
Reuse Analysis via 

Affine Factorization

Ryan Job

Advisor: Prof. Sanjay Rajopadhye



Motivation
• Consider the 3D expression here.

• Each plane reads the same value from an input.

– The blue plane reads the same value of 𝐴

– The red plane reads the same value of 𝐵.

• Their intersection produces the same results in 𝑌.

• We have a 2D computation in 3D space.

• How do we automatically detect and exploit this?

𝑌 𝑖, 𝑗, 𝑘 = 𝐴 𝑖 + 𝑘 + 𝐵[𝑖 + 𝑗 + 𝑘]



Outline
• Background

• Affine Factorization Algorithm

• Automating Reduction Simplification



Background



Affine Maps and Matrix Notation
• Affine maps apply a linear transformation and a translation to a domain.

– 𝑦 = 𝐴𝑥 + 𝑏

• We use an augmented matrix notation:

– Augment the input (𝑥) with a constant 1.

– Merge the transformation (𝐴) with the translation (𝑏).

– 𝑦 = 𝐴|𝑏 ∙
𝑥
1



Hermite Normal Form (HNF)
• HNF is analogous to reduced row echelon form (RREF), but for integer spaces.

• Given a set of vectors, HNF finds a basis which spans them.

• We use HNF to decompose a matrix into two:

– 𝑀: input vectors, written as rows of a matrix.

– 𝐻: the basis of the input vectors.

– 𝑈−1: a transformation from the basis to the input.

– 𝑀 = 𝑈−1 ∙ 𝐻



Affine Factorization Algorithm



Algorithm Overview
• We use HNF to “factorize” a set of affine maps with a common domain.

• Find the smallest subspace of distinct values for the computation.

– We call this the “intermediate space”.

• Rewrite the original maps as the composition of two:

– 𝐻 maps the domain to the intermediate space.

– Then, subsets of 𝑈−1 map to the desired ranges.

• This use case is mathematically simple, but we could not find it in use.

– Neither in the polyhedral community nor the wider compilation community.



Algorithm Details
• Write the affine maps as augmented matrices.

• Concatenate the matrices on top of each other: 𝑀.

• HNF is used to rewrite the maps with 𝐻 and 𝑈−1.

– Each map uses 𝐻 as-is, and a subset of 𝑈−1.

• Since 𝐻 is common to all rewrites, it can be factored out.

– Introduce a new variable of only the unique values (𝑈−1).

– Map the full output to these values (𝐻).



Automating Reduction 

Simplification



Alpha & AlphaZ
• Alpha is a declarative, equational language for the polyhedral model.

• Reductions are modeled as a collection of inputs combined with an operator.

• AlphaZ is a system for optimizing Alpha equations and generating C code.

• We are focusing on the “Simplifying Reductions” optimization.

– Exploits reused values to lower the asymptotic time complexity of the computation.

• Currently, it requires human input to indicate how values are reused.

– Given this information, the reduction can be automatically rewritten.



Automatic Reduction Simplification
• We apply affine factorization to the affine maps which index input variables.

• If the space of unique values is lower dimension than the result:

– Values are reused throughout the computation.

– The basis, 𝐻, will have a non-trivial null space.

• Vectors in this null space indicate how values are reused.

• Any such vector is enough information to automate Simplifying Reductions.



Current Status
• Developed a proof-of-concept for affine factorization.

– Publicly available on GitHub (link in the paper).

– Presented as a Jupyter notebook using the islpy library.

• Incorporating the algorithm into AlphaZ.

– Goal: automate the Simplifying Reductions optimization.



Additional Uses
• Found a use case for memory layout transformations in FPGA accelerators.

– Relates to work by Corentin Ferry, being presented later today.

• Investigating applications to algorithm-based fault tolerance.

– Relates to work by Louis Narmour, presented at IMPACT last year.

• We hope to hear from you about more use cases!



Thank you!


	Slide 1: Reuse Analysis via Affine Factorization
	Slide 2: Motivation
	Slide 3: Outline
	Slide 4: Background
	Slide 5: Affine Maps and Matrix Notation
	Slide 6: Hermite Normal Form (HNF)
	Slide 7: Affine Factorization Algorithm
	Slide 8: Algorithm Overview
	Slide 9: Algorithm Details
	Slide 10: Automating Reduction Simplification
	Slide 11: Alpha & AlphaZ
	Slide 12: Automatic Reduction Simplification
	Slide 13: Current Status
	Slide 14: Additional Uses
	Slide 15: Thank you!

