cOLORADO STATE UNIVERSITY

Reuse Analysis via Affine Factorization

Ryan Job

Advisor: Prof. Sanjay Rajopadhye

Motivation

- Consider the 3D expression here.
- Each plane reads the same value from an input.
- The blue plane reads the same value of A
- The red plane reads the same value of B.
- Their intersection produces the same results in Y.
- We have a 2D computation in 3D space.
- How do we automatically detect and exploit this?
$Y[i, j, k]=A[i+k]+B[i+j+k]$

Outline

- Background
- Affine Factorization Algorithm
- Automating Reduction Simplification

Background

Affine Maps and Matrix Notation

- Affine maps apply a linear transformation and a translation to a domain.
- $y=A x+b$
- We use an augmented matrix notation:
- Augment the input (x) with a constant 1.
- Merge the transformation (A) with the translation (b).
- $y=[A \mid b] \cdot\left[\begin{array}{l}x \\ 1\end{array}\right]$

Hermite Normal Form (HNF)

- HNF is analogous to reduced row echelon form (RREF), but for integer spaces.
- Given a set of vectors, HNF finds a basis which spans them.
- We use HNF to decompose a matrix into two:
- M : input vectors, written as rows of a matrix.
- H : the basis of the input vectors.
- U^{-1} : a transformation from the basis to the input.
- $\quad M=U^{-1} \cdot H$

Affine Factorization Algorithm

Algorithm Overview

- We use HNF to "factorize" a set of affine maps with a common domain.
- Find the smallest subspace of distinct values for the computation.
- We call this the "intermediate space".
- Rewrite the original maps as the composition of two:
- $\quad H$ maps the domain to the intermediate space.
- Then, subsets of U^{-1} map to the desired ranges.
- This use case is mathematically simple, but we could not find it in use.
- Neither in the polyhedral community nor the wider compilation community.

Algorithm Details

- Write the affine maps as augmented matrices.
- Concatenate the matrices on top of each other: M.
- HNF is used to rewrite the maps with H and U^{-1}.
- Each map uses H as-is, and a subset of U^{-1}.
- Since H is common to all rewrites, it can be factored out.
- Introduce a new variable of only the unique values $\left(U^{-1}\right)$.
- Map the full output to these values (H).

```
Algorithm 1 Algorithm for factorizing affine maps
Input: A list matrices }\mp@subsup{M}{i}{}\mathrm{ representing affine maps, all with
    the same D-dimensional domain.
Output: A common right factor H and left factors }\mp@subsup{Q}{i}{}\mathrm{ .
    : procedure FactorizeMAps( }\mp@subsup{M}{0}{}\ldots..\mp@subsup{M}{n}{}
        M\leftarrow Concatenate( }\mp@subsup{M}{0}{}\ldots..\mp@subsup{M}{n}{}
        H,U\leftarrow HermiteNormalForm(M)
        Q}\leftarrowMATRixInverse(U
        for r=Rows(H) -1 . . 0 do
            if IsRowOfZeros(H,r) then
                H
                Q}\leftarrow\operatorname{DropCoL}(Q,r
            end if
        end for
        start}\leftarrow
        for i=0...n do
            end }\leftarrow\mathrm{ start + Rows(Mi)
            Qi}\leftarrowGETRows(Q, start, end
            start }\leftarrow\mathrm{ end
        end for
        return }H,\mp@subsup{Q}{0}{}\ldots\mp@subsup{Q}{n}{
    end procedure
```


Automating Reduction Simplification

Alpha \& AlphaZ

- Alpha is a declarative, equational language for the polyhedral model.
- Reductions are modeled as a collection of inputs combined with an operator.
- AlphaZ is a system for optimizing Alpha equations and generating C code.
- We are focusing on the "Simplifying Reductions" optimization.
- Exploits reused values to lower the asymptotic time complexity of the computation.
- Currently, it requires human input to indicate how values are reused.
- Given this information, the reduction can be automatically rewritten.

Automatic Reduction Simplification

- We apply affine factorization to the affine maps which index input variables.
- If the space of unique values is lower dimension than the result:
- Values are reused throughout the computation.
- The basis, H, will have a non-trivial null space.
- Vectors in this null space indicate how values are reused.
- Any such vector is enough information to automate Simplifying Reductions.

Current Status

- Developed a proof-of-concept for affine factorization.
- Publicly available on GitHub (link in the paper).
- Presented as a Jupyter notebook using the islpy library.
- Incorporating the algorithm into AlphaZ.
- Goal: automate the Simplifying Reductions optimization.

Additional Uses

- Found a use case for memory layout transformations in FPGA accelerators.
- Relates to work by Corentin Ferry, being presented later today.
- Investigating applications to algorithm-based fault tolerance.
- Relates to work by Louis Narmour, presented at IMPACT last year.
- We hope to hear from you about more use cases!

Thank you!

