
Easy Counting and Ranking

for Simple Loops

Alain Ketterlin

/ Camus / ICube / ICPS

IMPACT 2024: January, 17, 2024

Problem Statement

Integer Polynomials

Algorithms

Conclusion

Problem Statement 1

20

Quantitative aspects of loops

for 𝑖 = 0 to 𝑛

S1
for 𝑗 = 0 to 𝑖

S2
S3
for 𝑗 = 𝑖 + 1 to 𝑛

S4
for 𝑘 = 0 to 𝑖

S5
S6

(cholesky from PolyBench v3)

▶ Counting: how many instruction

executions overall?(
5𝑛+6𝑛2+𝑛3

6

)
▶ Ranking: how many instructions

before S5(𝑖, 𝑗,𝑘)?(
6+(9𝑛−7)𝑖+(3𝑛−9)𝑖2−2𝑖3+6(𝑖+2) 𝑗+6𝑘

6

)
▶ Unranking: what is the

instruction with rank 𝑟?

Problem Statement 2

20

Existing solutions in the polyhedral framework

▶ Clauss/Ehrhart: polynomials with periodic coefficients

▶ Verdoolaege/Barvinok: step-polynomials (in integer parts)

Pros

▶ extremely general/powerful solutions

▶ work at the polyhedral level

Cons

▶ unconventional form of the result

▶ work at the polyhedral level

Problem Statement / Basic Strategy 3

20

Loops to sums to polynomials

for 𝑖 = 0 to 𝑛 ⇒ ∑𝑛−1
𝑖=0 (=

(
5𝑛+6𝑛2+𝑛3

6

)
S1 1
for 𝑗 = 0 to 𝑖 +∑𝑖−1

𝑗=0(
S2 1)

S3 +1
for 𝑗 = 𝑖 + 1 to 𝑛 +∑𝑛−1

𝑗=𝑖+1(= 2𝑛−2+(𝑛−3)𝑖−𝑖2

S4 1
for 𝑘 = 0 to 𝑖 +∑𝑖−1

𝑘=0(
S5 1)

S6 +1))

Mechanical translation + algebra:

→ when is this possible/correct?

→ how to implement this?

Problem Statement / Simple Loops 4

20

Loop syntax

▶ parameters, with affine inequalities

▶ arbitrary nesting of loops with affine bounds

▶ no min/max, no mod or integer parts

Loop semantics

for 𝑖=𝑙 to 𝑢 . . . ⇒ ∑𝑢−1
𝑖=𝑙

· · ·

This only makes sense for simple loops, with:

1. unit step: loop counter incremented by 1

2. bounds coherence: 𝑙 ≤ 𝑢 for every instance of the loop

The latter needs explicit verification

Problem Statement

Integer Polynomials

Algorithms

Conclusion

Integer Polynomials / Representation Mismatch 5

20

Representing integer polynomials

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

a ring for the coefficients + a monomial basis

Correctness: all polynomials are integer-valued

Completeness: all integer sequences can be represented

The problem with integer polynomials

Correct Complete In practice

𝑎𝑖 ∈ Z ✓ 𝑥 (𝑥−1)
2 essentially unusable

𝑎𝑖 ∈ Q 𝑥 (𝑥−2)
2 ✓ correctness proofs

Integer Polynomials / Binomial powers 6

20

𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!
=

𝑥 !
𝑘!(𝑥 − 𝑘)! =

𝑥 𝑘

𝑘!

▶ 𝑥 𝑘
appears in Pascal’s triangle, with

(𝑥 + 1)𝑘+1 = 𝑥 𝑘 + 𝑥 𝑘+1
𝑘

𝑥

▶ defined for all 𝑥 ∈ Z, 𝑘 ∈ Z≥0
(−𝑥)𝑘 = (−1)𝑘 (𝑥 + 𝑘 − 1)𝑘

▶ relation between the various powers:

𝑥 𝑛 =
1
𝑛!

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
[
𝑛

𝑘

]
𝑥𝑘 𝑥𝑛 =

𝑛∑︁
𝑘=0

𝑘!
{
𝑛

𝑘

}
𝑥 𝑘

with

[
𝑛
𝑘

]
and

{
𝑛
𝑘

}
the unsigned Stirling numbers

𝑘

𝑥

1
1

1

1

1

-1

1

1

2

-2

1

1

1

1

3

-3

3

3

1

-1

1

1

4

-4

6

6

4

-4

1

1

Integer Polynomials / Binomial powers 7

20

▶ triangles are to 𝑥 𝑘
what squares are to 𝑥𝑘

𝑥 0 = 𝑥 1 = 𝑥 2 = 𝑥 3 =
𝑖

𝑗

𝑘 . . .

