Reuse Analysis via
grivitoll Affine Factorization

Ryan Job

Advisor: Prof. Sanjay Rajopadhye

Motivation

Consider the 3D expression here.

Each plane reads the same value from an input.
— The blue plane reads the same value of A

— The red plane reads the same value of B.

Their Intersection produces the same results in Y.

We have a 2D computation in 3D space.

How do we automatically detect and exploit this?

Y[i,j, k] = A[i + k] + B[i + j + k]

10

Outline

Background

Affine Factorization Algorithm

Automating Reduction Simplification

Background

Affine Maps and Matrix Notation

« Affine maps apply a linear transformation and a translation to a domain.
— y=Ax+0b

 We use an augmented matrix notation:
— Augment the input (x) with a constant 1.

— Merge the transformation (A) with the translation (b).

=14l []

Hermite Normal Form (HNF)

 HNF Is analogous to reduced row echelon form (RREF), but for integer spaces.
* Given a set of vectors, HNF finds a basis which spans them.

 We use HNF to decompose a matrix into two:
— M: Input vectors, written as rows of a matrix.
— H: the basis of the Input vectors.
— U™!: atransformation from the basis to the input.
- M=U"1-H

Affine Factorization Algorithm

"B DN E B D

Algorithm Overview

We use HNF to “factorize” a set of affine maps with a common domain.

Find the smallest subspace of distinct values for the computation.

We call this the “intermediate space”.

Rewrite the original maps as the composition of two:

H maps the domain to the intermediate space.

Then, subsets of U~! map to the desired ranges.

This use case Is mathematically simple, but we could not find It in use.

Neither in the polyhedral community nor the wider compilation community.

Algorithm 1 Algorithm for factorizing affine maps

A I g O r I t h I I l D et al | S Input: A list matrices M; representing affine maps, all with

the same D-dimensional domain.

Output: A common right factor H and left factors Q;.
1: procedure FACTORIZEMAPS(M, ... M,)

« Write the affine maps as augmented matrices. 5
* Concatenate the matrices on top of each other: M. :
« HNF is used to rewrite the maps with H and U~1. ;

— Each map uses H as-is, and a subset of U~ 1. 3

 Since H Is common to all rewrites, it can be factored out.
— Introduce a new variable of only the unique values (U™1).

— Map the full output to these values (H).

15:
16:
17:

M < CONCATENATE(M, ... M,)
H,U <« HERMITENORMALFORM(M)
Q « MATRIXINVERSE(U)
for r = Rows(H) —1...0do
if ISRowOFZEROS(H, r) then
H <« DrorRow(H, r)
Q < DrorCoL(Q,r)
end if
end for
start < (
fori=0...ndo
end < start + Rows(M;)
Q; < GETROwWS(Q, start, end)
start «— end
end for
return H,Q, ... 0y,

18: end procedure

Automating Reduction
Simplification

"B N E B P

Alpha & AlphaZ

 Alphais a declarative, equational language for the polyhedral model.
 Reductions are modeled as a collection of inputs combined with an operator.
* AlphaZ is a system for optimizing Alpha equations and generating C code.

 We are focusing on the “Simplifying Reductions” optimization.

— EXxploits reused values to lower the asymptotic time complexity of the computation.

* Currently, It requires human input to indicate how values are reused.

— Given this information, the reduction can be automatically rewritten.

Automatic Reduction Simplification

We apply affine factorization to the affine maps which index input variables.

If the space of unique values is lower dimension than the result:
— Values are reused throughout the computation.

— The basis, H, will have a non-trivial null space.

Vectors In this null space indicate how values are reused.

Any such vector Is enough information to automate Simplifying Reductions.

Current Status

 Developed a proof-of-concept for affine factorization.

— Publicly available on GitHub (link in the paper).

— Presented as a Jupyter notebook using the islpy library.

* Incorporating the algorithm into AlphaZ.

— Goal: automate the Simplifying Reductions optimization.

Additional Uses

Found a use case for memory layout transformations in FPGA accelerators.

— Relates to work by Corentin Ferry, being presented later today.

Investigating applications to algorithm-based fault tolerance.

— Relates to work by Louis Narmour, presented at IMPACT last year.

We hope to hear from you about more use cases!

Thank you!

	Slide 1: Reuse Analysis via Affine Factorization
	Slide 2: Motivation
	Slide 3: Outline
	Slide 4: Background
	Slide 5: Affine Maps and Matrix Notation
	Slide 6: Hermite Normal Form (HNF)
	Slide 7: Affine Factorization Algorithm
	Slide 8: Algorithm Overview
	Slide 9: Algorithm Details
	Slide 10: Automating Reduction Simplification
	Slide 11: Alpha & AlphaZ
	Slide 12: Automatic Reduction Simplification
	Slide 13: Current Status
	Slide 14: Additional Uses
	Slide 15: Thank you!

