, 2024
Rational element can easily be picked in tableau (sample value, possibly non-integer values)

17 /27

Disequality Constraints Emptiness and Sampling January 17, 2024 17 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
= pick rational element in restricted set (4/3.5/3)
= round up (2,2)

{[x,y] :y <2xAx<2y—1}

{[x,y] iy <2x—1Ax<2y—2}

u]
8
I
i
tht
n

Disequality Constraints Emptiness and Sampling January 17, 2024 18 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0)
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)

@ pick some corresponding value for unbounded dimensions (always succeeds)

Disequality Constraints Emptiness and Sampling January 17, 2024 18 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation
e perform backtracking search in tableau on bounded dimensions (can fail)
» drop disequality constraints involving unbounded dimension (“inert”)
» skip values violating any other disequality constraint
@ pick some corresponding value for unbounded dimensions (always succeeds)

Disequality Constraints Emptiness and Sampling January 17, 2024 18 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure

e trivial solution for 0D and 1D sets

@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

/

{[x,y]:1<2x—y <4} _._/¢_._._/+_.>L>
{[x,y] :0<2x—y <0} {[¥]:1<x' <4}

X =2x—y /

y =y ———t—t—0—o—

Disequality Constraints Emptiness and Sampling January 17, 2024 18 / 27

Emptiness and Sampling

@ Sampling picks an integer element
@ Set is empty if it has no integer elements

Procedure
e trivial solution for 0D and 1D sets
@ isolate bounded directions
» compute recession cone (replace constant terms by 0) ignoring disequality constraints
» (implicit) equality constraints determine bounded directions
» perform unimodular transformation

{[x,y]:1<2x—y <4} —'—/¢—H—“—/+—')L’
{[x,y]:0<2x—y <0} {[XT:1<Xx' <4}
X/ZQX—y /

, Yy
y =Yy o—o—o—j—o—s

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire unit cube included in original set
=- pick rational element in restricted set

= round up

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
=- pick rational element in restricted set

= round up (skipping violated disequality constraints)

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
=- pick rational element in restricted set

= round up (skipping violated disequality constraints)

{[x,y] :y <2xAx<2y—1}

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
=- pick rational element in restricted set

= round up (skipping violated disequality constraints)

{[x,y] :y <2xAx<2y—1}

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
=- pick rational element in restricted set

= round up (skipping violated disequality constraints)

{[x,y] :y <2xAx<2y—1}

{[x,y] :y <2x—3Ax<2y—4}

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
= pick rational element in restricted set (10/3.11/3)
= round up (skipping violated disequality constraints)

{[x,y] :y <2xAx<2y—1}

{[x,y] :y <2x—3Ax<2y—4}

Disequality Constraints Emptiness and Sampling January 17, 2024 19 / 27

Picking Element in Unbounded Set

Rational element can easily be picked in tableau (sample value, possibly non-integer values)
= restrict set to points that have entire (1 + n7)-cube included in original set
= pick rational element in restricted set (10/3.11/3)
= round up (skipping violated disequality constraints) (4, 6)

{[x,y] :y <2xAx<2y—1}

{[x,y] :y <2x—3Ax<2y—4}

Disequality Constraints Redundant Local Variables

Redundant Local Variables

January 17, 2024 20 / 27

Basic set:

{x:Jda: Aix+Aa+a>0}
Some local variable o may be redundant
Some of these can be detected based purely on constraints

@ consider all pairs of lower and upper bounds on variable «

@ if each pair admits an integer value
= « can be eliminated (using Fourier-Motzkin)

Disequality Constraints Redundant Local Variables

Redundant Local Variables

January 17, 2024 20 / 27

Basic set:
{x:Jda: Aix+Aa+a>0}

Some local variable o may be redundant

Some of these can be detected based purely on constraints
@ consider all pairs of lower and upper bounds on variable «
@ « is involved in n disequality constraints
o if each pair admits 1 + n integer values
= « can be eliminated (using Fourier-Motzkin)

Disequality Constraints Redundant Local Variables January 17, 2024 20 / 27

Redundant Local Variables

Basic set:
{x:Jda: Aix+Aa+a>0}
Some local variable a may be redundant
Some of these can be detected based purely on constraints
@ consider all pairs of lower and upper bounds on variable «
@ « is involved in n disequality constraints

o if each pair admits 1 + n integer values
= « can be eliminated (using Fourier-Motzkin)

