
Estimating the upper bound on arithmetic intensity
for a stencil algorithm

Sergey Khilkov
khilkov.s@gmail.com

Hipercone Ltd.
Jerusalem, Israel

Abstract
For a stencil algorithm, arithmetic intensity is closely related
to performance. We want to find an upper bound for arith-
metic intensity for a given stencil algorithm with the help
of geometric inequalities. This article presents a conjecture
that for large problems arithmetic intensity 𝐼 is bound by the
cache size 𝐷cache to the power of 1/𝑛, 𝐼 ≤ 𝐶 · 𝑛

√
𝐷cache, where

𝑛 is the number of space dimensions for the algorithm lattice.
The coefficient 𝐶 depends only on the algorithm parame-
ters and does not depend on the parameters of a computer
system.
The conjecture works for every implementation of the

algorithm as long as the arithmetic operations stay the same.
Therefore it helps to understand the limits of the optimiza-
tion techniques like polyhedral optimization.
To estimate the bound 𝐶 for a stencil algorithm, we in-

troduce a geometric locality model. The model works in a
continuous vector space and is expected to yield asymptotic
estimations of the bound𝐶 for large tile sizes. It also produces
other interesting results related to tiling validity.
We discuss several ways to generalize the geometric lo-

cality model. The space transformation, which makes the
stencil convex, is of particular importance, since it may also
prove to be useful in the polyhedral model.

Keywords: arithmetic intensity, geometric inequalities, LRnLA,
metric embeddings, polyhedral model, stencil algorithms

1 Introduction
Stencil computations represent an important class of data
processing solutions. They are common in engineering and
scientific codes. For instance, many explicit numerical meth-
ods for computational physics may be considered stencil
algorithms.
A stencil algorithm is defined by a data array and an up-

date pattern which is called stencil. The algorithm performs
the update of each array cell according to the stencil. In this
article, we consider the data array to be a uniform grid with
𝑛 dimensions, and the stencil to be a finite set of shifts in that
grid. Using a physics analogy, we say that the grid represents
space and update iterations represent time.

IMPACT 2025, Barcelona, Spain

For implementations of stencil algorithms, the perfor-
mance is often constrained by the memory or cache band-
width due to insufficient data locality. Performance con-
straints may be described in the terms of Roofline model [23].
It defines arithmetic intensity as a measure of data locality.
The arithmetic intensity is the average number of arithmetic
operations per byte of traffic to cache or memory. We want
to emphasize two points about arithmetic intensity. Firstly,
it depends on the algorithm implementation and the compu-
tation system. Secondly, there is more than one arithmetic
intensity for a given algorithm and a machine. We can count
the traffic from each level of memory hierarchy, and each
level will give us a different intensity value. According to
Roofline model, if the problem is memory bound, then the
performance is proportional to arithmetic intensity. Hence
increasing arithmetic intensity increases the performance.
There is a number of tricks and techniques one can use

to increase arithmetic intensity of the code, e.g. temporal
blocking and loops skewing. The polyhedral model [6] pro-
vides a generalization of most of these techniques in a single
mathematical theory. The core of the approach is based on
the polyhedral representation, which describes a program
as a set of integer polyhedra. Affine transformations for
these polyhedra allow one to rearrange computation order
to improve some aspects of the program. The affine transfor-
mation is found as a result of an integer linear programming
problem in which a cost function is optimized. Originally the
cost function was related to delays and the goal was to reduce
the processor wait time in parallel programs [4, 5]. Nowa-
days it is far more common to use the cost functions related
to data locality [2], which results in improving arithmetic
intensity.
In the end, all mentioned techniques increase the arith-

metic intensity by changing the order of the arithmetic op-
erations. At this point a question comes to mind: “What are
the bounds of arithmetic intensity for a given algorithm? Is
there an upper limit?” Answering this question for the case
of stencil algorithms is the topic of this paper.

Our idea is based on Locally Recursive non-Locally Asyn-
chronous (LRnLA) algorithms [17] for stencil computations.
The LRnLA algorithms employ geometric approach to tiling
creation and allow to create state-of-the-art codes for various
problems [14–16, 21, 24]. The approach mainly focuses on
data locality and may be applied for GPU, CPU and even

1

IMPACT 2025, January 20–22 2025, Barcelona, Spain Sergey Khilkov

heterogeneous codes. Note that tilings described by LRnLA
are similar to tilings produced by polyhedral optimizers.

Geometric approach allows us to realize that the number
of data transfers between tiles behaves like the tile surface
area while the number of arithmetic operations corresponds
to the tile volume. Then arithmetic intensity becomes the
volume to area ratio. The limit of the volume to area ratio
in a metric space is given by isoperimetric inequality [20].
For Euclidean space the inequality saturates only for a ball,
which proves that ball has largest volume for a given surface
area. The space our algorithm lives in is not Euclidean, but
we can use similar geometric inequalities to estimate the
upper bound on arithmetic intensity.
In this article we outline the approach. Rigorous mathe-

matical proofs will be presented in followup articles.
The rest of the paper is structured as follows. Section 2

explains how geometric inequalities put a constraint on arith-
metic intensity. Section 3 outlines a geometric locality model
for stencil algorithms and how it helps to obtain the intensity
bound. The model in Section 3 imposes restrictions on the
stencil. Ways to lift these restrictions are discussed in the
Section 4. Section 5 specifies how one can apply results of
geometric locality model in polyhedral model. Related works
and discussion presented in the Section 6. The last Section 7
contain results and conclusions.

2 Geometric inequalities and arithmetic
intensity

In this section we discuss the relations between arithmetic
intensity and some geometric inequalities. For arithmetic in-
tensity we count only data loads. The writes may be counted
in a similar way. We also assume that the grid of the stencil
algorithm is large enough to neglect effects caused by the
grid boundaries.
The data layout is deliberately left unspecified. It allows

us to apply the estimation results to a broader variety of im-
plementations, but makes it hard to count any cache misses
except capacity misses. For the same reason cache is assumed
to be fully–associative.
We divide the explanation into two parts. In the first we

use a simplified cache model and in the second we consider
a more realistic one. Both cache models have large memory
and a single level of cache.

