Polyhedra at Work : Automatic Generation of VHDL
Code for the Sherman-Morrison Formula

Michel Lemaire!, Daniel Massicotte!, Jeremy Poupart!,
Patrice Quinton? and Sanjay Rajopadhye?

LUniversité du Québec a Trois-Rivieres
2Ecole normale supérieure de Rennes
3Colorado State University

Impact 2024, January 17, 2024

Polyhedra at Work T

Introduction

Context : simulation of electrical circuits including switches
Real-time, low latency requires FPGA, parallel implementation
Use of the Polyhedral equational model (ALPHA language)

Automatic generation of synthesizable VHDL for Sherman-Morrison
based algorithms

VHDL code targeted to the System Generator software

@ Experiment the design flow on two versions of Sherman-Morrison

Polyhedra at Work T

N
Outline

Electrical Simulation
ALPHA : A Polyhedral Equational Language
Synthesis steps

Results and Discussion

Conclusion

Polyhedra at Work T

Simulation of Electrical Circuits

A Power-Converter

&a

® A

Polyhedra at Work

AAA Va
- AW -
- M =
s2 s4 S6
V-
Impact 2024

4 /21

Admittance Matrix and Simulation

gl+g3+g5 0 —g1 -g3 —g5 0 0 0 0 0 0 10000
0 g2+g4+g6 -g2 —g4 —g6 0 0 0 0 0 0 01000
-g1 —g2 gl+g2+gR1 0 0 —gR1 0 0 0 0 0 00000
-g3 —g4 0 g3+ g4+ gR2 0 0 —gR2 0 0 0 0 00000
—g5 —g6 0 0 g5+ 96 + gR3 0 0 —gR3 0 0 0 00000
0 0 —gR1 0 gll+gR1 0 0 —gl1 0 0 00000
0 0 0 —gR2 0 0 gl2+gR2 0 0 -gl2 0 00000

A= 0 0 0 0 —-gR3 0 0 gl3+gR3 0 0 —gL3 00000
0 0 0 0 0 —gl1 0 0 gll 0 0 00100
0 0 0 0 0 0 —glL2 0 0 gl2 0 00010
0 0 0 0 0 0 0 —gl3 0 0 g3 00001
1 0 0 0 0 0 0 0 0 0 0 00000
0 1 0 0 0 0 0 0 0 0 0 00000
0 0 0 0 0 0 0 0 1 0 0 00000
0 0 0 0 0 0 0 0 0 1 0 00000
0 0 0 0 0 0 0 0 0 0 1 000 0O

@ Admittance : inverse of resistance

@ Simulation : solve Ax = B for x, where B is the vector of currents and
voltages

o Finding out A~! is needed

Polyhedra at Work T

Summary of the Problem

e Simulation based on repeated computation of x = A~'Bb, where A1
is the inverse of admittance matrix A

@ Matrix A changes when switch states are modified

e Calculation of A~! needed

@ Direct methods have O(N?) complexity

@ Use perturbation methods (here, Sherman-Morrison)

Polyhedra at Work T

The Sherman-Morrison Formula

The Sherman-Morrison formula :

A+uwhH™ = A1 -_gA W AT!
o
1+ viA-1y

Complexity is O(N?)

Repeat the use of the formula when several switches change

For n switches, 2" different A~! matrices

@ The method can be used from any A~! matrix, with the appropriate u and v
vectors.

Polyhedra at Work T

-
ALPHA : A Polyhedral Equational Language

© 00 O Uk W N =

system matVect: {N | 2<=N}
(a : {i,j | 1<=i<=N; 1<=j<=N} of integer;
v : {i | 1<=i<=N} of integer)
returns (c : {i | 1<=i<=N} of integer);
var
X : {i,j | 1<=i<=N; 0<=j<=N} of integer;
let

X[i,j]l =
case
{1 j=0} : 0O;
{ | 1<=3} : X[i,j-1] + ali,jl * v[jl;
esac;
cl[i] = X[i,N];
tel;

Polyhedra at Work m——

8 /27

Transformations

Substitution, and anti-substitution (allows reformating of code)

Normalization (simplification of expressions, thanks to a set of
axiomatic rules)

Change of basis (to perform time-space mapping, after scheduling)
Pipelining (to organize and simplify the communications)

Simplification of reductions (to reduce the complexity of the code)

e 6 o6 o

Tiling

Polyhedra at Work [

Tools : MMALPHA and ALPHAZ

© MMALPHA (lrisa) : "compiler” that targets the automatic generation of
hardware.