= potential trade-off between number of disjuncts and dimensionality of disjuncts

Disequality Constraints Parametric Integer Programming

January 17, 2024 21 /27
Parametric Integer Programming g%

Compute lexicographic minimum of some variables x in terms of other variables n
Two tableaux:

@ main tableau in x and n
@ context tableau n

Pivoting in main tableau depends on sign of symbolic constant term in context tableau
= requires context splits if constant term can attain both positive and negative values

R:{[i,j]:Og—iSN/\Og—jg—i/\0§k§3N/\k:—i—2j}

lexmin R =
ifk <N
[_ka 0]

else

Disequality Constraints Parametric Integer Programming January 17, 2024 21 /27

Parametric Integer Programming @
Compute lexicographic minimum of some variables x in terms of other variables n
Two tableaux:

@ main tableau in x and n

@ context tableau n

Pivoting in main tableau depends on sign of symbolic constant term in context tableau
= requires context splits if constant term can attain both positive and negative values

Keep track of disequality constraints in tableaux
If disequality constraint g(n,x) # 0 may be violated by potential solution
= split context into 2 cases
> f(n) # 0 (implying g(n, x) # 0 is not violated)
= proceed with other disequality constraints
» f(n) =0 (implying g(n,x) # 0 is violated)
= compute two solutions, for g(n,x) > 1 and g(n,x) < —1
= take minimum of two solutions

Splitting g(n,x) # 0 up front computes same minimum but then cost is always incurred

Disequality Constraints Other Operations January 17, 2024

Some Other Operations @

@ Preparation for counting using barvinok (V., Seghir, et al. June 2007)

LGX

PO

u]
8

I
nw
it
[
S
o
i)

Disequality Constraints Other Operations January 17, 2024 22 /27

Some Other Operations @

@ Preparation for counting using barvinok

LEX
VARPN

@ Transitive closure approximation
Basic sets do not have to be split but result may be less accurate

Disequality Constraints Other Operations January 17, 2024 22 /27

Some Other Operations g%

@ Preparation for counting using barvinok

N

/N

@ Transitive closure approximation

Basic sets do not have to be split but result may be less accurate
@ Scheduling

Disequality constraints essentially ignored

Experimental Results January 17, 2024 23 /27

Outline

@ Experimental Results

DA

Experimental Results January 17, 2024 24 /27

PBDD versus isl with Explicit Disequality Constraints

{i: N\ i#p}
j<n#
PBDD

& T T T T
| | —e—simplified PBDD
F|-=— pure islpy

Time in seconds

| | |
0 2 4 6 8 10 12 14
Number of disequality constraints

Experimental Results January 17, 2024 24 /27

PBDD versus isl with Explicit Disequality Constraints

{i: N\ i#p}

i<n?
PBDD isl with explicit disequality constraints

[T T T T T B [T T T T T T T T B
o | | ——simplified PBDD) || —e— enable disequality 1
107 ¢ . El 100 . . . N
F|—= pure islpy] | = disable disequality E
AU 1 Ew) !
o r B o £ E
Q = B O r]
& 3 1 & F 1
102} E £1072} E
- e]
£ H 1 £ F]
Fi103 E F103}) E
107% E 107 E
l | | | | | | | | Ll | | | | | | | |

0 2 4 6 g8 10 12 14 0 2 4 6 8 10 12 14

Number of disequality constraints Number of disequality constraints
Note: construction times with PBDD and isl not directly comparable

Experimental Results January 17, 2024 25 /27

Full Polyhedral Compilation Flow

for (int i = 0; i < n; ++i) { Involves
if (i == p0 |l i == p1 || i == p2) @ construction of polyhedral model
continue; d d lvsi
A[i] = i; @ depenaence analysis
} @ scheduling
for (int i = 0; i < n; ++i) { .
if (1 == p0 [l i == pi || i == p2) o AST generation
Fontinu?; g —e— enable disequality
B[i] = A[i]; | —=—disable disequality | |
} . |
2
PPCG (V., Juega, et al. 2013) output: g 0%]
for (int cO = 0; cO < n; cO += 1) E
if (cO != pO && cO !'= pl && cO != p2) { E .
A[c0] = (c0); 10-1 1 |
B[c0] = A[cO]; g 1
} :\ L L L L L L L il
0 2 4 6 8 10 12 14

