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Quantitative aspects of loops

for 𝑖 = 0 to 𝑛

S1
for 𝑗 = 0 to 𝑖

S2
S3
for 𝑗 = 𝑖 + 1 to 𝑛

S4
for 𝑘 = 0 to 𝑖

S5
S6

(cholesky from PolyBench v3)

▶ Counting: how many instruction

executions overall?(
5𝑛+6𝑛2+𝑛3

6

)
▶ Ranking: how many instructions

before S5(𝑖, 𝑗,𝑘)?(
6+(9𝑛−7)𝑖+(3𝑛−9)𝑖2−2𝑖3+6(𝑖+2) 𝑗+6𝑘

6

)
▶ Unranking: what is the

instruction with rank 𝑟?
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Existing solutions in the polyhedral framework

▶ Clauss/Ehrhart: polynomials with periodic coefficients

▶ Verdoolaege/Barvinok: step-polynomials (in integer parts)

Pros

▶ extremely general/powerful solutions

▶ work at the polyhedral level

Cons

▶ unconventional form of the result

▶ work at the polyhedral level
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Loops to sums to polynomials

for 𝑖 = 0 to 𝑛 ⇒ ∑𝑛−1
𝑖=0 ( =

(
5𝑛+6𝑛2+𝑛3

6

)
S1 1
for 𝑗 = 0 to 𝑖 +∑𝑖−1

𝑗=0(
S2 1)

S3 +1
for 𝑗 = 𝑖 + 1 to 𝑛 +∑𝑛−1

𝑗=𝑖+1( = 2𝑛−2+(𝑛−3)𝑖−𝑖2

S4 1
for 𝑘 = 0 to 𝑖 +∑𝑖−1

𝑘=0(
S5 1)

S6 +1))

Mechanical translation + algebra:

→ when is this possible/correct?

→ how to implement this?
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Loop syntax

▶ parameters, with affine inequalities

▶ arbitrary nesting of loops with affine bounds

▶ no min/max, no mod or integer parts

Loop semantics

for 𝑖=𝑙 to 𝑢 . . . ⇒ ∑𝑢−1
𝑖=𝑙

· · ·

This only makes sense for simple loops, with:

1. unit step: loop counter incremented by 1

2. bounds coherence: 𝑙 ≤ 𝑢 for every instance of the loop

The latter needs explicit verification
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Representing integer polynomials

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

a ring for the coefficients + a monomial basis

Correctness: all polynomials are integer-valued

Completeness: all integer sequences can be represented

The problem with integer polynomials

Correct Complete In practice

𝑎𝑖 ∈ Z ✓ 𝑥 (𝑥−1)
2 essentially unusable

𝑎𝑖 ∈ Q 𝑥 (𝑥−2)
2 ✓ correctness proofs
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𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!
=

𝑥 !
𝑘!(𝑥 − 𝑘)! =

𝑥 𝑘

𝑘!

▶ 𝑥 𝑘
appears in Pascal’s triangle, with

(𝑥 + 1)𝑘+1 = 𝑥 𝑘 + 𝑥 𝑘+1
𝑘

𝑥

▶ defined for all 𝑥 ∈ Z, 𝑘 ∈ Z≥0
(−𝑥)𝑘 = (−1)𝑘 (𝑥 + 𝑘 − 1)𝑘

▶ relation between the various powers:

𝑥 𝑛 =
1
𝑛!

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
[
𝑛

𝑘

]
𝑥𝑘 𝑥𝑛 =

𝑛∑︁
𝑘=0

𝑘!
{
𝑛

𝑘

}
𝑥 𝑘

with

[
𝑛
𝑘

]
and

{
𝑛
𝑘

}
the unsigned Stirling numbers

𝑘

𝑥

1
1

1

1

1

-1

1

1

2

-2

1

1

1

1

3

-3

3

3

1

-1

1

1

4

-4

6

6

4

-4

1

1
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▶ triangles are to 𝑥 𝑘
what squares are to 𝑥𝑘

𝑥 0 = 𝑥 1 = 𝑥 2 = 𝑥 3 =
𝑖

𝑗

𝑘 . . .