2.1 Simplified cache model
Consider an implementation of a stencil algorithm which
has operations grouped into a tile. Each tile calculation is an
atomic operation. In our simplified model, cache simultane-
ously holds all the data a tile needs during calculations, and
discards all the data before loading a new tile.

Discarding the loaded data in our model may be explained
if the next tile for a thread is always far from the current.
It may happen in a sufficiently large OpenMP “parallel for”

loop of tiles and thread affinity set to “close”, processed by a
machine with a large number of computational units and no
cache shared between the units.

We also use an example problem to illustrate our approach.

Example 2.1. The dependence graph for the example is
given on the Figure 1. In this example stencil corresponds
to the three arrows going into a point. If we describe it in
terms of dependence vectors, stencil becomes a set of three
points 𝑆 = {(−1,−1) , (0,−2) , (1,−1)}. For convenience, we
further assume that every stencil also contains vector (0, 0)
for the point we’re updating.

The best solution for the Example 2.1 is given by a well
known diamond tiling. You can find an experimental com-
parison of this technique to some others at Orozco et al. [19].
So the question before us is, “How to prove the diamond
tiling optimality from a theoretical standpoint?”

x

t

Figure 1. The dependence graph for a finite volume method
in 1D which is decomposed with the diamond tiling. Arrows
represent data transfers. Points correspond to arithmetic
operations. For simplicity, each arrow transfers𝐷scheme bytes
of data and each point corresponds to 𝑂scheme arithmetic
operations.

2.1.1 Arithmetic intensity in geometric terms. To cal-
culate dependencies of a tile, it is convenient to useMinkowski
sum.

Definition 2.2. Let𝐴 and 𝐵 be arbitrary sets of vectors. The
set composed of the sums 𝑎 + 𝑏 for all the pairs where 𝑎 ∈ 𝐴

and 𝑏 ∈ 𝐵 is called Minkowski sum 𝐴 + 𝐵 of sets 𝐴 and 𝐵,
𝐴 + 𝐵 = {𝑎 + 𝑏 |𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.

If 𝑇 is the set of lattice points in a tile, then the set of its
outgoing dependencies is given by (𝑇 + 𝑆) \ 𝑇 . Note that
𝑇 ⊂ 𝑇 + 𝑆 because we added zero vector into a stencil. Let
us assume that tile data can fit into the cache. The simplified
cache model ensures that load from memory is performed
only for the loads across the tile border. All loads within the
tile are cached. Then cardinality |𝑇 | gives us the number of

2

Estimating the upper bound on arithmetic intensity for a stencil algorithm IMPACT 2025, January 20–22 2025, Barcelona, Spain

points in a tile. Multiplying it by the number of arithmetic
operations 𝑂scheme corresponding to a single point we get
the number of arithmetic operations corresponding to the
tile 𝑇 . Each tile requires | (𝑇 + 𝑆) \𝑇 | = |𝑇 + 𝑆 | − |𝑇 | data
loads, which, multiplied by the data size of a single load
𝐷scheme, gives us total size of data loads for the tile 𝑇 . Since
in this section we are counting only data load parts of the
arithmetic intensity 𝐼 we can calculate it with the formula

𝐼 = 𝐼scheme
|𝑇 |

|𝑇 + 𝑆 | − |𝑇 | , (1)

where 𝐼scheme = 𝑂scheme/𝐷scheme.
Note that every data point is used more than once. If it is

loaded from memory we count it only once assuming that
all subsequent loads are cached. Hence we calculate only the
data loads formmemory which are absolutely necessary. The
real size of the memory loads may be larger which would
lead to a lower arithmetic intensity.
To get the intensity bound, we need to use an inequality

that allows us to estimate |𝑇 + 𝑆 |. Since we are describing a
discrete case, the inequality has to be a discrete one.

2.1.2 Discrete geometric inequalities. We would like to
use an analog of the isoperimetric inequality for the discrete
case. The isoperimetric inequality is derived from Brunn–
Minkowski inequality. The derivation may be found in [20].
Fortunately Brunn–Minkowski inequality has lattice ver-
sions [8].

Brunn-Minkowski inequalities. Before going to the dis-
crete case, we describe the classic version of the Brunn–
Minkowski inequality.

Theorem 2.3 (Brunn-Minkowski). Let L be the Lebesgue
measure in R𝑛 . If 𝐴 and 𝐵 are nonempty measurable subsets
of R𝑛 , then

L (𝐴 + 𝐵)
1
𝑛 ≥ L (𝐴)

1
𝑛 + L (𝐵)

1
𝑛 . (2)

The proof is quite technical and may be found in the text-
book [7]. It is important to us that Brunn–Minkowski in-
equality (2) connects the volume of the Minkowski sum with
the volumes of the summands. If we look at the arithmetic
intensity formula (1), this is exactly what we need.

Lattice versions of the inequality (2) are usually formulated
for finite sets. Hence instead of volumes they use cardinalities
of the sets. However the form (2) is not valid for them. For
example if one uses a single point as the set 𝐵 the form (2)
would yield |𝐴|

1
𝑛 ≥ |𝐴|

1
𝑛 + 1, which is false.

There are different ways to deal with this problem. Most
of them either involve enlarging the set on the left hand side,
or appending some terms to the right hand side. In this work
we prefer the latter:

|𝐴 + 𝐵 |
1
𝑛 ≥ |𝐴|

1
𝑛 + 1

𝑛!
1
𝑛

(|𝐵 | − 𝑛)
1
𝑛 . (3)

This inequality was derived in the article [8]. Note that it
requires dim (𝐵) = 𝑛. This means that the set 𝐵 should have
full dimension. Since a simplex, which is the smallest full
dimension set in R𝑛 , has 𝑛 + 1 points, we can assume that
|𝐵 | − 𝑛 > 0.

