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Introduction

Context : simulation of electrical circuits including switches
Real-time, low latency requires FPGA, parallel implementation
Use of the Polyhedral equational model (ALPHA language)

Automatic generation of synthesizable VHDL for Sherman-Morrison
based algorithms

VHDL code targeted to the System Generator software

@ Experiment the design flow on two versions of Sherman-Morrison
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Simulation of Electrical Circuits

A Power-Converter

&a

® A

Polyhedra at Work

AAA Va
- AW -
- M =
s2 s4 S6
V-
Impact 2024

4 /21



Admittance Matrix and Simulation

gl+g3+g5 0 —g1 -g3 —g5 0 0 0 0 0 0 10000
0 g2+g4+g6 -g2 —g4 —g6 0 0 0 0 0 0 01000
-g1 —g2 gl+g2+gR1 0 0 —gR1 0 0 0 0 0 00000
-g3 —g4 0 g3+ g4+ gR2 0 0 —gR2 0 0 0 0 00000
—g5 —g6 0 0 g5+ 96 + gR3 0 0 —gR3 0 0 0 00000
0 0 —gR1 0 gll+gR1 0 0 —gl1 0 0 00000
0 0 0 —gR2 0 0 gl2+gR2 0 0 -gl2 0 00000

A= 0 0 0 0 —-gR3 0 0 gl3+gR3 0 0 —gL3 00000
0 0 0 0 0 —gl1 0 0 gll 0 0 00100
0 0 0 0 0 0 —glL2 0 0 gl2 0 00010
0 0 0 0 0 0 0 —gl3 0 0 g3 00001
1 0 0 0 0 0 0 0 0 0 0 00000
0 1 0 0 0 0 0 0 0 0 0 00000
0 0 0 0 0 0 0 0 1 0 0 00000
0 0 0 0 0 0 0 0 0 1 0 00000
0 0 0 0 0 0 0 0 0 0 1 000 0O

@ Admittance : inverse of resistance

@ Simulation : solve Ax = B for x, where B is the vector of currents and
voltages

o Finding out A~! is needed
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Summary of the Problem

e Simulation based on repeated computation of x = A~'Bb, where A1
is the inverse of admittance matrix A

@ Matrix A changes when switch states are modified

e Calculation of A~! needed

@ Direct methods have O(N?) complexity

@ Use perturbation methods (here, Sherman-Morrison)
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The Sherman-Morrison Formula

The Sherman-Morrison formula :

A+uwhH™ = A1 -_gA W AT!
o
1+ viA-1y

Complexity is O(N?)

Repeat the use of the formula when several switches change

For n switches, 2" different A~! matrices

@ The method can be used from any A~! matrix, with the appropriate u and v
vectors.
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ALPHA : A Polyhedral Equational Language

© 00 O Uk W N =

system matVect: {N | 2<=N}
(a : {i,j | 1<=i<=N; 1<=j<=N} of integer;
v : {i | 1<=i<=N} of integer)
returns (c : {i | 1<=i<=N} of integer);
var
X : {i,j | 1<=i<=N; 0<=j<=N} of integer;
let

X[i,j]l =
case
{1 j=0} : 0O;
{ | 1<=3} : X[i,j-1] + ali,jl * v[jl;
esac;
cl[i] = X[i,N];
tel;
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Transformations

Substitution, and anti-substitution (allows reformating of code)

Normalization (simplification of expressions, thanks to a set of
axiomatic rules)

Change of basis (to perform time-space mapping, after scheduling)
Pipelining (to organize and simplify the communications)

Simplification of reductions (to reduce the complexity of the code)

e 6 o6 o

Tiling
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Tools : MMALPHA and ALPHAZ

© MMALPHA (lrisa) : "compiler” that targets the automatic generation of
hardware.