▶ triangular sums and loops

𝑛−1∑︁
𝑖1=0

𝑖1−1∑︁
𝑖2=0

· · ·
𝑖𝑑−1−1∑︁
𝑖𝑑=0

1 = 𝑛𝑑

for 𝑖=0 to 𝑛 𝑛 3

for 𝑗=0 to 𝑖 𝑖 2

for 𝑘=0 to 𝑗 𝑗 1

S 1
▶ the Cholesky iteration domain

for 𝑖 = 0 to 𝑛

S1
for 𝑗 = 0 to 𝑖

S2
S3
for 𝑗 = 𝑖 + 1 to 𝑛

S4
for 𝑘 = 0 to 𝑖

S5
S6



Integer Polynomials / A Correct and Complete Basis 8

20

Polynomials = integer coefficients and binomial powers

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

with 𝑎𝑖 ∈ Z

this representation is correct and complete

Completeness via interpolation

For any sequence of integers 𝑣0, . . . , 𝑣𝑛 ,
there is a unique interpolating polynomial 𝑝 (𝑥) = ∑𝑛

𝑖=0 𝑎𝑖 · 𝑥 𝑖

𝑣0 = 𝑝 (0) = 𝑎0 + 𝑎1 · 01 + 𝑎2 · 02 + 𝑎3 · 03 · · ·
𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1 · 11 + 𝑎2 · 12 + 𝑎3 · 13 · · ·
𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1 · 21 + 𝑎2 · 22 + 𝑎3 · 23 · · ·

. . .

⇒ 𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣𝑗

Implementation note: no need for rational numbers



Integer Polynomials / Sums of Powers 9

20

Variation and Summation

Δ𝑥 𝑘+1 = (𝑥 + 1)𝑘+1 − 𝑥 𝑘+1 = 𝑥 𝑘

𝑘
𝑥

𝑏−1∑︁
𝑥=𝑎

𝑥 𝑘 = 𝑥 𝑘+1
���𝑏
𝑎

= 𝑏𝑘+1 − 𝑎𝑘+1

(𝑎 ≤ 𝑏)

𝑘

𝑏

𝑎

Discrete calculus terminology

finite difference Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥) 𝑥 𝑘+1

anti-difference Δ−1 𝑓 (𝑥) = ∑
𝑓 (𝑥) 𝑥 𝑘

Δ Δ−1

discrete analogs to: derivative, anti-derivative (or indefinite integral)
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𝑏−1∑︁
𝑥=𝑎

𝑝 (𝑥) = Δ−1𝑝 (𝑥)
���𝑏
𝑎
= Δ−1𝑝 (𝑏) − Δ−1𝑝 (𝑎)

▶ given a loop with known per-iteration count: e.g.,

for 𝑖=5 to 𝑁

. . . (executes 3𝑖 1 + 7𝑖 2 instructions)

▶ the total count of the loop is:

𝑁−1∑︁
𝑖=5

3 · 𝑖 1 + 7 · 𝑖 2

= 3 · 𝑖 2 + 7 · 𝑖 3
���𝑁
5
= (3 · 𝑁 2 + 7 · 𝑁 3 ) − (3 · 52 + 7 · 53 )︸             ︷︷             ︸

=100

Δ−1
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𝑏−1∑︁
𝑥=𝑎

𝑝 (𝑥) = Δ−1𝑝 (𝑥)
���𝑏
𝑎
= Δ−1𝑝 (𝑏) − Δ−1𝑝 (𝑎)

▶ given a loop with known per-iteration count: e.g.,

for 𝑖=5 to 𝑁

. . . (executes 3𝑖 1 + 7𝑖 2 instructions)

▶ the count before (the start of) an iteration 𝑖 (the rank of. . . )

𝑖−1∑︁
𝑖=5

𝑝 (𝑖) (hmm. . . )

= Δ−1𝑝 (𝑖)
���𝑖
5
= (3 · 𝑖 2 + 7 · 𝑖 3 )︸            ︷︷            ︸

Δ−1
𝑖
𝑝

− (3 · 52 + 7 · 53 )︸             ︷︷             ︸
Δ−1𝑝 (5)
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Abstract Syntax Trees

▶ strict alternation between loops and sequences of statements

Loop := for id = expr to expr Seq
Seq := do (Loop|name)+ done

▶ every statement and sequence is decorated with polynomials
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▶ bottom-up traversal, post-order addition/summation

▶ on a basic instruction:

S → 1

▶ on a sequence:

do → 𝑐0 + 𝑐1 + · · ·
𝑠0 (with count 𝑐0)
𝑠1 (with count 𝑐1)
. . .

done

▶ on a loop:

for i=𝑙 to 𝑢 → Δ−1𝑐 (𝑢) − Δ−1𝑐 (𝑙)
do (with count 𝑐)

. . .
done
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done
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20

with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖 =

𝑖−1∑︁
𝑗=0

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖 =

𝑖−1∑︁
𝑘=0

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖 = 1 + 𝑖 + 1
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2 =

𝑛−1∑︁
𝑗=1+𝑖

(2 + 𝑖)