The upper bound for arithmetic intensity. Let us show
how to derive the upper bound for arithmetic intensity us-
ing lattice Brunn–Minkowski inequality. We can raise the
inequality (3) to the 𝑛-th power:

|𝑇 + 𝑆 | ≥ |𝑇 |
𝑛
𝑛 + 𝑛 |𝑇 |

𝑛−1
𝑛

1
𝑛!

1
𝑛

(|𝑆 | − 𝑛)
1
𝑛 +

𝑛∑︁
𝑘=2

(
𝑛

𝑘

)
|𝑇 |𝑛−𝑘 1

𝑛!
𝑘
𝑛

(|𝑆 | − 𝑛)
𝑘
𝑛 . (4)

Since all the terms in the right hand side are non-negative we
can discard all binomial terms after the second. We leave two
leading terms of the expansion in the powers of |𝑇 |. That’s
why our estimation will work best for large tiles 𝑇 . After
discarding binomial terms we can construct the arithmetic
intensity (1) in the right hand side of the inequality (4):

𝑛!
𝑛𝑛

1
|𝑆 | − 𝑛

≥ |𝑇 |𝑛−1

(|𝑇 + 𝑆 | − |𝑇 |)𝑛 =
1

|𝑇 + 𝑆 | − |𝑇 |

(
𝐼

𝐼scheme

)𝑛−1
.

(5)
This inequality is general enough to give a constraint on
arithmetic intensity for any stencil algorithm. However it
works only for a simplified cache model, where the tile
data is discarded from cache right after the tile has been
computed. This cache model holds all tile data in cache si-
multaneously, which means that cache size is greater than
𝐷scheme (|𝑇 + 𝑆 | − |𝑇 |). But for a more realistic cache model
we can load data when we need it which makes it possible
to use this tiling for smaller cache sizes. We consider a more
realistic cache model in the next subsection.
Another point to take away: we can asymptotically com-

pare any uniform tilings by comparing their “isoperimetric”
ratios (|𝑇 + 𝑆 | − |𝑇 |)𝑛 /|𝑇 |𝑛−1, and the lower is better.
Let us return to the Example 2.1. The space has only one

dimension, but the tiling is in the space–time. Therefore 𝑛 =

2. The stencil 𝑆 has four points (including zero). Substituting
this values into inequality (3) we get

1
4
≥ |𝑇 |

(|𝑇 + 𝑆 | − |𝑇 |)2
. (6)

The same ratio for the diamond tile with the side 𝑘 is given
by:

𝑘2

(2𝑘 + 1)2
−−−−→
𝑘→∞

1
4

(7)

This makes the diamond tiling asymptotically optimal, but
only for the simplified cache model.

3

IMPACT 2025, January 20–22 2025, Barcelona, Spain Sergey Khilkov

2.2 More realistic cache model
We got the inequality (5) for the simplified cache model. How
does it change for a more realistic one?
Let us start by describing the new cache model. We still

have a single cache level and the memory. This time cache
is not discarded after a tile calculation. It will be reused if
possible. We also don’t need to hold all the data required by
a tile in the cache, as we can load it one part at a time.
Realistic cache model assumptions make it possible to

cache cross tile data transfers. This time instead of tiles we
consider a joined sequence of tiles computed by the same
thread. We call this union of tiles a tower.

Let us assume that a tower can be divided into sequential
chunks with size less than cache size. We also require that
every chunk depends only on the previous one. We can
consider these chunks to be cache snapshots at a certain point
of computations. If we can find such a division, the tower can
be calculated in such a way that only cross–boundary tower
dependencies are loaded from memory. In this subsection
we derive the limitations for such towers.

Example 2.4. Let us consider the dependence graph from
Example 2.1 again. On Figure 2 we depict a tower and the
chunks of data for a single thread tiling resembling CATS [22].

x

t

Figure 2. The tower points are between solid slanted arrows.
The tower is divided into chunks which are outlined with
solid lines. For the shaded chunk, there is a dependence set
depicted with thin shadow. The tower dependencies reside
between dashed arrows. The cross–section corresponds to
the area between dotted lines.

On Figure 2 a single chunk is encircled with a thick line. It
corresponds to a cross–section bounded by the dotted lines.
Assuming that the chunk size can’t be larger then a cache
size we can derive the arithmetic intensity for this case:

𝐼 =
𝐷cache𝑂scheme

𝐷scheme
2 . (8)

If we compare it with the inequality (6) we find that our
estimation exceeds the previously found boundary. In the

Example 2.4 the intensity limit may be estimated using the
isoperimetric type inequality in the cross–section rather than
the whole space. We will return to this idea after considering
the general case.

In all examples, we describe a problem in such a way that
loads from memory only occur across the boundary. The
general case should not be an exception. Consider a program
with a specified order of calculations. If there is a memory
load we mark it with a line which crosses the dependence
corresponding to a load. Those lines outline a shape similar
to a tower in the Example 2.4. This shape is essentially the
trace the cache leaves while making its way through the
space–time (Fig. 3). As it is seen on the picture, the tower–
like shape is technically inside the cache trace, but their
borders are quite close. We want to find restrictions which
the cache size applies to this shape.
A load from memory occurs when we try to load data

which is not currently cached. In addition there are only two
ways to put a value in the cache: either calculate a new one
or load an already calculated one from memory. To see how
the border behaves, let us examine the cache contents at a
certain timestamp.

x

t

A

B

C

Figure 3. Continuous shape in cache is shaded and outlined
with a solid line. Dashed lines represent the dependence cone
of the shape. The points 𝐴, 𝐵 and 𝐶 which are marked with
thick circles we denote as the “border points”. The “cache
trace” example is outlined with a light shade, while memory
load boundaries are represented by dotted lines.