@ Includes :

A scheduler

Various simulators

A VHDL translater
Allows structured design

@ ALPHAZ (CSU) : "transformation explorator framework"
@ Includes

Tiling

Memory mapping of variables

Simplification of reductions

"]
]
]
o Parallel Code generation

@ Syntax differs slightly, but abstract syntax is identical
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ALPHA code for the Sherman-Morrison Formula (1/2)

© 00O Uk W

-- B represents A”-1
system shermanMorrison: {N | 2<=N}
(
B : {i,j | 1<=i<=N; 1<=j<=N} of integer;
u : {i | 1<=i<=N} of integer;
v : {i | 1<=i<=N} of integer
)
returns
(
newB : {i,j | 1<=i<=N; 1<=j<=N} of integer
)5
var
Btrans: {i,j | 1<=i<=N; 1<=j<=N} of integer;
oprv, incrA : {i,j | 1<=i<=N; 1<=j<=N} of integer;
sigma: integer;
r: {i | 1<=i<=N} of integer;
1: {i | 1<=i<=N} of integer;
d: integer;
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|
ALPHA code for the Sherman-Morrison Formula (2/2)

19  1let

20 use transpose[N] ( B ) returns ( Btrans );
21 use matVect[N] ( B, u ) returns ( r );

22 use matVect[N] ( Btrams, v ) returns (1 );
23 use dot[N] ( 1, u ) returns ( d );

24 sigma[] = 1[];

25 use outProd[N] ( r, 1 ) returns (oprv);

26 incrAl[i,j] = sigmal[l*oprvl[i,jl;

27 newB = B - incri;

28  tel;
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Synthesis Steps in MMALPHA

Parse, and type-check

Inline subsystems

Schedule (using the vertex method)

Time-space map (using change of basis transformation)

Transform to multi-dimensional RTL code (in ALPHA)

Translate to VHDL

Until the translation to VHDL, the program is expressed in ALPHA, and is
strictly equivalent to the initial program.

Polyhedra at Work )



Translation to VHDL

Separation of code (structured ALPHA)

Wrapper

i

Hardware module (data
path)

@ Wrapper : interface, 1/Os, generation of stimuli files

@ Hardware module : translated as a Data-path

@ Controller : translated as a finite state machine
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Translation of the Hardware module

Equation by equation translation

Target : multi-dimensional, synthesizable, RTL subset of VHDL
Variables are mapped on VHDL arrays of signals
Combinational equations : X[t,p] = £(Y[t,p], ..

Simple connections : X[t,p] = Y[t,p]

Multiplexers (using if and case expressions)

Register equations : X[t,p] = Y[£f(t,p),g(t,p)]

® 6 6 6 6 o o o

Control equations, involving boolean variables (in the controller)
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Translation of register equations

e General form : X[t,p] = Y[f(t,p),g(t,p)]

o Life-time analysis of variable Y using P1P (Parameter Integer
Programming)

@ Declare, if needed, an additional register variable to store Y as long as
needed

o Generate VHDL by separating the time and the space dependency

@ There is room for optimizations...
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Translation of register equations (example)

© 00O Ui Wk

-- X[t,p] = Y[t-p,p]
-- Domain: {t,p | p+1<=t<=p+4; 1<=p<=4}
G81: FOR p IN 1 TO 4 GENERATE
G79: FOR i IN 1 TO 4 GENERATE
-- Time dependence
PROCESS(c1lk) BEGIN
IF (clk = '1' AND clk'EVENT) THEN
IF CE = '1' THEN
YReg(p) (i) <= YReg(p) (i-1);
YReg(p) (0) <= Y(p);
END IF;
END IF;
END PROCESS;
END GENERATE;
-- Spatial dependence
X(p) <= YReg(p)(-1 + p) WHEN (counter - counterDelay >= p+1)
AND (counter - counterDelay <= p+4);
END GENERATE;
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Translation of register equations (exemple)

p=1 p=2 p=3 p=4
v | [y | [(vwo | [ va |
A A
[ YReg(1,0) | [ YReg(2,0) | [ YReg3,0) | [ YReg4.,0) |
—_ Y A y
| YReg(1,1) | [ YReg(2,1) ] [ YReg3,0) | [ YReg(4,0) |
— vV _ Y _ Y A
| YReg(1.2) | | YReg(2,2) | [ YReg3,0) | [ YReg4.0) |
—_ Y —_ Y . —_ A
| WRegl13) | | | YRegle3| | | YRegBO | | [VRegO |
2<=t<=6 | 3<=t<=7 | 4<=t<=8 | 5<=t<=9 |
Cxa | [xa ] [xa | [ x& ]
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Optimized Code for the Electrical Simulation

