Polyhedra at Work : Automatic Generation of VHDL Code for the Sherman-Morrison Formula

Michel Lemaire¹, Daniel Massicotte¹, Jeremy Poupart¹, Patrice Quinton² and Sanjay Rajopadhye³

> ¹Université du Québec à Trois-Rivières ²École normale supérieure de Rennes ³Colorado State University

Impact 2024, January 17, 2024

Introduction

- Context : simulation of electrical circuits including switches
- Real-time, low latency requires FPGA, parallel implementation
- Use of the Polyhedral equational model (ALPHA language)
- \bullet Automatic generation of synthesizable $_{\rm VHDL}$ for Sherman-Morrison based algorithms
- VHDL code targeted to the System Generator software
- Experiment the design flow on two versions of Sherman-Morrison

Outline

- Electrical Simulation
- $\bullet~{\rm Alpha}$: A Polyhedral Equational Language
- Synthesis steps
- Results and Discussion
- Conclusion

Simulation of Electrical Circuits

A Power-Converter

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ Impact 2024 4 / 27

Admittance Matrix and Simulation

- Admittance : inverse of resistance
- Simulation : solve Ax = B for x, where B is the vector of currents and voltages
- Finding out A^{-1} is needed

Summary of the Problem

- Simulation based on repeated computation of x = A⁻¹Bb, where A⁻¹ is the inverse of admittance matrix A
- Matrix A changes when switch states are modified
- Calculation of A^{-1} needed
- Direct methods have $O(N^3)$ complexity
- Use perturbation methods (here, Sherman-Morrison)

The Sherman-Morrison Formula

• The Sherman-Morrison formula :

$$(A + uv^{T})^{-1} = A^{-1} - \sigma A^{-1} uv^{T} A^{-1}$$
$$\sigma = \frac{1}{1 + v^{T} A^{-1} u}$$

- Complexity is $O(N^2)$
- Repeat the use of the formula when several switches change
- For *n* switches, 2^n different A^{-1} matrices
- The method can be used from any A^{-1} matrix, with the appropriate u and v vectors.

ALPHA : A Polyhedral Equational Language

```
system matVect: {N | 2<=N}</pre>
1
       (a : {i,j | 1<=i<=N; 1<=j<=N} of integer;
2
3
        v : {i | 1<=i<=N} of integer)
    returns (c : {i | 1<=i<=N} of integer);</pre>
4
5
    var
6
       X : {i,j | 1<=i<=N; 0<=j<=N} of integer;
7
    let
8
      X[i,j] =
9
           case
10
             \{ | j=0 \} : 0;
             { | 1<=j} : X[i,j-1] + a[i,j] * v[j];
11
12
           esac;
    c[i] = X[i,N];
13
14
    tel;
```

⇒ ∽ar

イロト イポト イヨト イヨト

Transformations

- Substitution, and anti-substitution (allows reformating of code)
- Normalization (simplification of expressions, thanks to a set of axiomatic rules)
- Change of basis (to perform time-space mapping, after scheduling)
- Pipelining (to organize and simplify the communications)
- Simplification of reductions (to reduce the complexity of the code)
- Tiling

$\ensuremath{\mathsf{Tools}}$: $\ensuremath{\mathsf{MMALPHA}}$ and $\ensuremath{\mathsf{ALPHAZ}}$

- MMALPHA (Irisa) : "compiler" that targets the automatic generation of hardware.
- Includes :
 - A scheduler
 - Various simulators
 - A VHDL translater
 - Allows structured design
- ALPHAZ (CSU) : "transformation explorator framework"
- Includes
 - Tiling
 - Memory mapping of variables
 - Simplification of reductions
 - Parallel Code generation
- Syntax differs slightly, but abstract syntax is identical