We can divide the cache contents into shapes which are
continuous in space–time. We will call these shapes continu-
ous cache fragments. Keep in mind that continuous cache
fragments are not necessarily sequential in memory. An ex-
ample of such a shape is given on the Figure 3. The points
in the shape which lie on the side border of the dependence
cone for a continuous cache fragment shape we call the “bor-
der points”. These border points reside near the memory load
lines we are drawing. At some point in the future when we
calculate one of the diamond shaped points (see Fig. 3), we

4

Estimating the upper bound on arithmetic intensity for a stencil algorithm IMPACT 2025, January 20–22 2025, Barcelona, Spain

would move the side borders of the cone and add memory
load lines near the newly calculated point. Not all the “border
points” are going to be near the memory load lines. But in
our 2D example at least one “border point” on each side of
the cone should reside near the memory load line.
This reasoning allows us to notice that each continuous

cache fragment at every time point touches boundaries of the
tower-like shape which describes memory loads. Moreover,
in order to avoid additional loads between border points,
we need the continuous cache fragment to be thick enough.
Note that the required thickness can be described in a similar
way to the dependencies of a tile, |𝑇 + 𝑆 | − |𝑇 |.

In short, the cache fragments which are continuous in a
space–time are similar to a cross–section of a tower. And the
cache size limits the area of this cross–section. This notion
may help to formulate a general form of the bound on the
arithmetic intensity.

It is well known that isoperimetric inequality also works
on submanifolds and hyperplanes in particular. See for ex-
ample [20]. The dimension of the inequality in these cases
equals to the dimension of the submanifold rather than that
of the ambient space. We can assume that similar inequalities
may be found for discrete cross-sections. This gives us an
evidence for a universal bound on the arithmetic intensity.
This bound should limit the arithmetic intensity in every
possible implementation.

Conjecture 2.5. For any stencil algorithm in 𝑛-dimensions
plus time the arithmetic intensity 𝐼 is bounded by:

𝐼 ≤ 𝐶 · 𝑛
√︁
𝐷cache (9)

The constant𝐶 here depends on the stencil and algorithm
parameters like 𝐷scheme and𝑂scheme. However𝐶 does not de-
pend on any machine parameters, which makes this constant
a property of the algorithm.
Estimation of the constant 𝐶 for an arbitrary case of the

stencil algorithm is an interesting problem. We outline a way
to obtain these estimations in the next two sections.

3 Geometric locality model
For the diamond tiling Example 2.1 and the simplified cache
model, the resulting inequality (6) saturates only asymptoti-
cally for large tile sizes. We believe that asymptotic nature
is common for similar inequalities. That’s why we consider
deriving our geometric inequalities in the asymptotic limit
of the big tiles.
From one point of view, increasing the tile size is similar

to reducing step size of the lattice. Hence, in the continuous
limit the number of points becomes Jordan measure. With
some limitations it allows us to use classic Brunn–Minkowski
inequality to derive a constraint for the arithmetic intensity.

Let us sketch a plan to find the upper bound on arithmetic
intensity for a stencil algorithm:

1. describe a model of continuous tilings,

2. show that every discrete tiling corresponds to at least
one continuous tiling,

3. use the continuous model to obtain an intensity limit
in the form (9).

Now we take a closer look at each step.

3.1 Continuous dependence model
Please note that from now on “tiling” is used as a synonym
to a general tessellation or honeycomb rather than a loop op-
timization method. Tiles do not have to be of the same shape.
Also it does not imply any specific order of calculations for
the tiles beyond the dependence relation on them. Tiling
only provides a way to split the whole task into smaller ones
described by tiles.

What makes a tiling valid? Usually a tiling is called valid if
there is an order of calculations inwhich every dependency is
satisfied and each tile may be considered an atomic operation.
We call a valid tiling atomic. Then our goal is to describe
every atomic tiling.

For continuous tilings, we will assume that lattice points
are always lying in the interior of tiles. Hence every point
of a discrete lattice has a single tile containing it.

Before discussing atomic tilings any further we need to de-
fine dependencies between points and between tiles. There
are quite a few ways to represent dependencies in an al-
gorithm. We have a generalized dependence graph [4], a
transitive closure of the dependence binary relation [12] and
simpler models like dependence vectors [11]. In this article
we study stencil algorithms with uniform stencil. Hence we
can use a simple representation like dependence vectors. We
also don’t need to know how operations correspond to pro-
gram statements. This information is critical for making loop
transformations, but for a locality study it is not necessary.

We begin the description of the model from a vector space
with a norm. Dependencies of a point are described by a
cone Cone𝑑 , which has a metric ball as a base. Note that
the relation between a metric ball and the dependence cone
Cone𝑑 means that the norm in the vector space depends on
the stencil. This representation imposes tight restrictions
on the stencil, namely convexity of the stencil and central
symmetry of its space part. These restrictions are necessary
for a metric ball in a normed space [13]. Since in our repre-
sentation the stencil essentially corresponds to a metric ball,
similar restrictions should be applied to it. We will explain
how one can lift these restrictions in the next section.

Dependencies. We can use cones to describe dependen-
cies between tiles (Fig. 4). We will define dependence cone
for a tile 𝐴 as a union of all dependence cones for its points.
Dependence cone for a tile 𝐴 may be represented in terms
of a Minkowski sum as 𝐴 + Cone𝑑 .

Definition 3.1. If the interior of tile 𝐵 intersects with the
dependence cone of tile 𝐴, then 𝐴 depends on 𝐵.

5

IMPACT 2025, January 20–22 2025, Barcelona, Spain Sergey Khilkov

Note that another transitive closure is necessary to make
tile dependencies transitive (e.g. tile 𝐷 on Fig. 4).

AB1

B2 B3

B3

B4 B5

D

E1

Figure 4. The dashed line depicts the influence cone 𝐴 +
(−Cone𝑑) of the tile 𝐴, which is opposite to the dependence
cone. All 𝐵𝑖 tiles depend on tile 𝐴. Tile 𝐷 depends on tile 𝐵3
which depends on𝐴. In order to make dependence transitive
𝐷 should depend on 𝐴. Finally tile 𝐸1 and tile 𝐴 are indepen-
dent of each other.