= (2 + 𝑖) · 𝑗 1
���𝑛
1+𝑖
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2 = 1 + 𝑖 + 1 + · · ·
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2
2𝑛 + 3𝑛 2 + 𝑛 3 =

𝑛−1∑︁
𝑖=0

· · ·
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

1

1
𝑖

1

1

1
𝑖

1

2 + 𝑖
−2 + 2𝑛 − 4𝑖 + 𝑖𝑛 − 2𝑖 2

2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2
2𝑛 + 3𝑛 2 + 𝑛 3

2𝑛 + 3𝑛 2 + 𝑛 3 = · · ·
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with n when n >= 0 (count)
do

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done
done

done

2𝑛 + 3𝑛 2 + 𝑛 3

2 lines
3 triangles
1 pyramid
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▶ top-down traversal, propagating ranks and using counts

→ when processing a node, assign ranks to all its children

▶ on a sequence:

do (with rank 𝑟)
𝑠0 (with count 𝑐0) → 𝑟

𝑠1 (with count 𝑐1) → 𝑟 + 𝑐0
𝑠2 (with count 𝑐2) → 𝑟 + 𝑐0 + 𝑐1
. . .

done

▶ on a loop

for i=𝑙 . . . (with rank 𝑟)
do (with count 𝑐) → 𝑟 + Δ−1

𝑖
𝑐 − Δ−1

𝑖
𝑐 (𝑙)

. . .
done

▶ on a basic instruction: its rank is already set
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

the root of the AST is

primed with rank 0
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with n when n >= 0 (rank) (count)
=⇒ do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

the 1
st
statement in a sequence

inherits the rank of the sequence
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with n when n >= 0 (rank) (count)
do 0

=⇒ for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor (=0 here)
+ Δ−1

𝑖 countdo (wrt 𝑖)

− Δ−1countdo (0) (=0 here)
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
=⇒ do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+

+

+

S1 inherits the rank of the sequence

others accumulate counts
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
=⇒ for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑗 countdo (wrt 𝑗 , gives 𝑗 )

− Δ−1countdo (0) (=0 here)
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1

=⇒ for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑗 countdo (wrt 𝑗 , gives 2𝑗 + 𝑗𝑖)

− Δ−1countdo (1 + 𝑖 ) (= (2(1 + 𝑖 ) + (1 + 𝑖 )𝑖)
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3

=⇒ do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+

+

inheritance, plus a simple

accumulation of counts
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with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1

=⇒ for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

+
Δ−1

= rankfor

+ Δ−1
𝑘

countdo (wrt 𝑘 , gives 𝑘)

− Δ−1countdo (0) (=0 here)



Algorithms / Ranking 15

20

with n when n >= 0 (rank) (count)
do 0

for i = 0 to n 0
do 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 2𝑛 − 3𝑖 + 𝑖𝑛 − 2𝑖 2

S1 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 0 to i 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 𝑖

do S2 done 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 𝑗 1
S3 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 1
for j = 1+i to n 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3
do −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 2 + 𝑖
S4 −3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 1
for k = 0 to i 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 𝑖

do S5 done 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖 + 𝑘 1
S6 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖

done
done

done

Note: many loop-body ranks are linear in the counter of the loop

⇐

⇐
⇐
⇐

⇐
⇐
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Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences

, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)
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Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size

, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)
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Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)
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Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
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k1: array [c:=0 .. a-1] of
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end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)



Algorithms / Lost in Space? 16

20

Polyhedral arrays of structure of... (in extended Pascal syntax):

arrays as loops, records as sequences, count as size, rank as offset

data :
array [a:=0..n-1] of

record
s1: real;
j1: array [b:=0 .. a-1] of

real;
s3: real;
j2: array [b:=a+1 .. n-1] of

record
s4: real;
k1: array [c:=0 .. a-1] of

real;
s6: real;

end;
end;

position in

this array

size of data[𝑎].j2
= −2 + 2𝑛 − 4𝑎 + 𝑎𝑛 − 2𝑎 2

offset of data[𝑎].j2[𝑏].k1[c]
= 1 − 3𝑎 + 2𝑎𝑛 − 5𝑎 2 + 𝑎 2 𝑛 − 2𝑎 3 + 2𝑏 + 𝑏𝑎 + 𝑐

This array has the shape of the Cholesky kernel iteration domain...