▶ triangular sums and loops

𝑛−1∑︁
𝑖1=0

𝑖1−1∑︁
𝑖2=0

· · ·
𝑖𝑑−1−1∑︁
𝑖𝑑=0

1 = 𝑛𝑑

for 𝑖=0 to 𝑛 𝑛 3

for 𝑗=0 to 𝑖 𝑖 2

for 𝑘=0 to 𝑗 𝑗 1

S 1
▶ the Cholesky iteration domain

for 𝑖 = 0 to 𝑛

S1
for 𝑗 = 0 to 𝑖

S2
S3
for 𝑗 = 𝑖 + 1 to 𝑛

S4
for 𝑘 = 0 to 𝑖

S5
S6

Integer Polynomials / A Correct and Complete Basis 8

20

Polynomials = integer coefficients and binomial powers

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

with 𝑎𝑖 ∈ Z

this representation is correct and complete

Completeness via interpolation

For any sequence of integers 𝑣0, . . . , 𝑣𝑛 ,
there is a unique interpolating polynomial 𝑝 (𝑥) = ∑𝑛

𝑖=0 𝑎𝑖 · 𝑥 𝑖

𝑣0 = 𝑝 (0) = 𝑎0 + 𝑎1 · 01 + 𝑎2 · 02 + 𝑎3 · 03 · · ·
𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1 · 11 + 𝑎2 · 12 + 𝑎3 · 13 · · ·
𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1 · 21 + 𝑎2 · 22 + 𝑎3 · 23 · · ·

. . .

⇒ 𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣𝑗

Implementation note: no need for rational numbers

Integer Polynomials / Sums of Powers 9

20

Variation and Summation

Δ𝑥 𝑘+1 = (𝑥 + 1)𝑘+1 − 𝑥 𝑘+1 = 𝑥 𝑘

𝑘
𝑥

𝑏−1∑︁
𝑥=𝑎

𝑥 𝑘 = 𝑥 𝑘+1
���𝑏
𝑎

= 𝑏𝑘+1 − 𝑎𝑘+1

(𝑎 ≤ 𝑏)

𝑘

𝑏

𝑎

Discrete calculus terminology

finite difference Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥) 𝑥 𝑘+1

anti-difference Δ−1 𝑓 (𝑥) = ∑
𝑓 (𝑥) 𝑥 𝑘

Δ Δ−1

discrete analogs to: derivative, anti-derivative (or indefinite integral)

Integer Polynomials / Sums of Polynomials 10

20

𝑏−1∑︁
𝑥=𝑎

𝑝 (𝑥) = Δ−1𝑝 (𝑥)
���𝑏
𝑎
= Δ−1𝑝 (𝑏) − Δ−1𝑝 (𝑎)

▶ given a loop with known per-iteration count: e.g.,

for 𝑖=5 to 𝑁

. . . (executes 3𝑖 1 + 7𝑖 2 instructions)

▶ the total count of the loop is:

𝑁−1∑︁
𝑖=5

3 · 𝑖 1 + 7 · 𝑖 2

= 3 · 𝑖 2 + 7 · 𝑖 3
���𝑁
5
= (3 · 𝑁 2 + 7 · 𝑁 3) − (3 · 52 + 7 · 53)︸ ︷︷ ︸

=100

Δ−1

Integer Polynomials / Sums of Polynomials 10

20

𝑏−1∑︁
𝑥=𝑎

𝑝 (𝑥) = Δ−1𝑝 (𝑥)
���𝑏
𝑎
= Δ−1𝑝 (𝑏) − Δ−1𝑝 (𝑎)

▶ given a loop with known per-iteration count: e.g.,

for 𝑖=5 to 𝑁

. . . (executes 3𝑖 1 + 7𝑖 2 instructions)

▶ the count before (the start of) an iteration 𝑖 (the rank of. . .)

𝑖−1∑︁
𝑖=5

𝑝 (𝑖) (hmm. . .)