ALPHA code for the Sherman-Morrison Formula (1/2)

```
-- B represents A^-1
 1
 2
     system shermanMorrison: {N | 2<=N}</pre>
 3
     (
 4
       B : {i,j | 1<=i<=N; 1<=j<=N} of integer;
 5
       u : {i | 1<=i<=N} of integer;</pre>
 6
       v : \{i \mid 1 \le N\} of integer
 \overline{7}
     )
 8
     returns
 9
      (
10
       newB : {i,j | 1<=i<=N; 1<=j<=N} of integer
11
     );
12
     var
13
       Btrans: {i,j | 1<=i<=N; 1<=j<=N} of integer;</pre>
14
       oprv, incrA : {i,j | 1<=i<=N; 1<=j<=N} of integer;
15
       sigma: integer;
16
       r: {i | 1<=i<=N} of integer;</pre>
17
       l: {i | 1<=i<=N} of integer;</pre>
18
       d: integer;
```

ALPHA code for the Sherman-Morrison Formula (2/2)

```
19
     let
20
       use transpose[N] ( B ) returns ( Btrans );
21
       use matVect[N] ( B, u ) returns ( r );
22
       use matVect[N] ( Btrans, v ) returns ( 1 );
23
       use dot[N] (1, u) returns (d);
24
       sigma[] = 1[];
25
       use outProd[N] ( r, 1 ) returns (oprv);
26
       incrA[i,j] = sigma[]*oprv[i,j];
27
       newB = B - incrA;
28
    tel:
```

Synthesis Steps in $\operatorname{MMALPHA}$

- Parse, and type-check
- Inline subsystems
- Schedule (using the vertex method)
- Time-space map (using change of basis transformation)
- Transform to multi-dimensional RTL code (in ALPHA)
- Translate to VHDL

Until the translation to VHDL, the program is expressed in ALPHA, and is strictly equivalent to the initial program.

Translation to VHDL

Separation of code (structured ALPHA)

- Wrapper : interface, I/Os, generation of stimuli files
- Hardware module : translated as a Data-path
- Controller : translated as a finite state machine

A B F A B F

Translation of the Hardware module

- Equation by equation translation
- Target : multi-dimensional, synthesizable, RTL subset of VHDL
- Variables are mapped on VHDL arrays of signals
- Combinational equations : X[t,p] = f(Y[t,p], ...)
- Simple connections : X[t,p] = Y[t,p]
- Multiplexers (using if and case expressions)
- Register equations : X[t,p] = Y[f(t,p),g(t,p)]
- Control equations, involving boolean variables (in the controller)

Translation of *register equations*

- General form : X[t,p] = Y[f(t,p),g(t,p)]
- Life-time analysis of variable Y using PIP (Parameter Integer Programming)
- Declare, if needed, an additional register variable to store Y as long as needed
- Generate VHDL by separating the *time* and the *space* dependency
- There is room for optimizations...

Translation of register equations (example)

```
1
       -- X[t,p] = Y[t-p,p]
2
       -- Domain: {t,p | p+1<=t<=p+4; 1<=p<=4}
3
       G81: FOR p IN 1 TO 4 GENERATE
4
         G79: FOR i IN 1 TO 4 GENERATE
5
           -- Time dependence
6
           PROCESS(clk) BEGIN
7
             IF (clk = '1' AND clk'EVENT) THEN
8
               IF CE = '1' THEN
9
                 YReg(p)(i) \leq YReg(p)(i-1);
10
                 YReg(p)(0) \le Y(p);
11
               END IF:
12
             END IF;
13
           END PROCESS;
14
         END GENERATE;
15
         -- Spatial dependence
16
         X(p) <= YReg(p)(-1 + p) WHEN (counter - counterDelay >= p+1)
17
           AND (counter - counterDelay <= p+4);
18
       END GENERATE;
```

Translation of *register equations* (exemple)

イロト イヨト イヨト イヨト

Optimized Code for the Electrical Simulation

S1 switch

$$\begin{pmatrix} g1 + g3 + g5 & 0 & -g1 \\ 0 & g2 + g4 + g6 & -g2 \\ -g1 & -g2 & g1 + g2 + gR1 \end{pmatrix}$$

■ ▶ ▲ ■ ▶ ■ ∽ � @ Impact 2024 19 / 27

Change of a switch status

$$\left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & -g1 & 0 & g1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & g1 & 0 & -g1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

can be represented as uv^T , where u = (0, g1, 0, -g1, 0) and v = (0, -1, 0, 1, 0) (non-zero elements in positions *i* and *j*).