(my humble tribute to Niklaus Wirth)



Algorithms / Rank Inversion 17

20

Given a valid rank 𝑅 (a number)

Find a path down the AST to determine:

▶ the location of the instruction with rank 𝑅

▶ the values of the enclosing loop counters

1. On a sequence of statements:

do → max{𝑝 | 𝑟𝑝 (®𝑣) ≤ 𝑅}
𝑠0 (with rank 𝑟0)
𝑠1 (with rank 𝑟1)
. . .

done

generate conditional

expressions?

2. On a loop

for i=𝑙 to 𝑢 → max{𝑖 | 𝑟 (®𝑣, 𝑖) ≤ 𝑅}
do (with rank 𝑟)

. . .
done

≡ a root-finding problem...
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Given a valid rank 𝑅 (a number) and the values of the parameters

Find a path down the AST to determine:

▶ the location of the instruction with rank 𝑅

▶ the values of the enclosing loop counters

1. On a sequence of statements:

do → max{𝑝 | 𝑟𝑝 (®𝑣) ≤ 𝑅}
𝑠0 (with rank 𝑟0)
𝑠1 (with rank 𝑟1)
. . .

done

all variables in scope have

known values (in ®𝑣)
→ simple scan

2. On a loop

for i=𝑙 to 𝑢 → max{𝑖 | 𝑟 (®𝑣, 𝑖) ≤ 𝑅}
do (with rank 𝑟)

. . .
done

a root-finding problem

requires numerical resolution

(𝑟 (®𝑣, 𝑖) is univariate in 𝑖)
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▶ generate code computing the result, to be used at runtime

▶ use a solver: unisolve (𝑝, 𝑙, 𝑢, 𝑅)

returns max{𝑥 | 𝑙 ≤ 𝑥 < 𝑢 ∧ 𝑝 (𝑥) ≤ 𝑅}

def dyn_unrank (𝑛, RANK):
⇒ 𝑖 = unisolve ([0, 2𝑛, −3 + 𝑛, −2], 0, 𝑛, RANK)

if RANK < 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 0])

elif RANK < 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
⇒ 𝑗 = unisolve ([1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 1], 0, 𝑖, RANK)

return ([𝑖, 𝑗], [0, 1, 0])

elif RANK < 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 2])

else:

⇒ 𝑗 = unisolve ([−3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 2 + 𝑖], 1 + 𝑖, 𝑛, RANK)

if RANK < 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:
return ([𝑖, 𝑗], [0, 3, 0])

elif RANK < 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:

⇒ 𝑘 = unisolve ([1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖, 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗, 𝑘], [0, 3, 1, 0])

else:
return ([𝑖, 𝑗], [0, 3, 2])

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done done
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▶ generate code computing the result, to be used at runtime

▶ use a solver: unisolve (𝑝, 𝑙, 𝑢, 𝑅)

returns max{𝑥 | 𝑙 ≤ 𝑥 < 𝑢 ∧ 𝑝 (𝑥) ≤ 𝑅}

def dyn_unrank (𝑛, RANK):
𝑖 = unisolve ([0, 2𝑛, −3 + 𝑛, −2], 0, 𝑛, RANK)

if RANK < 1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 0])

elif RANK < 1 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
𝑗 = unisolve ([1 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗], [0, 1, 0])

elif RANK < 2 + 𝑖 + 2𝑖𝑛 − 3𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 :
return ([𝑖], [0, 2])

else:

𝑗 = unisolve ([−3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 , 2 + 𝑖], 1 + 𝑖, 𝑛, RANK)

if RANK < 1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:
return ([𝑖, 𝑗], [0, 3, 0])

elif RANK < 1 − 2𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖:

𝑘 = unisolve ([1 − 3𝑖 + 2𝑖𝑛 − 5𝑖 2 + 𝑖 2 𝑛 − 2𝑖 3 + 2𝑗 + 𝑗𝑖, 1], 0, 𝑖, RANK)
return ([𝑖, 𝑗, 𝑘], [0, 3, 1, 0])

else:
return ([𝑖, 𝑗], [0, 3, 2])

for i = 0 to n
do

S1
for j = 0 to i

do S2 done
S3
for j = 1+i to n

do
S4
for k = 0 to i

do S5 done
S6

done done
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▶ Slicing: 4-way with 𝑛 = 10→ 275 = 3 × 69 + 68
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▶ Pros

▶ simple mathematical foundations

▶ efficient algorithms

▶ lightweight implementation

▶ Cons: strict restrictions on loops

1. unit step

→ a fundamental difference with Barvinok/Ehrhart

2. bounds coherence

→ an anecdotal difference, can be delegated

▶ Topics not covered in this talk

▶ multivariate integer polynomials

▶ symbolic algebraic operations

▶ Some trivial extensions:

▶ polynomial bounds

▶ weighted instructions
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