Conoids. For convenience we introduce a new class of
shapes.

Definition 3.2 (Conoid). We will call a set 𝐴 conoid iff
𝐴 = 𝐴 + Int (−Cone𝑑) ∩𝐴 + Int (Cone𝑑).

Here Int (𝑋) means the interior of the set𝑋 and𝑋 denotes
the closure of the set 𝑋 . Plus corresponds to Minkowski
addition, while the unary minus multiplies every vector of a
set by minus one.

Figure 5 gives us several examples of conoids. More exam-
ples of handcrafted tilings based on conoids may be found
in [16] and [17]. Note that conoids are not necessary con-
vex (Fig. 5b) or even connected.

(a) Convex conoid. (b) Non-convex conoid.

Figure 5. Examples of conoids. The dependence cone and
the influence cone for the depicted conoid are shown with
dashed lines.

In an atomic tiling, all dependencies between tiles should
be unidirectional. If there are two tiles dependent on each
other, then the dependence relation contains a loop. We
cannot consider a tile in a loop to be an atomic operation.
Hence a tiling with a dependence loop is not atomic.
The requirement for unidirectional dependencies allows

us to impose a restriction on the tile shapes in an atomic
tiling.

Theorem 3.3. Every atomic tiling consists of conoids.

The theorem is a consequence of a fact that for any given
shape other than a conoid, there is other tile which simulta-
neously depends and is dependent on the given tile.

Atomic tilings. Unfortunately not every tiling which con-
sists of conoids is atomic. In order to describe every atomic
tiling we can use two additional propositions.

Proposition 3.4. Tiling with exactly two conoids is atomic.
We call such tilings binary.

Proposition 3.5. Intersection of two atomic tilings is atomic.

With these propositions we can formulate a theorem.

Theorem 3.6. Tiling is atomic iff it can be produced by an
intersection of binary tilings.

We can provide a sketch of the proof. For the if case propo-
sitions 3.4 and 3.5 provide all necessary details. Every binary
tiling is atomic, and the intersection of two atomic tilings is
atomic. Simple induction proves the case.
For the only if case we need to remember the definition

of the atomic tiling. In an atomic tiling all the tiles are com-
putable as atomic operations. Hence there is an order in
which these tiles may be computed one by one without
breaking any dependence requirements. In this order, for
every two tiles, we can tell which is computed earlier.

For any tile 𝑇 we can split the tiling into two sets:

1. 𝑇< contains every tile computed before 𝑇 ,
2. 𝑇≥ contains the tile 𝑇 and every tile computed after it.

Unions of all tiles in each of these sets represent tiling with
exactly two tiles. This tiling with two tiles is atomic since we
can compute𝑇< before𝑇≥ without breaking any dependence
requirements. Finally the atomic tiling consists of conoids,
which makes the tiling in question binary.

Intersecting all such splits for all tiles 𝑇 , we get the initial
atomic tiling. This proves the only if case.
The Theorem 3.6 concludes the description of atomic

tilings within the geometric locality model. It is worth men-
tioning that the atomic tilings in this model may include
non-edge-to-edge tilings and non-convex tilings (e.g. Fig.6).
The latter is particular hard to describe in the polyhedral
model.

(a) Edge-to-edge non-convex tiling.
(b)Convex tiling which isn’t
edge-to-edge.

Figure 6. Notable atomic tilings examples.

6

Estimating the upper bound on arithmetic intensity for a stencil algorithm IMPACT 2025, January 20–22 2025, Barcelona, Spain

3.2 The correspondence between discrete and
continuous atomic tilings

We reached the second step of the plan. Now we need to
prove that at least one continuous tiling corresponds to a
given discrete tiling.

We lay out the prove in three propositions.
1. There is an atomic tiling such that
a. each tile in it contains no more than one point of

the lattice,
b. dependencies between the tiles containing lattice

points coincide with dependencies between lattice
points.

2. It is possible to join tiles in atomic tiling to get another
atomic tiling. The set of rules governing such joins is
the same as for joining tiles in a valid discrete tiling to
get a valid discrete tiling.

3. A valid discrete tiling can be constructed from points
using valid joining rules. The same joins may be per-
formed for the atomic tiling in the step 1. It gives us
the tiling corresponding to the valid discrete tiling in
question.

It is worth mentioning that in some tilings from step 1 we
may have tiles without a single lattice point in their interior.
It does not affect the correspondence proposition validity.

3.3 Obtaining the limit
We reached the last point of the plan. Now we can estimate
the constant𝐶 . In continuous limit we can use Lebesgue mea-
sure instead of the number of points. It imposes some restric-
tions on tiles, but we can obtain geometric inequalities like
we did in Subsection 2.1.2 using classic Brunn–Minkowski
inequality (3). In many cases this approach gives us a sen-
sible upper bound for the arithmetic intensity. For example
form the Section 2 it gives the inequality

𝐼 ≤ 𝐼scheme
𝐷cache

𝐷scheme
, (10)

which corresponds to the value of the arithmetic intensity (8)
we found for Example 2.4.

4 Generalizations of geometric locality
model

In this section we discuss the way to generalize the geometric
locality model.

General case of stencil algorithms. In Subsection 3.1
we imposed hard constraints on the stencil, namely stencil
convexity and central symmetry for its space projection.
Now let us discuss how to lift them. Suppose we have a
non-convex stencil. Instead of changing the model to include
the case we can produce a nonlinear transformation for our
lattice which will make the stencil in question convex. Let
us consider an example to illustrate this approach.