S1 switch
gl+g3+ g5 0 —gl
0 g2+ gt + g6 —g2
—gl —g2 gl +g2+gRl
Ci) A A vy VA
B A Y Yb
le AAA Ve
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|
Optimized Version

Change of a switch status

0O 0 O 0 O
0 —gl 0 gl O
0O 0 O 0 O
0 gl 0 —gl O
0 0 0O 0 O

can be represented as uv', where u= (0, 1,0, —gl,0) and
v=(0,—1,0,1,0) (non-zero elements in positions i and ).
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Optimized version

To compute A~ «— AL + gA tuvTA7L

Select columns ¢; and ¢; of Al

Product /= A=ty is equal to g1 x (¢; — ¢))
Product r= v’ A~! is equal to ¢; + G

A7l + oA tuvTA=1 is equal to (AL — IrT)
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Results of VHDL synthesis for System Generator

Program Size #DSP #LUT #FF Latency # Processors #ALPHA #VHDL Synt. time
(cycles) (seconds)
Full SM N=3 15 750 452 84+ 2N =14 N+1=4 125 920 18.32
Full SM N=7 35 1615 804 8 + 2N = 22 N+1=28 125 920 18.64
Full SM N=13 65 3115 1488 8+ 2N = 34 N+1=14 125 920 18.23
Opt. SM N=10 120 2888 2248 4 N2 =100 53 566 9.13
Opt. SM N=16 288 6732 5130 4 N? = 256 53 566 9.64

@ Full Sherman-Morrison implemented as a linear array of N+ 1 processors
@ Optimized Sherman-Morrison implemented as a N? array in constant time
@ Latency constant for Opt SM, depends linearly on N for Full SM

@ Synthesis time independent of N (as expected)
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Discussion

o Calculation of ¢ is replaced by look-up table, to avoid a division

@ Numerical stability under study. Based on the selection of a subset of
A~! matrices among the 2" possibilities (n being the number of
switches)

e Data types in MMALPHA can be integers, fixed-points, or floats

@ Other algorithms that were synthesized using MMALPHA : filters,
Smith-Waterman, Kalman filters...

@ Scheduling takes less than 10% of the whole synthesis time
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About the Scheduler

Principle of the method
@ Linear—possibly, multidimensional-schedules. t(z) = aaz+ 8a

o For a dependence A[z] < B[f(z)], since z belongs to a polyhedral
domain, make sure that ta(v) > tg(f(v)) for all vertices of the domain
(plus additional constraints on rays of the domain).

@ This results in the formulation of the problem as an ILP

Numbers
@ Solver is the ILP program of MATHEMATICA
@ Using the interior point method
@ For the first Sherman-Morrison program, 97 variables, 442 constraints
@ Solving time : 0.019221 s

v
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Conclusion

Summary
@ Expression of Sherman-Morrison Formula using a Polyhedral
Equational Language
o Implementation of a fully automatic translator of ALPHA code into
VHDL
@ VHDL code synthesized in time independent of problem size

Future research directions
@ Enlarge transformation set to target various parallel architectures
@ Realize an interconnection of ALPHA and ALPHAZ (complementary
tools)
@ Explore algebraic transformations of ALPHA functional code

v
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Thank you!
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The two branches of the Polyhedral Model

A little bit of archeology

Loop parallelization [Kuck, circa 1970]

Modelization by recurrence equations [Karp et al., circa 1970]
Systolic array modelization [Moldovan, Quinton, circa 1980]
Data-flow analysis [Feautrier, 1991]

Alpha language [Mauras, 1989]

Current situation
@ Branch 1 : analysis of loops, dependence analysis, loop rewriting
@ Branch 2 : expression of computations, program transformations

@ Sharing many methods and techniques
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