@ Includes :

A scheduler

Various simulators

A VHDL translater
Allows structured design

@ ALPHAZ (CSU) : "transformation explorator framework"
@ Includes

Tiling

Memory mapping of variables

Simplification of reductions

"]
]
]
o Parallel Code generation

@ Syntax differs slightly, but abstract syntax is identical

Polyhedra at Work) 0

ALPHA code for the Sherman-Morrison Formula (1/2)

© 00O Uk W

-- B represents A”-1
system shermanMorrison: {N | 2<=N}
(
B : {i,j | 1<=i<=N; 1<=j<=N} of integer;
u : {i | 1<=i<=N} of integer;
v : {i | 1<=i<=N} of integer
)
returns
(
newB : {i,j | 1<=i<=N; 1<=j<=N} of integer
)5
var
Btrans: {i,j | 1<=i<=N; 1<=j<=N} of integer;
oprv, incrA : {i,j | 1<=i<=N; 1<=j<=N} of integer;
sigma: integer;
r: {i | 1<=i<=N} of integer;
1: {i | 1<=i<=N} of integer;
d: integer;

Polyhedra at Work s 2

11/ 27

|
ALPHA code for the Sherman-Morrison Formula (2/2)

19 1let

20 use transpose[N] (B) returns (Btrans);
21 use matVect[N] (B, u) returns (r);

22 use matVect[N] (Btrams, v) returns (1);
23 use dot[N] (1, u) returns (d);

24 sigma[] = 1[];

25 use outProd[N] (r, 1) returns (oprv);

26 incrAl[i,j] = sigmal[l*oprvl[i,jl;

27 newB = B - incri;

28 tel;

Polyhedra at Work T 3

|
Synthesis Steps in MMALPHA

Parse, and type-check

Inline subsystems

Schedule (using the vertex method)

Time-space map (using change of basis transformation)

Transform to multi-dimensional RTL code (in ALPHA)

Translate to VHDL

Until the translation to VHDL, the program is expressed in ALPHA, and is
strictly equivalent to the initial program.

Polyhedra at Work)

Translation to VHDL

Separation of code (structured ALPHA)

Wrapper

i

Hardware module (data
path)

@ Wrapper : interface, 1/Os, generation of stimuli files

@ Hardware module : translated as a Data-path

@ Controller : translated as a finite state machine

Polyhedra at Work) A

Translation of the Hardware module

Equation by equation translation

Target : multi-dimensional, synthesizable, RTL subset of VHDL
Variables are mapped on VHDL arrays of signals
Combinational equations : X[t,p] = £(Y[t,p], ..

Simple connections : X[t,p] = Y[t,p]

Multiplexers (using if and case expressions)

Register equations : X[t,p] = Y[£f(t,p),g(t,p)]

® 6 6 6 6 o o o

Control equations, involving boolean variables (in the controller)

Polyhedra at Work) 5

Translation of register equations

e General form : X[t,p] = Y[f(t,p),g(t,p)]

o Life-time analysis of variable Y using P1P (Parameter Integer
Programming)

@ Declare, if needed, an additional register variable to store Y as long as
needed

o Generate VHDL by separating the time and the space dependency

@ There is room for optimizations...

Polyhedra at Work T 06

Translation of register equations (example)

© 00O Ui Wk

-- X[t,p] = Y[t-p,p]
-- Domain: {t,p | p+1<=t<=p+4; 1<=p<=4}
G81: FOR p IN 1 TO 4 GENERATE
G79: FOR i IN 1 TO 4 GENERATE
-- Time dependence
PROCESS(c1lk) BEGIN
IF (clk = '1' AND clk'EVENT) THEN
IF CE = '1' THEN
YReg(p) (i) <= YReg(p) (i-1);
YReg(p) (0) <= Y(p);
END IF;
END IF;
END PROCESS;
END GENERATE;
-- Spatial dependence
X(p) <= YReg(p)(-1 + p) WHEN (counter - counterDelay >= p+1)
AND (counter - counterDelay <= p+4);
END GENERATE;