Example 4.1. On Figure 7 one can see the space projection
of the cross stencil for 4-th order finite difference scheme.
This scheme may be employed to solve scalar wave equation
in 2D. The stencil is not convex but it is symmetrical in space.
The lattice transformation for this case is shown on Fig-

ure 8. Let us describe this transformation in details. In the
first step of our construction we break down the lattice into
four subgrids. In each subgrid, every lattice point has the
same coordinates modulo two. Subgrids are shown on Fig-
ure 7. We denote each subgrid with corresponding pair of
(𝑥 mod 2, 𝑦 mod 2).
The transformation appends a new periodic coordinate

𝑧 ∈ {−1, 0, 1, 2} to coordinates of each point, keeping 𝑥 and𝑦
values unchanged. The value of coordinate 𝑧 is the same for
every point in a subgrid. Different subgrids have different
values of coordinate 𝑧. Since coordinate 𝑧 is periodic, the
surfaces 𝑧 = −2 and 𝑧 = 2 are identified. Transformation
does not affect the axis 𝑡 in any way.
Here is the description of the transformations for each

subgrid:
1. for circles subgrid (0, 0), we add 𝑧 = 0,
2. for diamonds subgrid (1, 0), we add 𝑧 = −1,
3. for triangles subgrid (0, 1), we add 𝑧 = 1,
4. for stars subgrid (1, 1), we add 𝑧 = 2.
The transformation on Figure 8 maps the stencil into an

octahedron. Since octahedron is a convex body, we have
made the stencil convex. Note that octahedron is also sym-
metrical, which allows us to use it as a ball in normed space.
This norm corresponds to Manhattan distance 𝐿1. Strictly

x

y

Figure 7. The shade represents space projection of the non-
convex stencil. We introduce four subgrids each of which has
its own marker for a point, namely: circle, diamond, triangle
and a star.

speaking, the described transformation maps a lattice into a
7

IMPACT 2025, January 20–22 2025, Barcelona, Spain Sergey Khilkov

z∗

y

x

Figure 8. The points of the subgrids are denoted in the same
way as on Figure 7. Transformation maps the stencil space
projection into octahedron. Note that axis 𝑧 is periodic.

manifold. However it can be easily embedded into a higher
dimension vector space.
It is worth mentioning that points of different subgrids

have different stencils after the transformation. Nevertheless
octahedron perfectly represents each of these new stencils.
In the space on Figure 8, dependence cone of a point is a

convex cone. A more common way to make a stencil convex
is to take a convex hull. Unfortunately this approach will add
phantom dependencies for every point. Basically, it forces
us to load some data points, even though we may not need
them. The described transformation lacks that drawback.
The dependence cone we got in the transformed space does
not contain any point of the discrete grid which is not a real
dependency for the apex of the cone. From one point of view,
the transformation makes the representation of dependen-
cies from Section 3 exact.

Getting an exact representation of dependencies is impor-
tant, but it also can be done by employing the generalized
dependence graph from [4]. The dependence cone convexity
has another consequence. If we describe the tiling with hy-
perplanes each hyperplane is required to lay outside depen-
dence and influence cones. It is the very same requirement
from [11] described in terms of cones. Non-convex depen-
dence cone means we can’t use a cone face as the tiling
hyperplane. After the transformation we can do it.

Let us return to the example in question. The transforma-
tion from Figure 8 may be described as the code transforma-
tion from List. 1 to List. 2.
An interesting fact about the transformed code in List. 2

is that it allows all transformations allowed by original code
(List. 1). We can choose to ignore the two innermost loops,
which reduces the code to the original except the overhead
on additional control statements. However we can also use

the whole loop nest for optimization. For example we can
use tiling surfaces (𝑖 + 𝑝 + 2𝑡, 𝑗 + 𝑞 + 2𝑡, 2𝑡 − 𝑖 − 𝑗 − 𝑝 − 𝑞).
These surfaces produce tilings which are not convex in terms
of the original loop nest.

for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {

for(int j=2; j<M-3; j++) {

A[t+1][i][j] = f(A[t][i-2][j], A[t][i-1][j],

A[t][i][j], A[t][i+1][j], A[t][i+2][j],

A[t][i][j-2], A[t][i][j-1], A[t][i][j+1],

A[t][i][j+2]);

}

}

}

Listing 1.Computational kernel corresponding to the stencil
form Fig. 7.

for(int t=0; t<T-2; t++) {

for(int i=2; i<N-3; i++) {

for(int j=2; j<M-3; j++) {

for(int p=0; p<2; p++){

for(int q=0; q<2; q++){

if ((i%2==p) && (j%2==q)) {

A[t+1][i][j] = f(A[t][i-2][j],

A[t][i-1][j], A[t][i][j],

A[t][i+1][j], A[t][i+2][j],

A[t][i][j-2], A[t][i][j-1],

A[t][i][j+1], A[t][i][j+2]);

}

}

}

}

}

}

Listing 2. Computational kernel corresponding to the space
after the transformation similar to one on Fig. 8.

Unfortunately the transformed code on Listing 2 has an
“if” clause with a non-linear condition. Usually such condi-
tions are not supported by polyhedral code optimizers. If
kernel from Listing 2 used as is, it may lead to incorrect
dependence detection. There are several ways to use such
transformations correctly within a polyhedral framework.
We can calculate dependencies along with the transforma-
tion or we can add support for non-singular increments in
the loops. No matter which way we choose, such transfor-
mations allow us to extend polyhedral framework to some
non-convex tilings.

By applying the described transformation we can extend
our geometric locality model to this particular non-convex
stencil. Now the only question left is how to construct similar
transformations for an arbitrary stencil.

For a stencil algorithmwith a uniform stencil, it is possible
to explicitly construct such transformations. The construc-
tion employs two steps:

8

Estimating the upper bound on arithmetic intensity for a stencil algorithm IMPACT 2025, January 20–22 2025, Barcelona, Spain

1. define the distance between each pair of points with
the help of dependence graph,

2. use the defined distance to construct a metric embed-
ding.

This approach allows us to convert the transformation search
problem into a metric embedding problem. An overview of
metric embedding theory may be found in the article [1].
This article mentions a conjecture implying the existence
of a relation between intrinsic dimension of the graph and
embedding dimension, i.e. dimension of the space we embed
the graph into. This conjecture gives us hope that embed-
dings we are looking for in the step 2 of the construction
exist for cases which are more complex than uniform stencil
algorithms.