= Δ−1𝑝 (𝑖)
���𝑖
5
= (3 · 𝑖 2 + 7 · 𝑖 3)︸ ︷︷ ︸

Δ−1
𝑖
𝑝

− (3 · 52 + 7 · 53)︸ ︷︷ ︸
Δ−1𝑝 (5)

Problem Statement

Integer Polynomials

Algorithms

Conclusion

Algorithms / Setting 11

20

Abstract Syntax Trees

▶ strict alternation between loops and sequences of statements

Loop := for id = expr to expr Seq
Seq := do (Loop|name)+ done

▶ every statement and sequence is decorated with polynomials

Algorithms / Counting 12

20

▶ bottom-up traversal, post-order addition/summation

▶ on a basic instruction:

S → 1

▶ on a sequence:

do → 𝑐0 + 𝑐1 + · · ·
𝑠0 (with count 𝑐0)
𝑠1 (with count 𝑐1)
. . .

done

▶ on a loop:

for i=𝑙 to 𝑢 → Δ−1𝑐 (𝑢) − Δ−1𝑐 (𝑙)
do (with count 𝑐)

. . .
done

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖 =

𝑖−1∑︁
𝑗=0

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖 =

𝑖−1∑︁
𝑘=0

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖 = 1 + 𝑖 + 1

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2 =

𝑛−1∑︁
𝑗=1+𝑖

(2 + 𝑖)

= (2 + 𝑖) · 𝑗 1
���𝑛
1+𝑖

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2 = 1 + 𝑖 + 1 + · · ·

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2
2𝑛 + 3𝑛 2 + 𝑛 3 =

𝑛−1∑︁
𝑖=0

· · ·

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2
2𝑛 + 3𝑛 2 + 𝑛 3

2𝑛 + 3𝑛 2 + 𝑛 3 = · · ·

Algorithms / Counting 13

20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

2𝑛 + 3𝑛 2 + 𝑛 3

2 lines
3 triangles
1 pyramid

Algorithms / Ranking 14

20

▶ top-down traversal, propagating ranks and using counts

→ when processing a node, assign ranks to all its children

▶ on a sequence:

do (with rank 𝑟)
𝑠0 (with count 𝑐0) → 𝑟

𝑠1 (with count 𝑐1) → 𝑟 + 𝑐0
𝑠2 (with count 𝑐2) → 𝑟 + 𝑐0 + 𝑐1
. . .

done

▶ on a loop

for i=𝑙 . . . (with rank 𝑟)
do (with count 𝑐) → 𝑟 + Δ−1

𝑖
𝑐 − Δ−1

𝑖
𝑐 (𝑙)

. . .
done

▶ on a basic instruction: its rank is already set

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

the root of the AST is

primed with rank 0

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
=⇒ do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

the 1
st
statement in a sequence

inherits the rank of the sequence

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

=⇒ for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor (=0 here)
+ Δ−1

𝑖 countdo (wrt 𝑖)

− Δ−1countdo (0) (=0 here)

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
=⇒ do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+

+

+

S1 inherits the rank of the sequence

others accumulate counts

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
=⇒ for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑗 countdo (wrt 𝑗 , gives 𝑗)

− Δ−1countdo (0) (=0 here)

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1

=⇒ for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑗 countdo (wrt 𝑗 , gives 2𝑗 + 𝑗𝑖)

− Δ−1countdo (1 + 𝑖) (= (2(1 + 𝑖) + (1 + 𝑖)𝑖)

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3

=⇒ do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+

+

inheritance, plus a simple

accumulation of counts

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1

=⇒ for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑘

countdo (wrt 𝑘 , gives 𝑘)

− Δ−1countdo (0) (=0 here)

Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

Note: many loop-body ranks are linear in the counter of the loop

⇐

⇐
⇐
⇐

⇐
⇐

Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences

, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)

Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size

, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)

Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)

Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)

Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)

Algorithms / Rank Inversion 17

20

Given a valid rank 𝑅 (a number)

Find a path down the AST to determine:

▶ the location of the instruction with rank 𝑅

▶ the values of the enclosing loop counters

1. On a sequence of statements:

do → max{𝑝 | 𝑟𝑝 (®𝑣) ≤ 𝑅}
𝑠0 (with rank 𝑟0)
𝑠1 (with rank 𝑟1)
. . .

done

generate conditional

expressions?

2. On a loop

for i=𝑙 to 𝑢 → max{𝑖 | 𝑟 (®𝑣, 𝑖) ≤ 𝑅}
do (with rank 𝑟)

. . .
done

≡ a root-finding problem...