(NO changes required to PPCG) Number of disequality constraints

Conclusion January 17, 2024 26 / 27

Outline

© Conclusion

DA

Conclusion January 17, 2024 27 / 27

Conclusion

Supporting explicit disequality constraints in a polyhedral compilation library is feasible
@ requires only conceptually minor adjustments
@ in some cases simply delaying split to where it becomes relevant
@ can dramatically reduce size of representation

@ mostly transparent to the user

Some trade-offs involved, e.g.,
@ elimination of redundant local variables

@ accuracy of transitive closure approximation

Perhaps useful to consider other explicit constraints, e.g.,

@ lexicographic constraints

Appendix January 17, 2024 1/7

Outline

@ Appendix
@ Incremental LP Solver
@ References

Appendix Incremental LP Solver January 17, 2024 2/7

Incremental LP Solver
Core representation: tableau

Given
{z:Az+a>0}
with n variables z and m constraints Az4+a > 0
@ introduce a non-negative variable f; for each affine expression

@ tableau writes m variables in terms of n variables
@ initially, f in terms of z

A=x+y>0 | X Y
£=x—-10>0 fif 0 11

L1210 1 0
fi=y=520 Al -5 0 1
fi=—y+5>0 Al s 0 -1

Appendix Incremental LP Solver January 17, 2024 2/7

Incremental LP Solver
Core representation: tableau

Given
{z:Az+a>0}
with n variables z and m constraints Az4+a > 0
@ introduce a non-negative variable f; for each affine expression
@ tableau writes m variables in terms of n variables
@ initially, f in terms of z

A=x+y>0 | X Y
£=x—-10>0 fiffo 11

110 1 o0
fi=y=520 fll-5 0 1
fi=—y+5>0 Alls] o -1

@ sample value: assign zero to all column variables
x=0,y=0,f1=0,=-10,,=-5,/,=5

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

| x
i=x+y=0 A0 1 1
fp=x-10=>0 L1—-10 1 0
f=y—-5>0 Al -5 0 1
fa=-y+5>0 fi] 5 0 -1

@ a pivot interchanges a row and a column variable

u]
8
I
i
tht
n

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

L x
i=x+y=0 A0 1 1
fp=x-10>0 =10 1 0
=y-5>0 -5 0 1
fi=—y+5>0 1 5 0 -1

@ a pivot interchanges a row and a column variable

u]
8
I
i
tht
n

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

x_ [y
i=x+y=0 A0 1 1
fp=x-10>0 1-10 1 0
=y —520 @ -5 o ()
fi=—y+5>0 fa 5 0 -1

@ a pivot interchanges a row and a column variable
fi=-5+y=y=5+fH1=5+x+h=—1f

u]
8
I
i
tht
n

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

X X f3
fi=x+y=0 Al 0 1 61a f1| 511
fp=x-10>0 =10 1 0 Ll-10 1 0
f=y-520 (@] -5 0 @ vy 5 0 1
fi=—y+5>0 L5 0 -1 1 0 0 -1

@ a pivot interchanges a row and a column variable
fi=-5+y=y=5+fH1=5+x+h=—1f

u]
8
I
i
tht
n

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

X X f3
A=x+y=0 Al 0 1 61a f1| 511
h=x—-10>0 H1—10 1 0 H1—-10 1 0
f=y-520 (@] -5 0 @ vy 5 0 1
fie —y+5>0 A5 0 -1 Al o0 o0 -1

@ a pivot interchanges a row and a column variable
fr=-5+y=y=5+f A=5+x+h fh=—f
@ a column variable that is known to be zero (e.g., 3) can be “killed”

= fixed to zero
= no longer participates in pivoting

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

X x f 3 X
Ai=x+y=0 Al o 1 61a f1| T 1 f1| 11
f=x—-10>0 =10 1 0 =10 1 0 fr/ =10 0 1
f=y—-5>0 @ -5 o () vyl 5 0 1 yl 5 1 0
fie —y+5>0 L5 0 -1 Ll o0 o0 -1 A1 0 —1 0

@ a pivot interchanges a row and a column variable
fr=-5+y=y=5+f A=5+x+h fh=—f
@ a column variable that is known to be zero (e.g., 3) can be “killed”