Threads and synchronizations model. Up until now
we did not mention synchronizations and threads in the
geometric locality model. Our intention is to incorporate
threads in the described framework. We need to build a geo-
metric threading and synchronizations model, which would
make it convenient to describe locality. Let us emphasize
that the program code doesn’t provide a good way to de-
scribe it. It is especially true for parallel programs, where
performance and arithmetic intensity may vary dramatically
between different runs. For certain codes it is possible to
make predictions [9],[10], but accuracy of these estimations
depends on the code in question.

We will describe a threading extension to geometric local-
ity model in future works.

5 Applying results of the geometric locality
model to the polyhedral model

Many ideas and results from our work may be also applied
to the polyhedral model.
Consider the definition 3.2 of a conoid. If a conoid is a

convex polyhedron, the definition 3.2 implies the same re-
strictions on normals to its faces as the ones the polyhedral
model imposes on the tiling hyperplanes. For stencil algo-
rithms geometric locality model describes more valid tilings
than the polyhedral model. In our opinion, knowing what
is missing may prove valuable in attempts to generalize the
polyhedral model.
Theorem 3.6 allows us to easily prove validity of a tiling,

e.g. Theorem 1 from [18] may be considered as its particular
case.
Finally, the transformations analogous to one from the

Section 4 may be employed to obtain non-convex tilings. If
we have a direct and an inverse transformations, we can
describe a convex tiling in the image space and get the non-
convex tiling in the source space by applying the inverse
transformation. The space tiling on Figure 9 was obtained by
using this approach for the transformation in Example 4.1.

If non-linear transformations from the Section 4 is repre-
sented in terms of loop transformations, it will allow poly-
hedral model to find some non-convex tilings.

x

y

Figure 9. Non-convex tiling in space. The depicted tiling
corresponds to a convex tiling with hyperplanes in the image
space of the transformation on Figure 8.

6 Related works and discussion
The idea to describe locality problems in terms of isoperimet-
ric problems is not entirely new. For example, article [3] uses
the same concept. However there is a number of difference
between our approaches.
Boulet at al. solve the problem only for a specific type of

tile, namely a parallelotope. They have a way to find the
corresponding best tiling. Since the article had been written
before Roofline model appeared, it does not use the arith-
metic intensity as a performance indicator and is vague on
the role of machine parameters in its performance analysis.
Finally, Boulet at al. optimize the communication volume
for a fixed computation volume, which corresponds to the
simplified cache model from Subsection 2.1.

We use an isoperimetric-type inequality which is universal
enough to cover any shape of tiles. On the other hand, our
approach is not constructive. We do not have a way to build
a tile which saturates the inequality. We cannot even be sure
if it exists. We also consider a more realistic cache model
giving a different inequality, for which we only outlined a
possible proof. From a certain point of view, our work may
be considered as a continuation of the aforementioned work
with a slightly different angle to the approach.

7 Results and conclusions
In this paper we have outlined how to use geometric inequal-
ities to estimate the upper bound on arithmetic intensity

9

IMPACT 2025, January 20–22 2025, Barcelona, Spain Sergey Khilkov

of a stencil algorithm. We have formulated Conjecture 2.5,
which stated that arithmetic intensity for a stencil algorithm
has a bound of the form 𝐼 ≤ 𝐶 𝑛

√
𝐷cache, where 𝑛 is a num-

ber of space dimensions for the algorithm. This inequality
limits the impact of the polyhedral optimization on a stencil
algorithm performance.

The geometric locality model has been introduced to sim-
plify asymptotic estimation of the constant 𝐶 for the case of
large tiles. The constraints on tile shapes and valid tilings
were described in terms of the geometric locality model.
These constraints allow a number of valid tilings which can-
not be described by the polyhedral model. These results of
geometric locality model may prove useful for understanding
the polyhedral model.
The non-linear transformations discussed in Section 4

are especially notable. With the aid of these transforma-
tions polyhedral model may be extended to valid nonconvex
tilings.
The geometric locality model admits a rigorous mathe-

matical description which will be given in future work.
The presented approach described only stencil algorithms.

Generalizing the approach for an arbitrary algorithm presents
an interesting research problem.

Acknowledgments
We gratefully commend anonymous reviewers of IMPACT
2025 for helpful comments and literature suggestions. We
thank Vadim Levchenko and Anastasia Perepelkina for for-
mulating this problem and useful discussions. We also ex-
press gratitude to Ksenia Bulycheva for support and review-
ing all aspects of this work.

References
[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. 2011. Advances in metric

embedding theory. Advances in Mathematics 228, 6 (2011), 3026–3126.
doi:10.1016/j.aim.2011.08.003

[2] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. 2008. Automatic Trans-
formations for Communication-Minimized Parallelization and Locality
Optimization in the Polyhedral Model. In Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 132–146. doi:10.1007/978-3-540-
78791-4_9

[3] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. 1994. (Pen)-
ultimate tiling? Integration 17, 1 (1994), 33–51. doi:10.1016/0167-
9260(94)90019-1

[4] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem. I. One-dimensional time. International journal of parallel
programming 21, 5 (1992), 313–347.

[5] Paul Feautrier. 1992. Some efficient solutions to the affine scheduling
problem. Part II. Multidimensional time. International journal of parallel
programming 21, 6 (1992), 389–420.