Algorithms / Rank Inversion 17

20

Given a valid rank 𝑅 (a number) and the values of the parameters

Find a path down the AST to determine:

▶ the location of the instruction with rank 𝑅

▶ the values of the enclosing loop counters

1. On a sequence of statements:

do → max{𝑝 | 𝑟𝑝 (®𝑣) ≤ 𝑅}
𝑠0 (with rank 𝑟0)
𝑠1 (with rank 𝑟1)
. . .

done

all variables in scope have

known values (in ®𝑣)
→ simple scan

2. On a loop

for i=𝑙 to 𝑢 → max{𝑖 | 𝑟 (®𝑣, 𝑖) ≤ 𝑅}
do (with rank 𝑟)

. . .
done

a root-finding problem

requires numerical resolution

(𝑟 (®𝑣, 𝑖) is univariate in 𝑖)

Algorithms / Rank Inversion 18

20

▶ generate code computing the result, to be used at runtime

▶ use a solver: unisolve (𝑝, 𝑙, 𝑢, 𝑅)

returns max{𝑥 | 𝑙 ≤ 𝑥 < 𝑢 ∧ 𝑝 (𝑥) ≤ 𝑅}

def dyn_unrank (𝑛, RANK):
⇒ 𝑖 = unisolve ([0, 2𝑛, −3 + 𝑛, −2], 0, 𝑛, RANK)

if RANK < 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 0])

elif RANK < 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
⇒ 𝑗 = unisolve ([1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 1], 0, 𝑖, RANK)

return ([𝑖, 𝑗], [0, 1, 0])

elif RANK < 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 2])

else:

⇒ 𝑗 = unisolve ([−3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 2 + 𝑖], 1 + 𝑖, 𝑛, RANK)

if RANK < 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:
return ([𝑖, 𝑗], [0, 3, 0])

elif RANK < 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:

⇒ 𝑘 = unisolve ([1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖, 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗, 𝑘], [0, 3, 1, 0])

else:
return ([𝑖, 𝑗], [0, 3, 2])

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done done

Algorithms / Rank Inversion 18

20

▶ generate code computing the result, to be used at runtime

▶ use a solver: unisolve (𝑝, 𝑙, 𝑢, 𝑅)

returns max{𝑥 | 𝑙 ≤ 𝑥 < 𝑢 ∧ 𝑝 (𝑥) ≤ 𝑅}

def dyn_unrank (𝑛, RANK):
𝑖 = unisolve ([0, 2𝑛, −3 + 𝑛, −2], 0, 𝑛, RANK)

if RANK < 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 0])

elif RANK < 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
𝑗 = unisolve ([1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗], [0, 1, 0])

elif RANK < 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 2])

else:

𝑗 = unisolve ([−3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 2 + 𝑖], 1 + 𝑖, 𝑛, RANK)

if RANK < 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:
return ([𝑖, 𝑗], [0, 3, 0])

elif RANK < 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:

𝑘 = unisolve ([1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖, 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗, 𝑘], [0, 3, 1, 0])

else:
return ([𝑖, 𝑗], [0, 3, 2])

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done done

Algorithms / Use cases 19

20

▶ Uniform random sampling: 10% with 𝑛 = 10 → 27 out of 275

▶ Slicing: 4-way with 𝑛 = 10→ 275 = 3 × 69 + 68

Algorithms / Use cases 19

20

▶ Uniform random sampling: 10% with 𝑛 = 10 → 27 out of 275

▶ Slicing: 4-way with 𝑛 = 10→ 275 = 3 × 69 + 68

Problem Statement

Integer Polynomials

Algorithms

Conclusion

Conclusion 20

20

▶ Pros

▶ simple mathematical foundations

▶ efficient algorithms

▶ lightweight implementation

▶ Cons: strict restrictions on loops

1. unit step

→ a fundamental difference with Barvinok/Ehrhart

2. bounds coherence

→ an anecdotal difference, can be delegated

▶ Topics not covered in this talk

▶ multivariate integer polynomials

▶ symbolic algebraic operations

▶ Some trivial extensions:

▶ polynomial bounds

▶ weighted instructions

Problem Statement

Basic Strategy

Simple Loops

Integer Polynomials

Representation Mismatch

Binomial powers

Sums of Polynomials

Algorithms

Counting

Ranking

Rank Inversion

Conclusion

	Problem Statement
	Basic Strategy
	Simple Loops

	Integer Polynomials
	Representation Mismatch
	Binomial powers
	A Correct and Complete Basis
	Sums of Powers
	Sums of Polynomials

	Algorithms
	Setting
	Counting
	Ranking
	Lost in Space?
	Rank Inversion
	Use cases

	Conclusion