イロト イポト イヨト イヨト

Optimized version

To compute
$$A^{-1} \leftarrow A^{-1} + \sigma A^{-1} u v^T A^{-1}$$
 :

• Product
$$I = A^{-1}u$$
 is equal to $g_1 \times (c_i - c_j)$

• Product
$$r = v^T A^{-1}$$
 is equal to $c_i + c_j$

•
$$A^{-1} + \sigma A^{-1} u v^T A^{-1}$$
 is equal to $\sigma (A^{-1} - lr^T)$

Results of VHDL synthesis for System Generator

Program	Size	#DSP	#LUT	#FF	Latency	# Processors	#Alpha	#VHDL	Synt. time
					(cycles)				(seconds)
Full SM	N=3	15	750	452	8 + 2N = 14	N + 1 = 4	125	920	18.32
Full SM	N=7	35	1615	804	8 + 2N = 22	N + 1 = 8	125	920	18.64
Full SM	N=13	65	3115	1488	8 + 2N = 34	N + 1 = 14	125	920	18.23
Opt. SM	N=10	120	2888	2248	4	$N^2 = 100$	53	566	9.13
Opt. SM	N=16	288	6732	5130	4	$N^2 = 256$	53	566	9.64

- Full Sherman-Morrison implemented as a linear array of N + 1 processors
- Optimized Sherman-Morrison implemented as a N^2 array in constant time
- Latency constant for Opt SM, depends linearly on N for Full SM
- Synthesis time independent of *N* (as expected)

Discussion

- Calculation of σ is replaced by look-up table, to avoid a division
- Numerical stability under study. Based on the selection of a subset of A⁻¹ matrices among the 2ⁿ possibilities (n being the number of switches)
- $\bullet\,$ Data types in $\rm MMALPHA$ can be integers, fixed-points, or floats
- Other algorithms that were synthesized using MMALPHA : filters, Smith-Waterman, Kalman filters...
- Scheduling takes less than 10% of the whole synthesis time

About the Scheduler

Principle of the method

- Linear–possibly, multidimensional–schedules. $t_A(z) = \alpha_A z + \beta_A$
- For a dependence $A[z] \leftarrow B[f(z)]$, since z belongs to a polyhedral domain, make sure that $t_A(v) > t_B(f(v))$ for all vertices of the domain (plus additional constraints on rays of the domain).
- This results in the formulation of the problem as an ILP

Numbers

- Solver is the ILP program of MATHEMATICA
- Using the interior point method
- For the first Sherman-Morrison program, 97 variables, 442 constraints
- Solving time : 0.019221 s

Conclusion

Summary

- Expression of Sherman-Morrison Formula using a Polyhedral Equational Language
- \bullet Implementation of a fully automatic translator of $\rm ALPHA$ code into $\rm VHDL$
- VHDL code synthesized in time independent of problem size

Future research directions

- Enlarge transformation set to target various parallel architectures
- Realize an interconnection of ALPHA and ALPHAZ (complementary tools)
- Explore algebraic transformations of ALPHA functional code

Thank you!

		_	
	· •	~ ~	

The two branches of the Polyhedral Model

A little bit of archeology

- Loop parallelization [Kuck, circa 1970]
- Modelization by recurrence equations [Karp et al., circa 1970]
- Systolic array modelization [Moldovan, Quinton, circa 1980]
- Data-flow analysis [Feautrier, 1991]
- Alpha language [Mauras, 1989]

Current situation

- Branch 1 : analysis of loops, dependence analysis, loop rewriting
- Branch 2 : expression of computations, program transformations
- Sharing many methods and techniques

• • • • • • • • • • • • •