[6] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model.
Springer US, Boston, MA, 1581–1592. doi:10.1007/978-0-387-09766-
4_502

[7] Herbert Federer. 1996. Geometric measure theory. Springer.
[8] Richard Gardner and Paolo Gronchi. 2001. A Brunn-Minkowski in-

equality for the integer lattice. Trans. Amer. Math. Soc. 353, 10 (2001),

3995–4024.
[9] Pieter Ghysels and Wim Vanroose. 2015. Modeling the Performance

of Geometric Multigrid Stencils on Multicore Computer Architectures.
SIAM Journal on Scientific Computing 37, 2 (jan 2015), C194–C216.
doi:10.1137/130935781

[10] Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein.
2017. Kerncraft: A Tool for Analytic Performance Modeling of
Loop Kernels. (13 Jan. 2017). doi:10.1007/978-3-319-56702-0_1
arXiv:1702.04653 [cs.PF]

[11] Francois Irigoin and Remi Triolet. 1988. Supernode Partitioning. In
Symposium on Principles of Programming Languages (POPL’88). San
Diego, CA, 319–328. http://ssh.cri.ensmp.fr/classement/doc/A-179.pdf

[12] Wayne Kelly, William Pugh, Evan Rosser, and Tatiana Shpeisman. 1996.
Transitive Closure of Infinite Graphs and Its Applications. International
Journal of Parallel Programming 24, 6, 579–598. doi:10.1007/bf03356760

[13] A. Kolmogoroff. 1934. Zur Normierbarkeit eines allgemeinen topol-
ogischen linearen Raumes. Studia Mathematica 5, 1 (1934), 29–33.
http://eudml.org/doc/218127

[14] B. A. Korneev and V. D. Levchenko. 2016. Effective solving of three-
dimensional gas dynamics problems with the Runge-Kutta discontinu-
ous Galerkin method. Computational Mathematics and Mathematical
Physics 56, 3 (March 2016), 460–469. doi:10.1134/S0965542516030118

[15] Vadim Levchenko and Anastasia Perepelkina. 2023. Heterogeneous
LBM Simulation Code with LRnLA Algorithms. Commun. Comput.
Phys 33 (2023), 214–244.

[16] Vadim Levchenko, Anastasia Perepelkina, and Andrey Zakirov. 2016.
DiamondTorre Algorithm forHigh-PerformanceWaveModeling. Com-
putation 4, 3 (Aug. 2016), 29. doi:10.3390/computation4030029

[17] V. D. Levchenko and A. Y. Perepelkina. 2018. Locally Recursive
Non-Locally Asynchronous Algorithms for Stencil Computation.
Lobachevskii Journal of Mathematics 39, 4 (5 2018), 552–561. doi:10.
1134/s1995080218040108

[18] Ravi Teja Mullapudi and Uday Bondhugula. 2014. Tiling for Dy-
namic Scheduling. In Proceedings of the 4th International Workshop
on Polyhedral Compilation Techniques, Sanjay Rajopadhye and Sven
Verdoolaege (Eds.). Vienna, Austria. http://impact.gforge.inria.fr/
impact2014/papers/impact2014-mullapudi.pdf

[19] Daniel Orozco, Elkin Garcia, and Guang Gao. 2011. Locality Optimiza-
tion of Stencil Applications Using Data Dependency Graphs. In LCPC
2010 (LNCS, Vol. 6548), K. Cooper, J. Mellor-Crummey, and V. Sarkar
(Eds.). Springer, 77–91. doi:10.1007/978-3-642-19595-2_6

[20] Robert Osserman. 1978. The isoperimetric inequality. Bull. Amer. Math.
Soc. 84, 6 (1978), 1182–1238.

[21] A Yu Perepelkina, V D Levchenko, and I A Goryachev. 2014. Implemen-
tation of the Kinetic Plasma Code with Locally Recursive non-Locally
Asynchronous Algorithms. Journal of Physics: Conference Series 510, 1
(may 2014), 012042. doi:10.1088/1742-6596/510/1/012042

[22] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and Hans-Peter
Seidel. 2011. Cache Accurate Time Skewing in Iterative Stencil Com-
putations. In 2011 International Conference on Parallel Processing. IEEE,
571–581. doi:10.1109/icpp.2011.47

[23] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: An Insightful Visual Performance Model for Floating-Point
Programs and Multicore Architectures. Commun. ACM 52, 4, 65–76.
doi:10.1145/1498765.1498785

[24] Andrey Zakirov, Sergei Belousov, Ilya Valuev, Vadim Levchenko, Anas-
tasia Perepelkina, and Yasunari Zempo. 2017. Using memory-efficient
algorithm for large-scale time-domain modeling of surface plasmon
polaritons propagation in organic light emitting diodes. Journal of
Physics: Conference Series 905, 1 (oct 2017), 012030. doi:10.1088/1742-
6596/905/1/012030

10

https://doi.org/10.1016/j.aim.2011.08.003
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1007/978-3-540-78791-4_9
https://doi.org/10.1016/0167-9260(94)90019-1
https://doi.org/10.1016/0167-9260(94)90019-1
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1137/130935781
https://doi.org/10.1007/978-3-319-56702-0_1
https://arxiv.org/abs/1702.04653
http://ssh.cri.ensmp.fr/classement/doc/A-179.pdf
https://doi.org/10.1007/bf03356760
http://eudml.org/doc/218127
https://doi.org/10.1134/S0965542516030118
https://doi.org/10.3390/computation4030029
https://doi.org/10.1134/s1995080218040108
https://doi.org/10.1134/s1995080218040108
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
http://impact.gforge.inria.fr/impact2014/papers/impact2014-mullapudi.pdf
https://doi.org/10.1007/978-3-642-19595-2_6
https://doi.org/10.1088/1742-6596/510/1/012042
https://doi.org/10.1109/icpp.2011.47
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1088/1742-6596/905/1/012030
https://doi.org/10.1088/1742-6596/905/1/012030

	Abstract
	1 Introduction
	2 Geometric inequalities and arithmetic intensity
	2.1 Simplified cache model
	2.2 More realistic cache model

	3 Geometric locality model
	3.1 Continuous dependence model
	3.2 The correspondence between discrete and continuous atomic tilings
	3.3 Obtaining the limit

	4 Generalizations of geometric locality model
	5 Applying results of the geometric locality model to the polyhedral model
	6 Related works and discussion
	7 Results and conclusions
	Acknowledgments
	References