= fixed to zero
= no longer participates in pivoting

Appendix Incremental LP Solver January 17, 2024 3/7

Incremental LP Solver

X @ X f3 f3 x
Ai=x+y=0 Al o 1 1 A5 1 1 o |
fp=x-10>0 =10 1 0 =10 1 0 fr/ =10 0 1
fi=y—-52>0 @] -5 o @ y| 5 01 y| 5 1 0
fie —y+5>0 L5 0 -1 Ll o0 o0 -1 Al o 10

@ a pivot interchanges a row and a column variable
fi=-b5+y=>y=5+hL=5+x+AfL=-Ff
@ a column variable that is known to be zero (e.g., f3) can be “killed”
= fixed to zero
= no longer participates in pivoting
@ sample value is “valid” if
» all non-negative variables have non-negative value
> all variables have integer value
= current sample value not valid because >, = —10

Appendix Incremental LP Solver

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable

January 17, 2024 4/7

@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value

» all coefficients in non-killed columns are zero
= tableau is empty

Appendix Incremental LP Solver January 17, 2024 4/7

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

A=x+y>0 ‘ Xy ‘ x f ‘ f3 x

fh=x—10>0 Al 0 1 1 A5 1 1 A5 1 1
B H1-10 1 0 f£L1-10 1 0 =10 0 1

=y—-—5>

fi=y=-520 £ -5 0 1 vyl 5 0 1 y| 5 1 0

fo=-y+5>0 05 0 —1 10 0 -1 10 —10

Appendix Incremental LP Solver January 17, 2024 4/7

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

A=x+y>0 ‘ Xy ‘ x f ‘ f3 x

fh=x—10>0 Al 0 1 1 A5 1 1 A5 1 1
B H1-10 1 0 f£L1-10 1 0 =10 0 1

=y—-—5>

fi=y=-520 £ -5 0 1 vyl 5 0 1 y| 5 1 0

fo=-y+5>0 05 0 —1 10 0 -1 10 —10

fs =y —5#0

Appendix Incremental LP Solver January 17, 2024 4/7

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

A=x+y>0 Xy x f3 f3 x

fh=x—10>0 Al 0 1 1 A5 1 1 A5 1 1
B H1-10 1 0 f£1-10 1 0 =10 0 1

=y—-—5>

fi=y=-520 £ -5 0 1 vyl 5 0 1 y| 5 1 0

fo=-y+5>0 05 0 —1 10 0 -1 10 —10

Appendix

Incremental LP Solver

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting

= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)

= non-zero variable is redundant and can be removed

@ if non-zero variable can obviously only attain zero value

> zero sample value

» all coefficients in non-killed columns are zero

= tableau is empty

January 17, 2024

A=x+y>0 Xy x f3 f3 x

fh=x—10>0 Al 0 1 1 Al 5 1 1 Al 5 1 1
B f£L1-10 1 0 f£1-10 1 0 H1-10 0 1

=y—-—5>

fi=y=-520 £ -5 0 1 vyl 5 0 1 y| 5 1 0

fo=-y+5>0 05 0 —1 10 0 -1 10 —10

fs=y—-5#0 fs| =5 0 1 fs| 0 0 1

4/7

Appendix Incremental LP Solver January 17, 2024

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint
@ a non-zero variable does not participate in pivoting
= always a row variable
@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value
» all coefficients in non-killed columns are zero
= tableau is empty

fi=x+y>0 L 4 X f f x

f—x—10>0 710 1 1 15 1 1 15 1 1
- £1-10 1 0 £1-10 1 0 Hl-10 0 1

—y—-5>

fi=y-520 £ -5 0 1 yl 5 0 1 y| 5 1 o0

fo=-y+520 1 5 0 -1 10 0 -1 10 -1 0

fs=y—5#0 £l -5 0 1 £ 0 0 1 £l o0 1 0

4/7

Appendix Incremental LP Solver

Disequality Constraints in Tableau

Introduce a non-zero variable for each disequality constraint

@ a non-zero variable does not participate in pivoting
= always a row variable

January 17, 2024 4/7

@ if non-zero variable can attain only negative or only positive values
(while non-negative variables have non-negative values)
= non-zero variable is redundant and can be removed
@ if non-zero variable can obviously only attain zero value
> zero sample value

» all coefficients in non-killed columns are zero
= tableau is empty

Effect on sample value validity
@ sample value is “valid” if
» all non-zero variables have non-zero value

» all non-negative variables have non-negative value
» all variables have integer value

Appendix References January 17, 2024 5/7

References |

El

DE & =

Bagnara, Roberto, Patricia M. Hill, and Enea Zaffanella (2008). “The Parma Polyhedra
Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification
of Hardware and Software Systems”. In: Science of Computer Programming 72.1-2,

pp. 3-21. DOI: 10.1016/j.scico.2007.08.001.