Polyhedra at Work s 2

17 / 27

Translation of register equations (exemple)

p=1 p=2 p=3 p=4
v | [y | [(vwo | [va |
A A
[YReg(1,0) | [YReg(2,0) | [YReg3,0) | [YReg4.,0) |
—_ Y A y
| YReg(1,1) | [YReg(2,1)] [YReg3,0) | [YReg(4,0) |
— vV _ Y _ Y A
| YReg(1.2) | | YReg(2,2) | [YReg3,0) | [YReg4.0) |
—_ Y —_ Y . —_ A
| WRegl13) | | | YRegle3| | | YRegBO | | [VRegO |
2<=t<=6 | 3<=t<=7 | 4<=t<=8 | 5<=t<=9 |
Cxa | [xa] [xa | [x&]

Polyhedra at Work T i

|
Optimized Code for the Electrical Simulation

S1 switch
gl+g3+ g5 0 —gl
0 g2+ gt + g6 —g2
—gl —g2 gl +g2+gRl
Ci) A A vy VA
B A Y Yb
le AAA Ve

Polyhedra at Work) i

|
Optimized Version

Change of a switch status

0O 0 O 0 O
0 —gl 0 gl O
0O 0 O 0 O
0 gl 0 —gl O
0 0 0O 0 O

can be represented as uv', where u= (0, 1,0, —gl,0) and
v=(0,—1,0,1,0) (non-zero elements in positions i and).

Polyhedra at Work) 0

Optimized version

To compute A~ «— AL + gA tuvTA7L

Select columns ¢; and ¢; of Al

Product /= A=ty is equal to g1 x (¢; — ¢))
Product r= v’ A~! is equal to ¢; + G

A7l + oA tuvTA=1 is equal to (AL — IrT)

Polyhedra at Work) 2

-
Results of VHDL synthesis for System Generator

Program Size #DSP #LUT #FF Latency # Processors #ALPHA #VHDL Synt. time
(cycles) (seconds)
Full SM N=3 15 750 452 84+ 2N =14 N+1=4 125 920 18.32
Full SM N=7 35 1615 804 8 + 2N = 22 N+1=28 125 920 18.64
Full SM N=13 65 3115 1488 8+ 2N = 34 N+1=14 125 920 18.23
Opt. SM N=10 120 2888 2248 4 N2 =100 53 566 9.13
Opt. SM N=16 288 6732 5130 4 N? = 256 53 566 9.64

@ Full Sherman-Morrison implemented as a linear array of N+ 1 processors
@ Optimized Sherman-Morrison implemented as a N? array in constant time
@ Latency constant for Opt SM, depends linearly on N for Full SM

@ Synthesis time independent of N (as expected)

Polyhedra at Work ET

Discussion

o Calculation of ¢ is replaced by look-up table, to avoid a division

@ Numerical stability under study. Based on the selection of a subset of
A~! matrices among the 2" possibilities (n being the number of
switches)

e Data types in MMALPHA can be integers, fixed-points, or floats

@ Other algorithms that were synthesized using MMALPHA : filters,
Smith-Waterman, Kalman filters...

@ Scheduling takes less than 10% of the whole synthesis time

Polyhedra at Work Ty

N
About the Scheduler

Principle of the method
@ Linear—possibly, multidimensional-schedules. t(z) = aaz+ 8a

o For a dependence A[z] < B[f(z)], since z belongs to a polyhedral
domain, make sure that ta(v) > tg(f(v)) for all vertices of the domain
(plus additional constraints on rays of the domain).

@ This results in the formulation of the problem as an ILP

Numbers
@ Solver is the ILP program of MATHEMATICA
@ Using the interior point method
@ For the first Sherman-Morrison program, 97 variables, 442 constraints
@ Solving time : 0.019221 s

v

Polyhedra at Work) 20

Conclusion

Summary
@ Expression of Sherman-Morrison Formula using a Polyhedral
Equational Language
o Implementation of a fully automatic translator of ALPHA code into
VHDL
@ VHDL code synthesized in time independent of problem size

Future research directions
@ Enlarge transformation set to target various parallel architectures
@ Realize an interconnection of ALPHA and ALPHAZ (complementary
tools)
@ Explore algebraic transformations of ALPHA functional code

v

Polyhedra at Work) 5

Thank you!

Polyhedra at Work)

-
The two branches of the Polyhedral Model

A little bit of archeology

Loop parallelization [Kuck, circa 1970]

Modelization by recurrence equations [Karp et al., circa 1970]
Systolic array modelization [Moldovan, Quinton, circa 1980]
Data-flow analysis [Feautrier, 1991]

Alpha language [Mauras, 1989]

Current situation
@ Branch 1 : analysis of loops, dependence analysis, loop rewriting
@ Branch 2 : expression of computations, program transformations

@ Sharing many methods and techniques

Polyhedra at Work)