Chen, Chun (June 2012). “Polyhedra scanning revisited". [n: SIGPLAN Not. 47.6,

pp. 499-508. DOI: 10.1145/2345156.2254123.

Kelly, Wayne, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and

David Wonnacott (Nov. 1996). The Omega Library. Tech. rep. University of Maryland.
Klebanov, Vladimir (2015). Personal communication.

Klockner, Andreas (2014). “Loo.Py: Transformation-based Code Generation for GPUs and
CPUs". In: Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming. ARRAY'14. Edinburgh, United Kingdom: ACM,
82:82-82:87. DOI: 10.1145/2627373.2627387.

https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/2345156.2254123
https://doi.org/10.1145/2627373.2627387

Appendix References January 17, 2024 6/7

References |l

Kulkarni, Shubhang and Michael Kruse (June 2022). “Polyhedral Binary Decision
Diagrams for Representing Non-Convex Polyhedra”. In: 12th International Workshop on
Polyhedral Compilation Techniques (IMPACT 2022). Budapest, Hungary.

Pitchanathan, Arjun, Christian Ulmann, Michel Weber, Torsten Hoefler, and

Tobias Grosser (Oct. 2021). “FPL: Fast Presburger Arithmetic through Transprecision”. In:
Proc. ACM Program. Lang. 5.00PSLA. DO1: 10.1145/3485539.

Seater, Robert and David Wonnacott (2005). “Efficient Manipulation of Disequalities
During Dependence Analysis”. In: Proceedings of the 15th International Conference on
Languages and Compilers for Parallel Computing. LCPC'02. College Park, MD:
Springer-Verlag, pp. 295-308. DOI: 10.1007/11596110_20.

V., Sven (2010). “isl: An Integer Set Library for the Polyhedral Model”. In: Mathematical
Software - ICMS 2010. Ed. by Komei Fukuda, Joris Hoeven, Michael Joswig, and

Nobuki Takayama. Vol. 6327. Lecture Notes in Computer Science. Springer, pp. 299-302.
DOI: 10.1007/978-3-642-15582-6_49.

u]
8
I
i
tht
n

https://doi.org/10.1145/3485539
https://doi.org/10.1007/11596110_20
https://doi.org/10.1007/978-3-642-15582-6_49

Appendix References January 17, 2024 7/7

References Il|

[V. Sven (Jan. 2024). "A Polyhedral Compilation Library with Explicit Disequality
Constraints”. In: 14th International Workshop on Polyhedral Compilation Techniques
(IMPACT 2024). Munich, Geermany. DOI: 10.5281/zenodo.10511210.

[d V., Sven and Tobias Grosser (Jan. 2012). “Polyhedral Extraction Tool”. In: Second
International Workshop on Polyhedral Compilation Techniques (IMPACT'12). Paris,
France. por: 10.13140/RG.2.1.4213.4562.

[V., Sven, Juan Carlos Juega, Albert Cohen, José Ignacio Gémez, Christian Tenllado, and
Francky Catthoor (2013). “Polyhedral parallel code generation for CUDA". In: ACM Trans.
Archit. Code Optim. 9.4, p. 54. DOI: 10.1145/2400682.2400713.

@ V., Sven, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe (June
2007). “Counting integer points in parametric polytopes using Barvinok’s rational
functions”. In: Algorithmica 48.1, pp. 37-66. DOI: 10.1007/s00453-006-1231-0.

[Wilde, Doran K. (1993). A Library for doing polyhedral operations. Tech. rep. 785. IRISA,
Rennes, France, 45 p.

https://doi.org/10.5281/zenodo.10511210
https://doi.org/10.13140/RG.2.1.4213.4562
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1007/s00453-006-1231-0

	Motivation and Introduction
	Related Work
	Disequality Constraints
	Internal Representation
	Hidden Assumptions
	Incremental LP Solver
	Emptiness and Sampling
	Redundant Local Variables
	Parametric Integer Programming
	Other Operations

	Experimental Results
	Conclusion
	Appendix
	Appendix
	Incremental LP Solver
	References

	References

